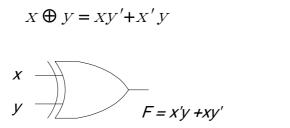
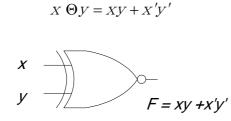
EE200 DIGITAL LOGIC CIRCUIT DESIGN


The material covered in this class will be as follows:

 \Rightarrow Exclusive-OR function.

 \Rightarrow Parity Generation and Checking.

EXCLUSIVE-OR FUNCTION


The exclusive-OR (XOR), denoted by the symbol \oplus , is a logical operation that performs the following Boolean operation:

ху	$x \oplus y$
0 0	0
0 1	1
1 0	1
1 1	0

XOR Truth Table

The exclusive-NOR, also known as equivalence function, performs the following Boolean operation:

Х	у	хΘу
0	0	1
0	1	0
1	0	0
1	1	1

XNOR Truth Table

The following identities apply to the XOR operation:

$$x \oplus 0 = x$$

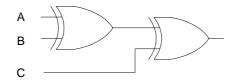
$$x \oplus 1 = x'$$

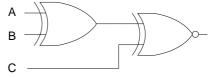
$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$

$$x \oplus y = y \oplus x$$


$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$


The exclusive-OR operation with three and four variables can be expressed as

$$A \oplus B \oplus C = \sum (1,2,4,7)$$
$$A \oplus B \oplus C \oplus D = \sum (1,2,4,7,8,11,13,14)$$


We can see from the above expressions that the XOR function is 1 only when an odd number of variables are equal to1. Hence, in general, the multi-variable XOR operation is defined as the odd function.

The 3-input odd function is implemented by means of 2-input XOR gates as shown below. The complement of an odd function is obtained by replacing the output gate with an XNOR gate.

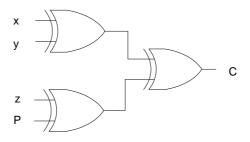
Parity Generation and Checking

Exclusive-OR gates are useful for generating and checking a parity bit that is used for detecting/correcting errors during transmission of binary data over communication channels.

Example

Transmitting a 3-bit message with even parity bit. The three bits – x, y, and z constitute the message and are the inputs to the circuit. The parity bit P is the output, which is an odd function and can be expressed as:

$$P = X \oplus Y \oplus Z$$


The truth table and the logic diagram for the parity generator is shown below.

Message				x
х	У	Z.	Parity	
0	0	0	0	y 7
0	0	1	1	7
0	1	0	1	-
0	1	1	0	3-bit even parity generator
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

The three bits in the message together with the even parity pit P are transmitted. The receiver at the destination checks for even number of 1's in the 4-bit message and generates an error C equal to 1 if the number of 1's in the message is odd. Here, again, we can use the odd function property of the XOR gate that produces

an output of 1 if odd number of inputs is equal to 1. The truth table and the logic diagram for the parity checker is shown below.

	Rec	-bit eive ssag	Error	
Х	У	Z	Р	С
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

4-bit even parity checker