## **EE200 DIGITAL LOGIC CIRCUIT DESIGN**

The material covered in this class will be as follows: Binary logic Switching circuits Binary signals Basic logic gates

## **Binary Logic:**

Binary logic deals with variables e.g. x, y, z, A, B, C, ... etc., that take on two discrete values (e.g. 1 & 0, True & False, ... etc.) and logic operations.

There are three basic logic operations:

1. AND  $\rightarrow x \cdot y = z \rightarrow$  reads x AND y is qual to z and it means that z=1 if and only if x=1 and y=1; otherwise z=0.

2. OR  $\rightarrow x + y = z \rightarrow$  reads  $x \ OR \ y \ is qual to z$  and it means that z = 1 if x = 1 or if y = 1 or if both x = 1 and y = 1. If both  $x \ and \ y = 0$  then z = 0.

3. NOT  $\rightarrow x' = z \text{ (or } \overline{x} = z) \rightarrow \text{ reads}$ "not x is equal to z" meaning that z is what x is not. These logic operations can be illustrated in the form of truth tables:

| AND |   |     | OR |   |      | NOT |    |
|-----|---|-----|----|---|------|-----|----|
| х   | у | x.y | Х  | у | х+ у | Х   | Χ′ |
| 0   | 0 | 0   | 0  | 0 | 0    | 0   | 1  |
| 0   | 1 | 0   | 0  | 1 | 1    | 1   | 0  |
| 1   | 0 | 0   | 1  | 0 | 1    |     |    |
| 1   | 1 | 1   | 1  | 1 | 1    |     |    |

Switching Circuits & Binary Logic:

Binary logic can be demonstrated by switching circuits



 $L = A \cdot B$ 

 $\boldsymbol{L} = \boldsymbol{A} + \boldsymbol{B}$ 

## **Binary Signals:**

Electrical signals are used to change the state of electronic switches between the two states of conduction and non-conduction. An example is that the logical states of 1 and 0 can be



Input output signals for logic gates may be represented in a signal waveform as shown.

