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Abstract— A vectorial time-domain simulator of integrated optical structures containing sec-
ond order nonlinearities is presented. The simulation algorithm is based on the direct solution of
nonlinear Maxwell’s equations representing the propagating fields and is solved using the FDTD
method. Because the proposed algorithm accounts for the full optical coefficient tensor, the in-
accuracies associated with the scalar and paraxial approximations are avoided. It should find
application in a wide range of device structures and in the analysis of short-pulse propagation in
second order nonlinear devices.

1. INTRODUCTION

The increased progress in materials technology and fabrication methods for integrated optics has
resulted in a growing need for accurate models that closely predict the behavior of the electromag-
netic fields inside new optical devices. Fortunately, the advent of fast and powerful computers has
made detailed numerical modeling an efficient and reliable tool for researchers and engineers. Be-
cause many of the nonlinear optical devices are waveguide-based, the paraxial approximation of the
energy flow direction was utilized in the early numerical models. The Beam Propagation Method
(BPM) [1] is one approach of this type of modeling. The BPM method has been successfully used in
the analysis of Second Harmonic Generation (SHG) in nonlinear optical structures [2, 3]. Although
this method is relatively less computationally intensive than other methods, the formulation of
the fields for the SHG is scalar and the method is aimed at modeling wave propagation in devices
where the primary flow of energy is along a single principal direction. Other modeling methods in
this area are the Finite element method (FEM) and the Finite-Difference Time-Domain (FDTD)
method.

Since the introduction of the Yee algorithm for the numerical solution of Maxwell’s equations in
1966 [4], the FDTD method has been applied to the simulation of a large number of linear as well as
nonlinear electromagnetic problems [5]. The FDTD is substantially more robust than other methods
because it directly solves for fundamental quantities. It also avoids the simplifying assumptions
of conventional asymptotic behavior and paraxial propagation. Recently, a FDTD approach that
solves the nonlinear scalar wave equation was applied to the second harmonic generation problem
[6]. This scalar model offered a number of attractive advantages. All the effects due to the wave-
medium interaction are included in the analysis under the scalar formulation. Further, as compared
to the BPM solution, the approach takes into account wave reflection due to discontinuities in the
simulated structure as well as outside boundaries. However, the scalar model is only suited for
problems that do not involve change in polarization. In most practical nonlinear integrated optical
devices, wave polarization does occur. For example, in a GaAs-based nonlinear structure a TM
incident field can couple to a TE second harmonic field.

In this paper, a formulation of the full-wave model for SHG in optical structures containing
second order nonlinearity is presented. This formulation is suitable for implementation using the
vectorial FDTD. The algorithm is applied to a GaAs-based waveguiding structure.

2. FORMULATION OF THE SHG IN GAAS-BASED STRUCTURES

The propagation of electromagnetic radiation through certain class of crystals causes the nonlin-
ear dielectric properties of the material to be polarized. This polarization, P , can be expressed
mathematically using terms proportional to the nonlinear susceptibility, χ(2), and to the propa-
gating electric field components inside the structure. The nonlinear response of the material to
such property leads to an exchange of energy between fields propagating at different frequencies.
This response is utilized in the SHG in which energy from one field propagating at frequency ωf ,
the fundamental field, is transferred to a field propagating at double the frequency ωs = 2ωf , the
second harmonic field.
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The formulation starts with Maxwell’s equations:
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where E is the electric field intensity and H is the magnetic field intensity. P is the total (linear
and non-linear) electric polarization given by

P = PL + PNL (3)

where

PL = εo([εr]− 1)E (4)

PNL = 2εo[d]E · E (5)

and [d] is the nonlinear optical coefficient tensor. In vectorial form, the nonlinear polarizations of
the fundamental and the second harmonic waves are given by
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Consider now a GaAs-based waveguide with crystal axes matching the principal axes. The nonlinear
optical coefficient tensor is given by

[d] =

[0 0 d14 0 0
0 0 0 d14 0
0 0 0 0 d14

]
(7)

In this case, coupling of a TM fundamental field to a TE second harmonic field is possible. The
resulting differential equations are:
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TE second harmonic field
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3. SOLUTION METHOD AND NUMERICAL RESULTS

The finite-difference time-domain (FDTD) method is used to numerically solve Equations (8) to
(13). The method is suitable for this application because of its ability to include different structures
and different media. It is also capable of producing results for multiple frequencies using a single
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Figure 1: SHG along the nonlinear waveguide (solid: no matching, dashed: perfect match).

simulation. To increase the accuracy of the computations, the PML absorbing boundaries are used
for the truncation of the computation domain. A symmetric GaAs-based dielectric slab waveguide
is considered to test the proposed FDTD algorithm. It consists of a 0.44-µm thick guiding layer
sandwiched between two 3-µm thick AlAs layers. The arrangements of the field components for both
the fundamental and second harmonic are made according to the standard Yee cell. The excitation
field is a CW TM signal at a fundamental wavelength of λf = 1.064µm and an amplitude of
5.0A/µm. The transverse profile of the excitation corresponds to the first TM guided mode at
the given operating frequency. For the sake of illustration, two matching scenarios are considered.
First, no matching technique is used such that the level of coupling between the input and the
generated waves depends entirely on the phase shift between them. This phase shift is defined
by the difference between the effective indices of the two coexisting guided modes. Second, the
effective refractive index of the first odd guided mode of the TE field at λs = 0.533µm is perfectly
matched to the first even guided mode of the TM input field by numerically changing the value of
the refractive index of the guiding layer at λs. The results for both scenarios are shown in Figure 1.
As expected, energy exchange between the fundamental field and the second harmonic field takes
place periodically during every coherence length if no matching technique is implemented. If,
however, the two waves are perfectly matched, the energy exchange will be continuous, resulting
in a coherent build-up of the second harmonic energy. The transverse profiles for the fundamental
TM mode and the second harmonic TE mode are shown in Figure 2. The simulation verifies the
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Figure 2: TM input (fundamental) and generated
TE second harmonic profiles.
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Figure 3: Time-domain results for the fundamen-
tal and second harmonic fields at a point along the
device at the center of the guiding layer.
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coupling of second harmonic energy on the first odd TE mode. Finally, time-domain results of the
input fundamental field and the generated second harmonic field at a point along the device are
shown in Figure 3. The results confirm the relative frequency between the two propagating beams.

4. CONCLUSIONS

The developed model can be utilized to efficiently analyze and study different optical structures
with second order nonlinearities. Instead of calculating the total field inside the structure and then
performing spectral analysis to separate the two propagating waves, the presented model solves
directly for the fundamental as well as the second harmonic fields. It should find application in
a wide range of device structures and in the analysis of short-pulse propagation in second order
nonlinear devices. The extension of the model for applications involving pulsed excitations and
different device geometries is a future work.
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