Introduction to Queuing Theory

Dr. Ali Muqaibel

Dr. Ali Muqaibel

1

Coverage

- Basic structure of queuing systems.
- Little's Formula
- M/M/1 system
- Multi-server systems M/M/c, M/M/c/c, and M/M/∞

Dr. Ali Muqaibel

Introduction- Motivation

- How to analyze changes in network workloads?
 - Should I add new terminals? How much?
- What percentage of calls will be blocked?
 - Adding more lines would solve the problem?
- Analysis of system (network) load and performance characteristics
 - response time
 - throughput
- Performance tradeoffs are often not intuitive
- Queuing theory, although mathematically complex, often makes analysis very straightforward

Dr. Ali Muqaibel

3

Queueing Theory

- Operations Research
- The study of waiting
- Back to early twentieth century
 - Danish mathematician A. K. Erlang (telephone networks), why?
 - Russian mathematician A. A. Markov
- Applied in a broad variety of applications

Operations research, or operational research in British usage, is a discipline that deals with the application of advanced analytical methods to help make better decisions.^[1] It is often considered to be a sub-field of mathematics.^[2] The terms management science and decision science are sometimes used as more modern-sounding synonyms http://en.wikipedia.org/wiki/Operations research

Dr. Ali Mugaibel

Queuing Jargons

- Kendall's notation
 - Standard notation to describe queuing containing single queue: X/Y/m/n

Dr. Ali Muqaibel

5

Common distributions

- G = general distribution if interarrival times or service times
- GI = general distribution of interarrival time with the restriction that they are independent
- M = negative exponential distribution (Poisson arrivals)
- > D = deterministic arrivals or fixed length service

M/M/1? M/D/1? M/M/1/K? M/M/c/c? M/G/1? M/D/1?

Dr. Ali Muqaibel

General Characteristics of Queuing Models

Item population

generally assumed to be infinite therefore, arrival rate is persistent

Queue size

- infinite, therefore no loss
- finite, more practical, but often immaterial

Dispatching discipline

- FIFO, typical
- LIFO
- Relative/Preferential, based on QoS
- **—**

Dr. Ali Muqaibel

Delay Components

Dr. Ali Muqaibel

11

Delay Components (Cont.)

- Packet delay the sum of delays on each link on the path traversed by the packet.
- Each link delay in turns consists of
 - Processing delay: between the time the packet is correctly received at the head node of the link and the time the packet is assigned to an outgoing link queue; is independent of traffic carried.
 - Queueing delay: between the time the packet is assigned to a queue for transmission and the time it starts being transmitted.
 - Transmission delay: between the times that the first and last bits of the packet are transmitted.
 - Propagation delay: between the time the last bit is transmitted at the head node of the link and the time the last bit is received at the tail node; depends on the physical characteristics of the link.

Dr. Ali Muqaibel

Two Points of View

- Customer's point of view, the performance of the system is given by:
 - > Statistics of the waiting time W
 - > The total delay T,
 - \triangleright The proportion of customers that are blocked, $\frac{\lambda_b}{\lambda}$
- From the point of view of resource allocation, the performance of the system is measured by:
 - > The proportion of time that each server is utilized.
 - \triangleright The rate at which customers are serviced by the system, $\lambda_d = \lambda \lambda_b$.
- These quantities area function of:
 - \triangleright N(t), the number of customers in the system at time t.
 - $\triangleright N_q(t)$, the number of customers in queue at time t.

Dr. Ali Muqaibel

Transient versus steady-state behaviour

• Transient behaviour (from t = 0)

performance indicators such as average waiting time, average number of customers in queue, etc. are dependent of the time, e.g. W(t), $N_q\left(t\right)$

Steady-State (stationary) behaviour (t → ∞)

performance indicators such as average waiting time are not dependent of the time anymore; the probability that the system is in a certain state is completely independent of time, e.g. W, N_q .

Dr. Ali Muqaibel 16

Little's Formula

For systems that reach steady state, the average number of customers in a system is equal to the product of the average arrival rate and the average time spent in the system.

- λ: customer arrival rate
- E[N]: average number of customers in system
- E[T]: average delay per customer in system
- ▶<u>Little's Formula</u>: System in steady-state
- $\rightarrow E[N] = \lambda E[T]$

Dr. Ali Muqaibel

17

Counting Processes of a Queue

- The system begins empty at time t = 0.
- N(t): number of customers in system at time t.
- A(t): number of customer arrivals till time t.
- D(t): number of customer departures till time t
- T_i : time spent in system by the i^{th} customer
- S(t): the cumulative area between A(t) and D(t)

Dr. Ali Mugaibel