

Multimodal Biometric Identity Authentication: Benefits, Issues and Challenges

Josef Kittler

Centre for Vision, Speech and Signal Processing

University of Surrey, Guildford GU2 7XH

J.Kittler@surrey.ac.uk

OUTLINE

Introduction

- Multimodal biometric identity authentication
- Fusion architectures
- Decision versus score level fusion
- Issues in multimodal fusion
- Quality based fusion of biometric modalities & issues
- Conclusions

Setting the scene

Person identification is crucial to the fabric of the society

- Security
- Access to buildings/services
- Business transactions
- Law enforcement
- Government
 - Border control
 - Identity cards
 - Social security

Pitfalls of classical security techniques

- Reliance on the ability of operators
- Reliance on good memory or alternative mechanisms (users)

Pitfalls of classical security/ forensic techniques

- Human failings
 - Limited capability
 - Limited capacity
 - Genuine ambiguity

Brandon Mayfield

Physiological Biometrics

- Fingerprints
- Face
- Iris
- DNA
- Retina
- Hand Geometry
- Ear Shape
- Thermogram

Behavioural Biometrics

- Signature
- Voice
- Gait
- Keystroke

Sources of errors in biometric identification

- For every sample of biometric trait the identification code is slightly different
- Identification is non-unique

The probability of misidentification as a function of database size

Database of 1,000 Chance of error:

 $1.0 - 0.9999^{1,000} = 0.09$

Database of 10,000 Chance of error:

 $1.0 - 0.9999^{10,000} = 0.63$

Database of 100,000 Chance of error:

 $1.0 - 0.9999^{100,000} = 0.99995$

Multimodal biometrics

Different traits- different properties

- usability
- personal preferences
- acceptability
- performance
- robustness in changing environment
- reliability
- applicability (different scenarios)

Benefits of multimodality

Motivation for multiple biometrics

- To enhance performance
- To increase population coverage by reducing the failure to enroll rate
- To improve resilience to spoofing
- To permit choice of biometric modality for authentication
- To extend the range of environmental conditions under which authentication can be performed

Levels of Fusion

Decision-level fusion

How useful?

"The key to resolving the apparent paradox," writes Daugman, "is that when two tests are combined, one of the resulting error rates (False Accept or False Reject rate) becomes better than that of the stronger of the two tests, while the other error rate becomes worse even than that of the weaker of the tests. If the two biometric tests differ significantly in their power, and each operates at its own cross-over point, then combining them gives significantly worse performance than relying solely on the stronger biometric.

Biometric Personal Identity Authentication

Fusion of face, voice and lips dynamics

Fusion of multiple biometric modalities

Modalities	XM2VT	S Configuration					
	FAR	FRR	HTER	Performance of individual			
Face 1	7.25	7.78	7.52	moda	modalities (early versions		
Face 2	5.00	4.45	4.73	of algorithms)			
Face 3	6.00	8.12	14.12		(In collaboration with IDIAP and AUT)		
Voice 1	7.00	1.42	4.21	(In co			
Voice 2	0.00	1.48	0.74	and A			
Lips	14.00	12.67	13.34				
		Modalities		XM2VTS Configuration I			
				FAR	FRR	HTER	
Fusion results		Lips & face		4.50	0.73	2.62	
•weighted averaging		Lips & voice		0.00	1.39	0.70	
		Face & voice		0.00	1.25	0.63	
		Lips, face & voice		0.00	1.31	0.66	
		No lips		0.00	0.52	0.26	
	all		0.00	0.29	0.15	16	

- accuracy
- diversity
- competence
- quality
- score normalisation
- class coding

Face Quality Measures

Face

- Frontal quality
- Illumination
- Rotation
- Reflection
- Spatial resolution (between eyes)
- Color bit per pixel
- Focus
- Brightness
- Background uniformity
- Glasses

Well illuminated

Side illuminated

Glass=89% Illum.=100% Glass=15% Illum=56%

Scores versus quality

19

Biometric trait quality

- global quality
- Iocal quality
- multiple aspects of quality
- genuine/fake samples
- accuracy versus quality
 - algorithm independent quality measures?
- quality controlled fusion mechanisms

Confidence-based Fusion Algorithms

Face Expert 1

22

Analysis of Multimodal Fusion (I)

23

Biomeric sample quality: issues

Quality is relative Class separability is algorithm dependent

Illumination

Algorithm B

Pose

Quality-based fusion: issues

- Quality of biometrics is multi-facetted
- The use of too many quality measures can cause over fitting
- Independence assumption
- How should a biometrics expert assess its own competence
- How should quality information control the fusion process
- Algorithm dependent ambiguity
- Fusion architecture

- Multiple classifiers provide a powerful basis for improving the performance of biometric systems
- Quality dependent fusion (QDF) in mulitmodal as well as intramodal biometric fusion shows promise
- Many key issues in classical fusion of biometric experts (accuracy-diversity trade-off) and QDF remain open
- Other design issues need to be considered