EE200 DIGITAL LOGIC CIRCUIT DESIGN

The material covered in this class will be as follows:

- ⇒Boolean functions
- ⇒Algebraic manipulation
- ⇒Complement of a function
- ⇒Canonical and standard forms

Boolean Functions

The following Boolean functions are represented in the truth table.

$$F_1 = xyz'$$

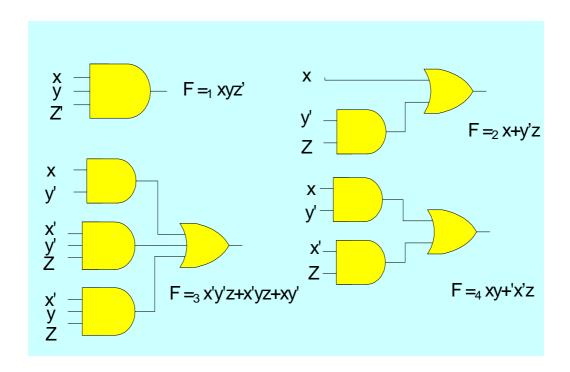
$$F_2 = x + y'z$$

$$F_3 = x'y'z + x'yz + xy'$$

$$F_4 = xy' + x'z$$

x	y	z	F_{I}	F_2	F_3	$F_{_{4}}$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

The functions can be implemented, using the basic logic gates, as shown in the following logic diagrams.



Algebraic Manipulation

Boolean functions are made up of terms. Each term consists of a number of literals. A literal is a variable or the complement of a variable. Each term is represented by a logic gate and each literal represents an input to a logic gate. By reducing the number of terms, the number of literals, or both, a simpler logic circuit can be used to implement the Boolean function.

Reduction of the number of terms and/or number of literals is done by algebraic manipulation.

Examples

1.
$$x(x'+y) = xx' + xy = 0 + xy = xy$$

2. The dual of (1) is
$$\rightarrow$$

 $x + x'y = (x + x')(x + y) = 1.(x + y) = x + y$

3.
$$(x+y)(x+y')=x+yy'=x+0=x$$

 $xy+x'z+yz=xy+x'z+(x+x')yz$
 $=xy+xyz+x'z+x'yz$
 $=xy(1+z)+x'z(1+y)$
 $=xy.1+x'z.1=xy+x'z$

5.
$$(x+y)(x'+z)(y+z) = (x+y)(x'+z) \Rightarrow$$
 by duality.

Complement of a Function

The complement of a Boolean function may be obtained by either one of two methods:

- 1. Repetitive application of DeMorgan's theorem.
- 2. Taking the dual of the function and complementing each literal.

Example:

Find the complement of F = x'yz' + x'y'z

First method
$$F' = (x'yz' + x'y'z)' = (x'yz')'.(x'y'z)'$$
$$= (x + y' + z)(x + y + z')$$

Second method

dual of F
$$\rightarrow$$
 $F^{dual} = (x' + y + z')(x' + y' + z)$

then complement each literal

$$F' = (x + y' + z)(x + y + z')$$

Canonical and Standard Forms

Minterms and Maxterms

			Minterms		Maxterms		
X	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	\mathbf{m}_{0}	x + y + z	$\mathbf{M_0}$	
0	0	1	x'y'z	m ₁	x+y+z'	$\mathbf{M_1}$	
0	1	0	x'yz'	\mathbf{m}_{2}	x + y' + z	\mathbf{M}_{2}	
0	1	1	x'yz	m ₃	x + y' + z'	\mathbf{M}_{3}	
1	0	0	xy'z'	m ₄	x'+y+z	\mathbf{M}_{4}	
1	0	1	xy'z	\mathbf{m}_{5}	x'+y+z'	\mathbf{M}_{5}	
1	1	0	xyz'	m ₆	x'+y'+z	$\mathbf{M_6}$	
1	1	1	xyz	m ₇	x'+y'+z'	\mathbf{M}_7	