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Abstract— A higher-order accurate FDTD simulation algorithm for the solution of the phase-
dependent SHG problem is presented. This algorithm approximates the spatial derivatives in
the propagation direction using 4th order FD schemes. It has been shown that this scheme
guarantees the convergence of the solution using significantly less computation time and less
memory requirement as compared to 2nd order schemes.

1. INTRODUCTION

Higher order FDTD schemes allow the modeling of electromagnetic wave interaction in structures
that have very long electrical lengths without jeopardizing the limit on phase error accumulation
set by standard 2nd order methods. These higher order schemes become even more attractive in
problems involving nonlinear interactions. For example, in a second harmonic generation (SHG)
problem, the energy coupling between the propagating input optical beam and the generated beam
is a strong function of the phase shift between the two waves. Failing to accurately estimate the
phase of the waves at any given distance along the propagation direction results in errors in the
calculation of both coherence length and the amount of coupled energy. Several researchers have
attempted the FDTD solution of wave propagation in both linear as well as nonlinear optical
structures using higher order methods to overcome the limitations of 2nd order explicit schemes
[1–3].

In this paper, the FDTD-SHG solution reported in [4] is revisited. The second order accurate
approximations of the spatial derivatives are replaced by 4th order accurate schemes. Such a scheme
has not been yet discussed in literature in the context of the nonlinear wave equation representing
SHG.

2. FORMULATIONS

A time-domain formulation of the SHG problem in nonlinear optical waveguides has been proposed
in [4]. The equations representing the propagating waves are derived using a nonlinear wave equa-
tion such that the problem is reduced to an equivalent scalar problem. This new formulation of the
SHG problem offers great advantages over both the classical BPM technique and other frequency-
domain methods. While it completely accounts for the wave-medium interactions, it avoids the
limitations associated with conventional asymptotic behavior and paraxial propagation. On the
other hand, it provides an efficient method for the time-domain characterization of nonlinear opti-
cal structures by focusing on such quantities as beam intensity, nonlinear depletion and phase shift,
characteristic lengths, etc., in which detailed analysis of the field components is not necessary. For
a 2D SHG problem, the proposed time-domain algorithm solves for only two fields; the fundamental
field and the second harmonic field. In addition, the algorithm is capable of incorporating different
matching techniques in the SHG process including quasi-phase matching and it can simulate CW
second-order nonlinear effects as well as operations with short time-varying envelops. The SHG
model equations are given by:
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where Ef and Es are the fundamental and the second harmonic fields, respectively, n is the material
refractive index and χ(2) is the dispersionless nonlinear susceptibility. The second order FD ap-
proximation of the laplacian is systematically used in many wave propagation problems. Provided
that the spatial step size in the propagation direction is made a small fraction of the shortest wave-
length, the amount of numerical dispersion of a 2nd order scheme is generally acceptable. It will be
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interesting to investigate this general criterion when the simulation involves phase-dependent inter-
actions between coexisting waves, such as the case of a SHG problem. Using the 4th order scheme,
which is proposed to replace the 2nd order scheme, the spatial derivative of the fundamental wave,
for example, in the propagation direction will be given by:

∂2Ef

∂y2
∼= 1

12(∆y)2
[
−Ef (i, j−2) + 16Ef (i, j−1)− 30Ef (i, j) + 16Ef (i, j+1)− Ef (i, j+2)
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Figure 1: SHG results for 2nd and 4th order FDTD schemes.
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Figure 2: Coherence length vs. Grid factor using 4th order and 2nd order schemes.
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Figure 3: Peak value of second harmonic power vs. Grid factor using 4th order and 2nd order schemes.

3. SOLUTION METHOD AND NUMERICAL RESULTS

To study the effectiveness of the proposed 4th order method, a symmetric AlGaAs-based dielectric
slab waveguide is considered. It consists of a 0.44-µm thick guiding layer sandwiched between
two 3-µm thick AlAs layers. The excitation field is a CW signal at a fundamental wavelength of
λf = 1.064µm. The transverse profile of the excitation corresponds to the first guided mode at
the given operating frequency. For the sake of comparison, both 2nd and 4th order schemes were
considered. No matching technique is used such that the level of coupling between the input and
the generated waves depends entirely on the phase shift between them. This phase shift is defined
by the effective refractive indices of the two coexisting guided modes. The coherence length is given
by LC = λf/2(ns − nf ), where n is the effective refractive index. Because of the nature of the
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Figure 4: Error analysis for 4th order (solid) and 2nd order (dashed) schemes.
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problem, propagation occurs in only one direction. Several numerical experiments have shown that
negligible gain in accuracy is achieved by applying the 4th order scheme to the transverse direction.
Figures 1 to 3 summarize the effectiveness of the 4th order scheme in speeding up convergence.
In the figures, the grid factor is defined as the ratio of the wavelength to the spatial step size.
For this particular problem, a grid factor of 80 in the 4th order scheme is sufficient to ensure
low levels of numerical dispersion. By applying the 4th order scheme to the spatial derivatives in
the propagation direction only, an overall increase of 26% in computation time per time step is
expected, but no additional memory resources are necessary. As shown in Figure 4, this additional
computation time is insignificant if compared to the savings made by relaxing the spatial step and
hence the time step. For the same error tolerance, the 4th order scheme uses spatial steps with
more than double the size required by the 2nd order scheme.

4. CONCLUSIONS

A 4th order accurate FDTD simulation algorithm for the solution of the phase-dependent SHG
problem has been presented. This algorithm guarantees the convergence of the solution using
significantly less computation time and less memory requirement as compared to 2nd order schemes.
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