#### **EE200 DIGITAL LOGIC CIRCUIT DESIGN**

The material covered in this lecture will be as follows:

- ⇒ Design of clocked sequential circuits using D flipflops.
- ⇒ Design of clocked sequential circuits using JK flipflops.
- ⇒ Design of a binary counter using T flip-flop.

After finishing this lecture, you should be able to:

- ⇒ Design a clocked sequential circuit using any type of flip-flops.
- ⇒ Design clocked synchronous counters using any type of flip-flops.

## Design of a Sequence Detector using D Flip-Flops

The state diagram and the state table of the sequence detector are given below



| P.S. |   | Input | N.S. |   | Output |
|------|---|-------|------|---|--------|
| Α    | В | Х     | Α    | В | у      |
| 0    | 0 | 0     | 0    | 0 | 0      |
| 0    | 0 | 1     | 0    | 1 | 0      |
| 0    | 1 | 0     | 0    | 0 | 0      |
| 0    | 1 | 1     | 1    | 0 | 0      |
| 1    | 0 | 0     | 0    | 0 | 0      |
| 1    | 0 | 1     | 1    | 1 | 0      |
| 1    | 1 | 0     | 0    | 0 | 1      |
| 1    | 1 | 1     | 1    | 1 | 1      |

We use two D flip-flops with the four states 00, 01, 10, and 11. The next state is equal to the flip-flop input. The state table may be considered as a truth table for the combinational circuit part.

The required functions are  $D_A$ ,  $D_B$ , and the output y.

$$D_A(A, B, x) = \sum (3, 5, 7)$$

$$D_B(A, B, x) = \sum (1, 5, 7)$$

and 
$$y(A, B, x) = \sum (6,7)$$

These functions can be simplified and the logic circuit drawn.

$$D_A = Ax + Bx$$

$$D_B = Ax + B'x$$

$$y = AB$$

And the logic circuit is shown next.



### **Design of Clocked Sequential Circuits Using JK Flip-Flops**

When selecting the JK flip-flop in the design of clocked sequential circuits, we must use the excitation table of the flip-flop in order to obtain the flip-flop input functions. The following example illustrates the procedure:

# **Example of The Design Using JK Flip-Flops**

Design the clocked sequential circuit that has the following state table using JK flip-flops.

| P.S. |   | Input | N.S | S. |
|------|---|-------|-----|----|
| Α    | В | Х     | Α   | В  |
| 0    | 0 | 0     | 0   | 0  |
| 0    | 0 | 1     | 0   | 1  |
| 0    | 1 | 0     | 1   | 0  |
| 0    | 1 | 1     | 0   | 1  |
| 1    | 0 | 0     | 1   | 0  |
| 1    | 0 | 1     | 1   | 1  |
| 1    | 1 | 0     | 1   | 1  |
| 1    | 1 | 1     | 0   | 0  |

We use the excitation table of the JK flip-flop in order to obtain the input functions of the flip-flops. The state table becomes the excitation table of the sequential circuit.

| P.S. |   | Input | N.S. |   | Flip-Flop Inputs |                |         |         |
|------|---|-------|------|---|------------------|----------------|---------|---------|
| Α    | В | Х     | Α    | В | J <sub>A</sub>   | K <sub>A</sub> | $J_{B}$ | $K_{B}$ |
| 0    | 0 | 0     | 0    | 0 | 0                | Χ              | 0       | Χ       |
| 0    | 0 | 1     | 0    | 1 | 0                | Χ              | 1       | Χ       |
| 0    | 1 | 0     | 1    | 0 | 1                | Χ              | Χ       | 1       |
| 0    | 1 | 1     | 0    | 1 | 0                | Χ              | Χ       | 0       |
| 1    | 0 | 0     | 1    | 0 | Χ                | 0              | 0       | Χ       |
| 1    | 0 | 1     | 1    | 1 | Χ                | 0              | 1       | Χ       |
| 1    | 1 | 0     | 1    | 1 | Χ                | 0              | Χ       | 0       |
| 1    | 1 | 1     | 0    | 0 | Χ                | 1              | Χ       | 1       |

The excitation table can now be treated as a truth table for the combinational circuit part. We can obtain the Boolean expressions of the required functions and simplify them using Karnaugh maps.

$$J_A = Bx'$$
  $K_A = Bx$   $J_B = x$  and  $K_B = A'x' + Ax = (A \oplus x)'$ 

The logic circuit can then be drawn.



### **Design of a Binary Counter Using T Flip-Flops**

We are going to design a binary counter as an example for the synthesis procedure using T flip-flops.

A binary counter of n flip-flops will be able to count from 0 to a maximum count of 2<sup>n</sup>-1. As an example a binary counter comprising three flip-flops will count from 000 to 111 and then resets to 000. We wish to design such counter using T flip-flops.

The state diagram of such counter is shown.



The excitation table of the circuit, which is shown next, consists of the state table together with the flip-flop input functions which can be completed with the aid of the T flip-flop excitation table.

| P.S.  |       |       | N.S.  |       |       | Flip-Flop Inputs |          |                 |
|-------|-------|-------|-------|-------|-------|------------------|----------|-----------------|
| $A_2$ | $A_1$ | $A_0$ | $A_2$ | $A_1$ | $A_0$ | $T_{A2}$         | $T_{A1}$ | T <sub>A0</sub> |
| 0     | 0     | 0     | 0     | 0     | 1     | 0                | 0        | 1               |
| 0     | 0     | 1     | 0     | 1     | 0     | 0                | 1        | 1               |
| 0     | 1     | 0     | 0     | 1     | 1     | 0                | 0        | 1               |
| 0     | 1     | 1     | 1     | 0     | 0     | 1                | 1        | 1               |
| 1     | 0     | 0     | 1     | 0     | 1     | 0                | 0        | 1               |
| 1     | 0     | 1     | 1     | 1     | 0     | 0                | 1        | 1               |
| 1     | 1     | 0     | 1     | 1     | 1     | 0                | 0        | 1               |
| 1     | 1     | 1     | 0     | 0     | 0     | 1                | 1        | 1               |

From the table, and using Karnaugh maps for simplifications, we get:

$$T_{A2} = A_1 A_0$$
  $T_{A1} = A_0$  and  $T_{A0} = 1$ 

The logic diagram is shown.

