Computer Aided Circuit Analysis and State Variable Analysis

Ver. 2.1 Prepared by Dr. Ali Hussein Muqaibel

- One way of solving complicated circuits containing inductors, capacitors is through computer aided circuit analysis.
- The order of the circuit n is equivalent to the number of non-trivial inductors and capacitors.
- The variable of interest (voltage or current) can be represented by single $n^{\text {th }}$ order differential equation or n first order equations.
- Computer aided circuit analysis involves two Major steps:
- Convert the circuit to matrix state equation. (a. systematic, b. non-systematic)
- Numerically solve the matrix state equation.
1.a Convert the circuit to matrix state equation (non-systematic).
- The conversion can be done in a non-systematic way to come up with n first order equations.
- Usually to find $\frac{d v_{C}}{d t}$, we apply KCL at a relevant node.
- Usually to find $\frac{d i_{L}}{d t}$, we apply KVL in the relevant loop.
- For a circuit of the 2 order the matrix state equation may have the following form. If no source exists the second term in the right-hand is zero

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] w(t)
$$

It's better you check the equations after writing them by multiplication property of the matrices. A common mistake is to miss-place the elements of the matrix
1.b Convert the circuit to matrix state equation (systematic).

- A systematic procedure is needed to be programmed on a computer.
- You need to know some Graph Theory concepts (Graph, node, edges, connected graph, spanning tree, branch, non-branch, loop, fundamental loop, cut set, fundamental cut set).

Important terms in GRAPH Theory

GRAPH : is a collection of junction points called NODES, and line segments connecting the nodes called BRANCHES
TREE : a connected sub-graph, connecting all nodes of the graph but containing no loops. Branches of a tree are called TREE-Branches. Other Branches are called NON-TREE-BRANCHES.
Spanning Tree : a tree chosen to write circuit equations.
Cut set : a minimum set of branches that, when cut, will divide a graph into two separate parts.
Fundamental cut set : a cut set containing only a single tree branch.
Fundamental loop : a loop that results when a link is put into the tree.

Formal Procedure for Obtaining State Equations

STEP1: Pick a spanning tree such that voltage sources and capacitors correspond to branches, whereas current sources and inductors correspond to non-branch edges. Furthermore, if possible, an element whose voltage controls a dependent source should correspond to a branch, and one whose current controls a dependent source should correspond to a non-branch edge. More than one such tree may exist, or none at all.

STEP2: Arbitrarily assign a voltage to each branch capacitor and a current to each non-branch inductor, these are the state variables. If possible, express the voltage across each element corresponding to a branch and the current through each element corresponding to a non-branch edge in terms of voltage sources, current sources, and state variables. If it is not possible, assign a new voltage variable to a resistor corresponding to a branch and new current variable to a resistor corresponding to a non-branch edge.

STEP3: Apply $K V L$ to the fundamental loop determined by each non-branch inductor.
STEP4: Apply $K C L$ to the node or super-node corresponding to the fundamental cut-set determined by each branch capacitor.

STEP5: Apply $K V L$ to the fundamental loop determined by each resistor with a new current variable assigned in STEP2.

STEP6: Apply $K C L$ to the node or super-node corresponding to the fundamental cut-set determined by each resistor with a new voltage variable assigned in STEP2.

STEP7: Solve the simultaneous equations obtained from STEP5 and STEP6 for the new variables in terms of the voltage sources, current sources, and state variables.

STEP8: Substitute the expressions obtained in STEP7 into the equations determined in STEP3 and STEP4.
2. Numerically solve the matrix state equation.

- Utilizing Euler's Method: $x([k+1] \Delta t)=x(k \Delta t)[1+A \Delta t]$
- The matrix state equation can be solved numerically:
- For a two circuit of the second order and a single source, the solution is given by

$$
\begin{aligned}
& x_{l}([k+1] \Delta t)=x_{l}(k \Delta t)+\left[a_{11} x_{l}(k \Delta t)+a_{12} x_{2}(k \Delta t)+b_{1} w(k \Delta t)\right] \Delta t . \\
& x_{2}([k+1] \Delta t)=x_{2}(k \Delta t)+\left[a_{21} x_{l}(k \Delta t)+a_{22} x_{2}(k \Delta t)+b_{2} w(k \Delta t)\right] \Delta t .
\end{aligned}
$$

- where: $\left(a_{11}, a_{12}, a_{21}, a_{22}\right)$ are the component of the matrix.
- $k=0,1,2,3, \ldots \ldots . ., b 1$ and b_{2} are component of B matrix (given source $w(t)$)
- The initial conditions for x_{1} and , x_{2} should be given /can be calculated.
- The previous equation can be easily extended to higher order circuits and more sources.
"This summary should not replace the book /note" Dr. Ali Hussein Muqaibel

