CH11: Balanced Three-Phase Circuits

- $3 Ø$ circuits are important in power generation, transmission \& distribution
- Balanced three - phase voltages or currents must be \rightarrow sinusoidal with same f
\rightarrow same amplitude
\rightarrow out of phase by 120°

- circuits can operate (connected) in parallel only if they have the same sequence.
- Δ connection $==V_{L}=V_{\varnothing}$
- Y connection $\Longrightarrow I_{L}=I_{\varnothing}$
- In balanced $3 \varnothing$ current in the neutral $\quad I_{\varnothing}=I_{a A}+I_{b B}+I_{c C}=0$
- Transform any $\Delta \rightarrow \mathrm{Y}$ (if need be) $Z_{Y}=Z_{\Delta} / 3$.
- For Y-Y:
- $\left|V_{L}\right|=\sqrt{3}\left|V_{\varnothing}\right|$
o V_{L} leads V_{\varnothing} by 30° for + sequence $\&$ lags by 30° for - sequence.

- For Y- Δ
o Start by $\Delta \rightarrow Y$ transformation (when needed)
o $\left|I_{L}\right|=\sqrt{3}\left|I_{\emptyset}\right|$
o I_{L} lags I_{\varnothing} by 30° for + sequence and leads by 30° for - sequence
- For a sinusoidal waveform

$$
v_{\text {rms }}=\frac{\left|V_{\text {anp }}\right|}{\sqrt{2}}
$$

- for balanced 3 Ø circuit
o Average Power (watts)

$$
\begin{aligned}
& P_{\varnothing}=P_{A}=P_{B}=P_{c}=V_{\varnothing} I_{\varnothing} \cos \theta_{\varnothing}, \boldsymbol{P}_{\boldsymbol{T}}=\mathbf{3} \boldsymbol{P}_{\varnothing} \\
& P_{T}=\sqrt{3} V_{L} I_{L} \cos \theta_{\emptyset} \quad \ldots f o r ~ Y \text { or } \Delta
\end{aligned}
$$

o Reactive Power (VARs)

$$
Q_{\varnothing}=V_{\varnothing} I_{\varnothing} \sin \theta_{\varnothing}
$$

o Complex Power or apparent power (VA)

$$
\begin{aligned}
& S_{\emptyset}=V_{\emptyset} I^{\circ} \varnothing=P_{\emptyset}+j Q_{\varnothing} \\
& S_{T}=3 S_{\varnothing}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\left[\varnothing_{\varnothing}\right]
\end{aligned}
$$

- Instantaneous power

$$
P_{T}=P_{A}+P_{B}+P_{c}=1.5 V_{m} I_{m} \cos \underline{\theta}_{\varrho}=3 V_{\emptyset} I_{\varnothing} \cos \theta_{\emptyset}
$$

- Measuring Average Power with Two Wattmeters

$$
\begin{aligned}
& W_{I}=V_{L} I_{L} \cos \left(\theta_{\varnothing}+30\right) \\
& W_{2}=V_{L} I_{L} \cos \left(\Theta_{\varnothing}-30\right) \\
& P_{T}=W_{I}+W_{2}=\sqrt{3} V_{L} I_{L} \cos \theta_{\varnothing} \\
& \mathrm{Q}_{\mathrm{T}}=\sqrt{3}\left(W_{2}-W_{1}\right)=\sqrt{3} V_{L} I_{L} \sin \theta_{\varnothing}
\end{aligned}
$$

- Capacitor banks can be used to reduce losses and control the voltage level

Note:

- This summary is meant to give an overview and it does NOT replace the book
- It is a matter of practice not just knowing the formula.
- Some variables represent vectors and some represent scalar values.

If you have any comment or correction please send to muqaibel@kfupm.edu.sa
Prepared by
Dr. Ali Muqaibel

