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Introduction

Real life: time (space) waveform (desired +undesired)

Our progress and development relays on our ability to deal with such wave
forms.

The set of all the functions that are available (or the menu) is call the
ensemble of the random process.

X, &)
The graph of the function X(t, s), T
versus t for s fixed, is called a
realization, Sample path, or sample
function of the random process.

For each fixed from the indexed set
I, X (tk, s) is a random variable
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Formal Definition

Consider a random experiment specified by the outcomes S from some
sample space S , and by the probabilities on these events.

Suppose that to every outcome s € S,we assign a function of time
according to some rule: X(t,s), t € I.

We have created an indexed family of random variables, {X(¢,s),t € I}.
This family is called a random process (stochastic processes).
We usually suppress the s and use X(t) to denote a random process.

A stochastic process is said to be discrete-time if the index set I is a
countable set (i.e., the set of integers or the set of nonnegative integers).
X(nT) or X[n]

A continuous-time stochastic process is one which I is continuous
(thermal noise)
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Deterministic and non-deterministic
Processes
Non-deterministic: future values cannot be

predicted from current ones.

— most of the random processes are non-
deterministic.

| Sinusoid with random amplitude [-1,1] |

Deterministic:

ke : ""‘q

X(t,s) =scos(2rt) —o<t<oo

Y (t,s) =cos(2zt +5s)

| Sinusoid with random phase (—m, +m) |
Dr. Ali Hussein Mugaibel 4

3/31/2013



Distribution and Density Functions

A r.v. is fully characterized by a pdf or CDF. How do we characterize
random processes?

To fully define a random processes, we need N dimensional joint
density function. '

Distribution and Density Functions
First order: L S
» Fy(xg;t1) = P{X(t1) < x4}
Second-order joint distribution function
" Fy(xq,x2;tq,t5) = P{X(t1) < x1,X(t3) < x5}
Nt order joint distribution function

Fx(xl, v, Xy e, ...,tN) = P{X(t]_) < X4, ,X(tN) < XN}

g S py Ve
e

fX(xl, XN tll ey tN) = FX(xl, XN tl' ...,tN)

0x1..0xN
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Stationary and Independence

Statistical Independence
Sy (X, s X V1, s Vi by e U By e, E)=
fx x5ty e En ) fy Ve e Vs Gy T
Stationary

— If all statistical properties do not change with time
First order Stationary Process
fx(xq;t1) = f(xq; t + A), stationary to order one
=>E[X(t)] = X = constant
Proof

> X1 =X(t1), X, = X(t2)

> ElX] = EIX ()] = [ % fx Geas t)dx

+0o

> E[X,] = E[X(t2)] = [ x2fx(x2: t2)dx,
> lett, =t +A
> E[X(t; + D)] = E[X(t)]
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Cyclostationary

A discrete-time or continuous-time random process X (t) is said to be
cyclostationary if the joint cumulative distribution function of any set of

samples is invariant with respect to shifts of the origin by integer multiples of
some period

For all k,m and all
Fx (t2), X (t2) X (1) (X0 Xp o000 %) choices of sampling
= Py omT) X (et X sty (X Xg ey Xy ). tiMes by, o, b

We say that X (t) is wide-sense cyclostationary if the mean and autocovariance
functions are invariant with respect to shifts in the time origin by integer
multiples of T, that is , for every integer m.

m, (t+mT) =m, (t)
Cy(t,+mT,t,+mT)=C, (t,t,).

Note that if X(t) is cyclostationary, then if follows that X (t) is also wide-sense
cyclostationary.
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Cross-Correlation Function and its properties

Ryy(t, t+ 1) = E[X()Y(t +1)]
If Xand Y are jointly w.s.s. we may write
Ryy (7).
Orthogonal processes Ryy (t,t + 7) =0
If X and Y are statistically independent
» E[X(®)Y(t + 1)]=E[X(®)]E[Y (t + 1)]
If in addition to being independent they are at
least w.s.s.

» E[X(O)Y(t +1)] = XY
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Some properties for Ryy

Rxy(—7) = Ryx (1)
|Rxy (0| < /Rxx(0)Ryy(0)
|Rxy ()] < 5 [Ryx(0) + Ryy (0)]

The geometric mean is tighter than the
arithmetic mean

\/RXX(O)RYY(O) < %[RXX(O) + Ryy(0)]
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Measurement of Correlation Function

In real life, we can never measure the true correlation .

We assume ergodicity and use portion of the available time.

Assume ergodicity, no need to prove mathematically “physical sense”
Assume jointly ergodic => stationary

Lett; = 0, Rg(2T) = Ry, (1) = Ryy(7)

Similarly, we may find Ryx (7) & Ryy(T)

t1+2T
R,(t 2T) = — t)y(t dt
y(t) oty +2T) 2T . x(O)y(t+1)
x(t)
Dr. Ali Hussein Mugaibel 10

Example

Use the above system to measure the Ryx (1) for X(t) = Acos(wy + 0).
R,(2T) = %f_TTAzcos(wot + 0) cos(wot + 0 + wyT) dt

2
= ‘;—Tf_TT[cos(wor) + cos(Rwot + 20 + wo)]dt

2
= Ryx(t) + €(T) where Ryx(1) = A?cos(wor)

2 )
e(T) = A7cos(a)0‘r +26) Slz;:;’T

If we require the €(T) to be at least 20 times less than the largest value of
the true autocorrelation |€(T)| < 0.05Rxx(0)

L <005>T7>2

2woT wo

Wait enough time! Depending on the frequency

Dr. Ali Hussein Mugqaibel 11
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True Variance

Matlab: Measuring the correlation

o - \ / ;\ / Y
- - _ “_ - ~
% Dr. Ali Mugaibel o 30 20 10 [ 10 20 30 40
% Measurement of Correlation function Measured
— — 1
cearall T=20, OMEGA=0.2
close all - = o~ —
cle o7 SO 7 S -7 S
T=100; N
A=1; 20 30 20 10 0 10 20 30 40
omeg=0.2; Error
=TT, 01
thet=2*pi*rand(1,1); o
X=A*cos(omeg*t+thet);
[R,tau]=xcorr(X,'unbiased'); 01 L s ' L L L L
%R=R/(2*T); 40 30 20 10 0 10 20 30 20
" True Variance

True_R=A"2/2*cos(omeg*tau); 05
Err=A"2/2*cos(omeg*tau+2*thet)*sin(2*omeg*T)/(2*omeg*T); )
subplot(3,1,1) 0 4
plot(tau,True_R,tau,R+Err,"')
title (‘True Variance') 030 8 60 40 20 o0 20 40 60 80 10
subplot(3,1,2) Measured

0

7 T " 7 -

plot (tau,R,"") \ Y S 7 \\ S /s S
title ('Measured') L vy V! o Y
% error ‘o / v/ / v ‘L

os \ N \

. 100 80 60 40 20 O 20 40 60 80 100

subplot (3,1,3) Note the error is less than 5% Eror
plot (tau,Err) o
erar N\VAVAVAVAVAVAN
% eror T=50, OMEGA=0.2

0.05 . . . . . . . . .
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Gaussian Random Processes

A random process X (t) is a Gaussian random process if the samples

X1 =X(t1), X2 = X(t2), - X = X (&)
are jointly Gaussian random variables for all k ,and all choices of tq,t;, ... t.
This definition applies for discrete-time and continuous-time processes.
The joint pdf of jointly Gaussian random variables is determined by the vector of
means and by the covariance matrix:

ef}/z(x -m)’cY(x-m)

(271')kI2|C|%

where
my (t1) Cylt,t) Cytt) . . . Cy (tl,tk)
Cxlty,t) Cy(tut) . . . Cyx(tyt)
m= C=
my (&) Cx(tt) Cx (t t)
Dr. Ali Hussein Mugaibel 13
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Example iid Gaussian Sequence
Let the discrete-time random process  X,, be a sequence of independent

Gaussian random variables with mean m and variance o2
The covariance matrix for the times ¢4, ..., ty is

{Cx (tl'tj)}:{o-25ij}: 0'2|,

where §;; = 1when (= jand O otherwise, and I is the identity matrix. Thus the
corresponding joint pdf is

exp k( L —m)?/2 2}
( o )/ { Z 7
= fx (X:l) f>< (Xz)---fx (Xk)

Dr. Ali Hussein Mugaibel 14

Example of a Gaussian Random
Process

A Gaussian Random Process which is W.5.5. X = 4 and Ry (7) =

25e7317l + 16

Specify the joint density function for three rv. X (¢t;),i = 1,2,3 ...,t; =t +
[%] , tols constant

te—t; =", land k =123,

3lk=i

RXX(tk —t; ) =25z +16
3lk—i|

3lk—i|
CXX(tk - t ) - 256 2 + 16 (4’)2

3

[CX] =25 e 2z 1 e_%

Dr. Ali Hussein Mugaibel 15
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Complex Random Processes

* A complex random process Z(t)is given by
« Z(t) = X() +jY(0)
* R,,(t,t+1)=E[Z*(t)Z(t + 1)]

e Cyy(t,t+1) =
E[{z() —E[Z@OH{Z(t + 1) — E[Z(t + D)]}]

* Note the conjugate

e There could be a factor of% in some books

* See example in Peebles

Dr. Ali Hussein Mugaibel 16

Example signal Plus Noise

Suppose we observe a process Y (t), which consists of a desired signal
X(t) plus noise N(t).

Find the cross-correlation between the observed signal and the desired
signal assuming that X(t) and N(t) are independent random processes.

Ry Y (tl’tz) =E[X (tl)Y (tz)]
= E[X (tl){x (tz) +N (tz )}]
= E[X (tl)x (tz)] +E[X (tl)N (tz)]
=Ry (t,,1,) + E[X (L)]E[N(t,)]
=Ry (t, 1) +my (t)my (t,)

where the third equality followed
from the fact that N(t) and X(t)
are independent.

Dr. Ali Hussein Mugaibel 17
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EXAMPLES OF DISCRETE_TIME &
Continuous-Time RANDOM
PROCESSES

See Leon Garcia
Probability, Statistics, and Random Processes
for Electrical Engineers, 3™ Edition

9.5 GAUSSIAN RANDOM PROCESSES,WIENER
PROCESS,AND BROWNIAN MOTION

Dr. Ali Hussein Mugaibel
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EXAMPLES OF DISCRETE_TIME RANDOM PROCESSES
iild Random Processes

Let X, be a discrete-time random process consisting of a sequence of in-
dependent, identically distributed (iid) random variables with common cdf Fy (x)
mean m and variance ¢2. The sequence X, is called the iid random process.
The joint cdf for any time instants nq, ....,n is given by

Fr...x, (X0s Xpyeenry X ) = PLX, <X, X, S %500y X %)
= I:x (Xl)FX (Xz)---Fx (Xk)’

where for simplicity X; denotes X, . The equation above implies that if X, is
discrete-values, the joint pmf factors into the product of individual pmf’s, and if X, is
continuous-valued, the joint pdf factors into the product of the individual pdf’s.

The mean of an iid process is obtained

m, (n)=E[X,]=m foralln

Thus, the mean is constant.
The autocovariance function is obtained from as follows. If n; # n,, then

Dr. Ali Hussein Mugaibel
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Cx (n,n,) = E[(X, —m)(X,, —m)]
= E[(X,, -m)IE[(X,, —-m)]=0
since X,, and X, are independent random variables. If n, =n, =n then
2 2
Cy(n,n,) =E[(X,-m)]=0
We can express the autocovariance of the iid process in compact form as follows:

Cy(n,ny) = 0-25n1n2 ,

where &, . =1if n; = n, and 0 otherwise
The autocorrelation function of the iid process is:

Ry (n,n,) =Cy (n,n,) + m’

Dr. Ali Hussein Mugaibel 20

Example : Bernoulli Random Process

Let I, be a sequence of independent Bernoulli random variables. I, is then
an iid random process taking on values from the set {0,1}. A realization of such
a process is shown in Figure.
For example, I,, could be an indicator function for the event “ a light bulb fails
and is replaced on day n”
Since I, is a Bernoulli random variable, it has mean and variance
m;(n) =p
VAR[I,] = p(1—p)

The independence of the I,, makes probabilities easy to compute. For example,
the probability that the first 4 bits in the sequence are 1001 is

PlI; =1,I, =0,I3 =0, = 1] = P[I; = 1]P[I, = 0]P[I5 = 0]P[l, = 1]
=p*(1 - p)?
Similarly, the probability that the second bit is 0 and the seventh is 1 is

P[l; =0,I; =1] = P[l = 0]P[I; = 1] = p(1 — p)

Realization of a Bernoulli process. I, = 1 indicates
that a light bulb fails and is replaced in day n.

Dr. Ali Hussein Mugaibel 21
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Sum Processes: The Binomial Counting and Random Walk Processes

5,4

: . (b) Realization of a binomial
s process. S, denotes the
i number of light bulbs that
have failed up to time n.

Many interesting random processes are obtained as the sum of a sequence
of iid random variables, X1, X5, ....
Sp =Xy + Xo 4. Xp = Sn_q + Xp, n=12..

',('4.;,_777_ —+ 5, =85, + X,
T The sum process S, = X; + -+ X,

‘ J So = 0, can be generated in this way.
= delay

S

where Sy = 0. We call S, the sum process. The pdf or pmf of S, is found using

the convolution .

Note that S,, depends on the “past,” S, ..., Sp,—1 only through S,,_; , thatis, S,

is independent of the past when S,,_; is known. This can be seen clearly from the previous
Figure, which shows a recursive procedure for computing S,, . Thus S, is a Markov process.

Dr. Ali Hussein Mugaibel 22

Example Binomial Counting Process

Let the I; be the sequence of independent Bernoulli random variables in
a previous Example, and let S;,be the corresponding sum process. S,, is then the
counting process that gives the number of successes in the first n Bernoulli
trials. The sample function for S,, corresponding to a particular sequence of
Ijs isshown in the Figure up. If I, indicates that a light bulb fails and is replaced
on day n, then S,, denotes the number of light bulbs that have failed up to day n.
Since S, isthe sum of n independent Bernoulli random variables, S, is a
binomial random variable with parameters nand p = P[I = 1]

P[S, = J']=GJP"(1— p)™’ for0< j<n,

and zero otherwise. Thus S, has mean np and variance np(1 — p).
Note that the mean and variance of this process grow linearly with time (n).

Dr. Ali Hussein Mugaibel 23
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Example one-Dimensional Random Walk

Let D, betheiid processof +1 random variable as in the previous
example, and let S;, be the corresponding sum process. S, is then the
position of the particle at time n.

The random process S, is an example of a one-dimensional random walk.
A sample function of S,, is shown in the Figure

The pmf of S, is found as follows. If thereare k" + 1" in the first n trials,
thenthereare n—k "—1"andS, =k—(n—k) =2k —n.

Conversely, S,, = j if the number of “+1"sisk =j + ? = HT"

j+n . . .
If}T is not an integer, then S,, cannot equal j.
n
Thus PIS,=2k-n] —?kjpk(l p) fork e{0L..n
. ./_,VW,
Loz, | |*;-i;'£' ] AN,
. N R AN AN R i
n-j J
n 777777 ‘V’W - ~15|
Dr. Ali Hussein Muqaibel 24

Example sum of iid Gaussian Sequence

Let X, be asequence of iid Gaussian random variables with zero mean
and variance o2 . Find the joint pdf of the corresponding sum process at

times ny and n,.
The sum process S, is also a Gaussian random process with mean zero and
variance no 2. The joint pdf of S,at times n; and n, is given by no?

fsnl,s"2 (ylv yz) = fanl (yz - yl) fsnl (yl)
_ 1 e,(yz,yl)Z/[z(ﬂz*"l)Uz] 1

J2x(n, -n)o? 27,6

/2m0?

eVt

Dr. Ali Hussein Mugaibel 25
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EXAMPLES OF CONTINUOUS-TIME RANDOM PROCESSES

Poisson Process

Consider a situation in which events occur at random instants of time at
an average rate of a customer to a service station or the breakdown of a
component in some system. Let N(t) be the number of event occurrences
in the time interval [0,t]. N(t) is then a nondecreasing, integer-valued,
continuous-time random process as shown in Figure.

A sample path of the Poisson
counting process. The event
occurrence times are denoted by
51,82, .....The j th interevent time
isdenoted by X; = 5; — §;_4

Dr. Ali Hussein Mugaibel 26

Poisson Process.. From Binomial

If the probability of an event occurrence in each subinterval is p, then the expected
number of event occurrences in the interval [0,t] is np. Since events occur at a rate of
A events per second, the average number of events in the interval [0,t] is also
At.Thus we must have that

At =np

If we now letn = oo(i.e.,§ = 0) and p = 0 while np = At remains fixed, then

the binomial distribution approaches a Poisson distribution with parameter At. We
therefore conclude that the number of event occurrences N (t) in the interval

[0, t] has a Poisson distribution with mean At:

k
PV = k] = E e,

For this reason N(t) is called the Poisson process.

fork=0,1,..

| Replace p with 1 t/n |

For detailed derivation, please see ) n . i i
http://www.vosesoftware.com/ModelRiskHelp/index.htm#P P[S" = J] = . pJ (1— p) ) for0< J<n,
robability theory and statistics/Stochastic_processes/Derivi ]

ng_the Poisson distribution from the Binomial.htm

Dr. Ali Hussein Mugaibel 27
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Poisson Random Process

Also known as Poisson Counting Process
Arrival of customers, failure of parts, lightning,....internet t>0
Two conditions:

» Events do not coincide.

» #of occurrence in any given time interval is independent of the number in any non overlapping
time interval. (independent increments)

Average rate of occurrence=A.

k,—At
PIX®) =k =22 k=012,.. (0,0)

At k,—At
fX(x) = Z}o:=0%6(x — k) Inter-arrival X, —
E[X(®)] = At s vN“
variance = At = mean

tt 4 t [ time

E[X?()] = At[1 + At]
The probability distribution of the waiting time until the next occurrence is an
exponential distribution.

The occurrences are distributed uniformly on any interval of time.

http://en.wikipedia.org/wiki/Poisson_process
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Joint probability density function for
Poisson Random Process

The joint probability density function for the poison process at times 0 < t; < ¢,

kq ,—At
PIX(t) =ky] = "0 k=012,
1!
The probability of k, occurrence over (0, t,) given that k; events occurred over
(0, tp), is just the probability that k, — k; events occurred over (t;,t,), which is

A(t,—t,)]k2—k1g=Alt2=t1)

PIX(ts) = kalX(t;) = ky] = =2 e

(kz—k1)!
For k, > k4, the joint probability is given by
P(kq, ky) = P[X(£2)1X(t1) = k1 ]P[X(t1) = k4]
_ Qe)f[Agty—ty) k2" K1eAt2
- kq! (kp—kq)!
The joint density becomes
fx ey x0) = 21201:0 Z?;:kl P(kq, kz)8 ey — kq)8(x2 — k2)
Example : demonstrate the higher-dimensional pdf
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Example |

Inquiries arrive at a recorded message device according to a Poisson process of rate 15
inquiries per minute. Find the probability that in a 1-minute period, 3 inquiries arrive
during the first 10 seconds and 2 inquiries arrive during the last 15 seconds.

. . . 15 1. ..
The arrival rate in seconds is A = =0 = 7 inquiries per second.

Writing time in seconds, the probability of interest is

P[N(10) = 3 and N(60) — N(45) = 2]
By applying first the independent increments property, and then the stationary
increments property, we obtain

P[N (10) =3and N (60) — N (45) = 2]
= P[N(10) = 3]P[N (60) — N (45) = 2]
= P[N(10) = 3]P[N (60— 45) = 2]
~ (10/4)36710/4 (15/4)26715/4
3 2!
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Example I

Find the mean and variance of the time until the arrival of the tenth
inquiry in the previous Example. The arrival rate is A = 1/4 inquiries per
second, so the inter-arrival times are exponential random variables with
parameter A.

From Tables, the mean and variance of an inter-arrival time are then
1/2 and 1/A2, respectively.

The time of the tenth arrival is the sum of ten such iid random variables,

thus 10
EBm]zloEU]:j{:40%c

VARIS,,] =10VAR[T] = %(2’ =160sec?
Dr. Ali Hussein Mugaibel 31
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Example Random Telegraph Signal

Consider a random process X (t) that assumes the values +1 . Suppose that
X(0) = +1 with probability % and suppose that X (t) then changes polarity

with each occurrence of an event in a Poisson process of rate a. The next figure
shows a sample function of X(t) .

The pmf of X(t) is given by

PIX (t) = +1] = P[X (t) = + X (0) =1]P[X (0) =1]
+P[X (t) = 11X (0) =—1]P[X (0) = —1].

Sample path of a random
telegraph signal. The times
between transitions X; are iid
o 3y f— x— X X, |— X, exponential random variables.

Dr. Ali Hussein Mugaibel 32

The conditional pmf’s are found by noting that X(t) will have the same polarity
as X(0) only when an even number of events occur in the interval (0, t]. Thus

P[X (t) = £1|X (0) = £1] = P[N (t) = even integer]
® at)Z]
Z @i

=e™ E{e“I +e}

1
=={l+e?*
>t }

X(t)and X(0) will differ in sign if the number of events in t is odd:

PLX (t) = +1|X (0) = F1] = Z((Zj);;)'

— efat %{em _efat}

=={l-e?"},
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Mean & Variance of the Random
Telegraph Signal

We obtain the pmf for X(t) by substituting into :

PIX (t) =+1] = P[X (t) =+1|X (0) =1]P[X (0) =1]
+P[X (t) =£1X (0) =-1]P[X (0) =-1].

PIX () == 3 3 e}l 1o )=

N |-

P[X (t)=-1]=1-P[X (t) =1] :%

Thus the random telegraph signal is equally likely to be +1 atanytime
The mean and variance of X(t) are

m, (t) =1P[X (t) =1]+ (-1)P[X () =—1] =0 t>0
VAR[X ()] = E[X (t)*]= (*P[X (t) =1]
+(-1)?P[X () =-1] =1

Dr. Ali Hussein Mugaibel 34

Auto-covariance of the Random
Telegraph Signal

The autocovariance of X(t) is found as follows:
Cx (tl'tz) = E[X (t1)x (tz)]
=1P[X (1) = X (t)]+ (=D PLX(t) = X ()]
1 “2atyty L “2alt, |
=—{l+e " }——{1-e """
S 1 oA }
— eiza‘tzftl‘

Thus time samples of X(t) become less and less correlated as the time between
them increases.

Dr. Ali Hussein Mugaibel
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Wiener Process and Brownian Motion

* A continuous-time Gaussian random process as a limit of a
discrete time process.

e Suppose that the symmetric random walk process (i.e.,
p = 0.5) takes steps of magnitude +h every § seconds.

* We obtain a continuous-time process by letting Xs5(t) be
the accumulated sum of the random step process up to
time t.

* Xs(t) is a staircase function of time that takes jumps of +h
every § seconds.

* Attime t, the process will have taken n = [%] jumps, so it is
equal to

Xs(t) = h(Dy + Dy + --- + Dyysy) = hS

n-

Dr. Ali Hussein Mugaibel 36

T T T T T L rl]
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EAVAUASS
* The mean and variance of Xs(t)are oL ‘
= E[X5(t)] = RE[S,] = 0 R
* VAR[Xs5(t)] = h?n VAR[Dn] = h?n
1

» We used the fact that VAR[D,,] = 4p(1 —p) = 1 sincep = B

¢ By shrinking the time between jumps and letting 6 - 0 and h —
0 with h = Vas
* X(t) then has a mean and variance
" E[X(©)]=0

- VARIX(®)] = (Vad)’ (g) =ad

e X(t) is called the Wiener random process. It is used to model
Brownian motion, the motion of particles suspended in a fluid that
move under the rapid and random impact of neighboring particles.
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Wiener Process

- -

e As X[tj approaches the sum of infinite number of random variables since
n=

o X(t) =limgogh S, = lim,_o Vat j—%

» By the central limit theorem the pdf X(t) therefor approaches that o a
Gaussian variable with mean zero and variance at :

1 =

¢ fX(t‘)(x) = Wezat

* X(t) inherits the property of independent and stationary increments from
the random walk process from which it is derived.

¢ The independent increments property and the same sequence of
steps can be used to show that the autocovariance of X(t) is given by
o Cx(ty,ty) = amin(ty, ty) =at; fort; <t

* Wiener and Poisson process have the same covariance despite the fact that
they are different.
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Practice Problem :Poisson Process

» Suppose that a secretary receives calls that
arrive according to a Poisson process with a
rate of 10 calls per hour.

* What is the probability that no calls go
unanswered if the secretary is a way from the
office for the first and last 15 minutes of an
hour?
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In class practice: Wide-Sense
Stationary Random Process

Let X,, be an iid sequence of Gaussian random variables with
zero mean and variance a2, and let Y, be the average of two

consecutive values of X, ,
Xn + Xp—
Yn _n n-1
2
Find the meanof Y.
Find the covariance Cy (i, j)

What is the distribution of the random variable Y. Is it
stationary?
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