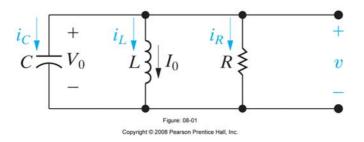

KFUPM-EE DEPT.
EE205: Circuits II-082
HW # 2: Due:

1


Problem 1:

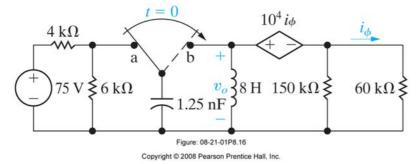
The resistance, inductance, and capacitance in a parallel RLC circuit are 5000 Ω , 1.25 H, and 8 nF, respectively.

- a) Calculate the roots of the characteristic equation that describe the voltage response of the circuit.
- b) Will the response be over-, under-, or critically damped?
- c) What value of R will yield a damped frequency of 6 krad/s?
- d) What are the roots of the characteristic equation for the value of R found in (c)?
- e) What value of R will result in a critically damped response?

Problem 2:

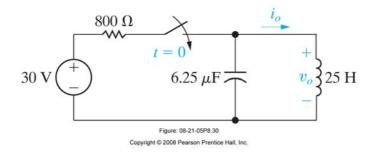
The initial value of the voltage v in the above circuit is zero, and the initial value of the capacitor current, $i_c(0^+)$ is 15 mA. The expression for the capacitor current is known to be:

$$i_{c}(t) = A_{1}e^{-160t} + A_{2}e^{-40t}, \quad t \ge 0^{+}$$

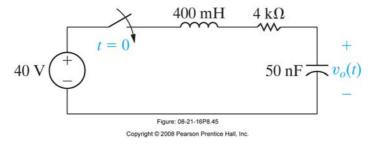

Where R is 200 Ω .

a) Find the value of α , ω_0 , L, C, A_1 , and A_2

$$\left(H \text{ int } : \frac{di_{C}(0)}{dt} = -\frac{di_{L}(0)}{dt} - \frac{di_{R}(0)}{dt} = \frac{v(0)}{L} - \frac{1}{R}\frac{i_{C}(0^{+})}{C}\right)$$


- b) Find the expression for v(t), $t \ge 0$
- c) Find the expression for $i_R(t)$, $t \ge 0$
- d) Find the expression for $i_L(t)$, $t \ge 0$

Problem 3:


The switch in the above circuit has been in position for a long time. At t = 0, the switch moves instantaneously to position b. Find $v_0(t)$ for $t \ge 0$.

Problem 4:

There is no energy stored in the circuit in the above Figure when the switch is closed at t=0. Find $v_0(t)$ for $t \ge 0$.

Problem 5:

The initial energy stored in the circuit in the above Figure is zero, Find $v_0(t)$ for $t \ge 0$.