Resonance

Summary prepared by (Dr. Muqaibel)

- Resonance happens when the imaginary part of the *impedance* or *admittance* seen by the source is equal to zero. The frequency at which resonance occur is denoted, ω_r .
- Not all circuits have real resonance frequency.
- Quality factor is measured at resonance and defined to be

$$Q = 2\pi \frac{\left[\text{maximum energy stored}\right]}{\left[\text{total energy lost in a period}\right]} = 2\pi \frac{\left[W_{L}(t) + W_{C}(t)\right]_{\text{max}}}{P_{R}T}$$
$$T \text{ is the period and is given by } T = \frac{1}{f} = \frac{2\pi}{\omega_{r}}.$$

- The cutoff frequency is the frequency at which the output (voltage /current) its maximum divided by $\sqrt{2}$. Remember that the maximum occurs at resonant frequency, ω_r . Usually there are two cutoff frequencies, ω_1 and ω_2 .
- The bandwidth, $BW = \omega_2 \omega_1$.
- Selectively is defined to be the ration of resonance frequency to BW, selectivity = $\frac{\omega_r}{BW}$

	Series RLC	Parallel RLC
Q	$\omega_r L$	$\omega_r RC$
	R	
at ω_r magnitude of	impedance is minimum	admittance is minimum
\mathcal{O}_r		
ω_1 and ω_2	$\omega_1 = -\frac{\omega_r}{2Q} + \omega_r \sqrt{\left(\frac{1}{2Q}\right)^2 + 1} , \omega_2 = \frac{\omega_r}{2Q} + \omega_r \sqrt{\left(\frac{1}{2Q}\right)^2 + 1}$	
BW	$\frac{\omega_r}{Q}$	

- For series and parallel RLC circuits the natural frequency, $\omega_n = \frac{1}{\sqrt{LC}}$, equals to the resonant frequency. This is generally not true for other circuits.
- Quality Factor of Series and Parallel Reactances

$$Q = \frac{|X_s|}{R_s} , \quad Q = \frac{R_p}{|X_p|}$$

For a practical tank circuit, we prove that Q for the inductor branch is high, then we can convert the circuit into equivalent parallel RLC circuit with new $R = \frac{L}{R_sC}$. Equations for parallel RLC circuits can be used to find the quality factor or resonance frequency (caution use new *R*)

• Magnitude/Impedance Scaling and Frequency Scaling

Original Circuit	Magnitude/Impedance Scaling	Frequency Scaling
R	$R' = k_m R$	R'' = R
С	$C' = C/k_m$	$C'' = C/k_f$
L	$L' = k_m L$	$L'' = L/k_f$