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ABSTRACT

In this paper a method is suggested
for enhancing the performance of the
Laplacian-of-Gaussian edge detector by
reliably removing false edges that are
created by noise from its output. The
discrimination between false and valid
edges is based on the distance between
successive edge contours. Statistical
analysis of the performance and simul-
ation results are,also, provided.

Introduction

Edge detection has caught the
attention of researchers for over two
decades. The prime mntivation behind
such an interest 1is due to several
results ({1,2] conjecturing that the
edges of an image and the structure of
intensity surrounding them contains
much of the essential information
about the scene; therefore, offering a
compact and, 1if properly performed,
rich representation of the image. The
problem is by no mean simple, with
difficulties starting as early as
defining what an edge is [3]). Its
importance is central to areas like
machine vision, navigation, coding and
restoration of images, and scene
representation and understanding.
Understandably, the literature tackl-
ing this problem 1is huge, and the
principles employed for the solution
are greatly diverse. 1In a recent
article surveying the state of art in
edge detection [4] it was noted that *
edge detection techniques are reaching
a performance plateau in which increa-
sed sophistication is net producing a
commensurate improvement in performan-
ce". It was, also, concluded that "
further hammering of the problem at
the signal level will prove largely
fruitless*. While we strongly agree
with the first claim, we believe, as
is shown in this work, that significa-
nt 1mprovements in terms of reducing
complexity and enhancing performance

can still be achieved by tackling the
problem at the signal level.

One of the most popular techni-
ques for edge detection utilizes the

Laplacian-of-Gaussian operator (LoG)
proposed by Marr [5]. In this
technique, edges (E(x)) are located as
the zero crossings (2C) of the

convolved signal (I(x)) with the Lapl-
acian of the function G(x,0) given by:

G(x,0) = exp(-xz/znoz) (1)
E(x) = {x: V°G(x,0)*I(x) = 0)

Among the propertics of this technique
Efficient implementation [6], accurate
localization [7,8), orientation, inva-
riance high sensitivity, and ability
to produce closed edge contours [9].
Although high sensitivity is useful in
detecting weak edges, 1t causes hoise
amplification rendering the output
virtually unusable. One approach to
alleviate this problem is to choose
the scale (o) large enough to smooth
the signal. Unfortunately, increasing
¢ increases the computational load,
reduces the resolution, increases the

chance of Phantom edges happening
[10], and most of all it causes a
dislocation in the position of the

estimated edges [11]
measurement of

preventing the
valuable information
about the intensity structure around
the edge contours. Another approach
tracks the evolution of the ZC through
scale space [12]. This approach was
later modified to track the evolution
of whole zero contours through scale
space [13}. A simple and popular
method to remove noise start by const-
ructing a measure of the strength of
the edge, then uses a threshold to
discriminate between false and valid
edges. The slope of the convolved
signal at a ZC (equal to the third
derivative of the signal) was used to
construct such a measure ([14]. A more
robust measure utilizes the magnitude
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of the signal convolved by the Gradie-
nt of Gaussian (GoG) {15}. Testing the
validity of a ZC based on the magnitu-
de of the GoG has serious drawbacks.
The difficulties are mainly due to the
lack of knowledge of the variance of
the noise and magnitude of the edge at
a particular location. Contributing to
that is the conflicting requirement of
noise removal which requires a
sufficiently high threshold, and the
requirement of retaining weak edges
which requires a relatively low
threshold. If a static threshold is
chosen, only a compromise can be
achieved. Moreover, all the wvalid
edges falling under the threshold are
lost regardless of the noise intensity

at that particular location. This
prompted canny [16] to use optimal
filtering to 1locally estimate the

noise and the signal. Accordingly, an
adaptive threshold is used to reduce
the loss of valid edges. Although, an
adaptive threshold improves the
performance, it is, computationally
expensive.Moreover, its performance in
detecting minute jumps in intensity
lying in natural scenes is not
satisfactory. In a later work Canny'’s
method was modified to make the scale
adaptive too [17].

Our approach for discriminating
between the valid and noisy zeros from
the LoG detector makes use of a

threshold. However, the feature on
which this threshold is applied is
carefully selected to be weakly

coupled to the energy of the edge and
at the same time provide a reliable
measure of the confidence in the 2ZC.
It, also, has to exhibit an acceptable
level of stationary throughout the
entire signal, and it should be
inexpensive to compute. In this paper
we show that the interval between the
successive zero crossings of the
signal from the LoG operator provides
the desired feature. We expect this
approach to allow a discrimination
mechanism based on a simple static
threshold to efficiently function in
terms of reliably retaining valid ZC’s
and effectively removing false ones.
Since the burden of noise removal is
transferred to the discrimination

mechanism, the operator scale (o) can
be kept small for high resolution and
accurate localization.

This paper is organized as
follows, section II discusses the
proposed approach, in section III the
performance of the proposed detector
is analyzed and compared to the
existing method of thretholding.
Section v contains simulation
results, and conclusions are placed in
section V.

II. THE PROPOSED APPROACH

Our goal is to construct a procedure
to discriminate between a ZC generated
by a valid edge (I1(x)= Au(x)+n(x)),
and a 2ZC generated by noise only
(I2(x)=n(x)). The edge is assumed to
be an ideal step jump (u(x)) with a
magnitude (A). The noise is assumed to
be a stationary Additive White Gauss-
ian Noise (AWGN) with =zero mean and
variance on . Let Li(x) and Di(x) be

Li(x)=Ti(x)*V°G(x), Di(x)=Ti(x)*YG(x)
For the 1-D case, we have : (2)
V7G(x) *u(x) =-VG(x), VG(x)*u(x)=G(x)

Figure-la,b shows the signal and noise
components of Di and Li receptively.
If an edge is present, Li consist of
the sum of both the GoG scaled by A,
and the filtered noise (Figure-1lb).
The ZC of the GoG marks the 1location
of the edge (the edge is displaced
because of noise). Since the GoG has
its highest slope at its ZC with a
magnitude peaking around it, we expect
with high probability a local region
that is depleted of ZC's to exist on
both sides of the 2C contours marking
the true edges. This can, also, be
concluded from the work of Tagare and
deFigueiredo {7] where they derived
the relative density of ZC’s for Li(x)
as a function of x (Mr(x))
Mr (x)=expl- (x-exp(-iA) )2/ (20%)]
o’ (3)

In Figure-2 ur is drawn for different
signal to noise ratios (SNR).It can be
seen that on the average the distance
between successive ZCs of Li when only
noise exist 1is less than the average
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distance between a valid 2ZC and the
first false zero (this is discussed in
the next section). Trerefore, the val-
idity of a 2C (Zi) can be tested by
computing di=dist(2i,2i-1), and di=
dist(Zi+1,2i);then using the following
rule to accept or reject Z: (Figure-3)

if[(dizth)and(dizth)] 2Z: is Valid
else 2: is False
(4)
where th is a selected threshold. For
the 2-D case di and di are computed
along both sides of the ncrmal to the
edge contours.

Using the intervals between the 2ZC’s
of Li for discrimination has the adva-
ntage of reducing the dependency of
the decision process on the magnitude
of the edge (A),therefore reducing the
need for adaptation to enhance the
chance of detecting weak edges. It can
be shown that for a relatively wide
range of SNR the scale (¢} 1is the dec-
isive factor in determining d+. This
let them exhibit significantly less
fluctuations across the signal than a
gradient-based measure does.Therefore,
a static threshold on the intervals
between the 2ZC’'s of Li achieves far
better performance in terms of remov-
ing the false 2C and retaining the
valid ones than what a threshold on Di

can achieve.
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ITII. ANALYSIS

The performance of the proposed det-
ector is analyzed by deriving the
misdetection probability (1-Pes), and
the false detection probbility (1-Pcn)
Pcs is the probability of a valid ZC
decided as an edge, and Pcn 1s the
probability that a false ZC is reject-
ed. The same quantities are computed
for the GoG-based scheme. The perform-
ance of both methods is compared using
their probability of error (Pe) :

Pe = P1(1-Pcs) + P0(1l-Pcn) (5)

where P1 is the probability that a
valid ZC occur, and Po is the probabi-
lity that a false ZC occur. Among the
factors on which P1 and Po depend: the
signal richness in edges, the charact-
eristics of the noise,and the scale of
the LoG (). Since P1 and P0 are not a
priori known, they are assumed to be
equal (P1=P0=0.5). The autocorrelation
of the noise at the LoG input (Ri(T))
and output (Ro(T)) are:

Ri(T) = on’d(T) (6)

2 R 2, 2

Ro(t)=—£%_V—g—[304-6021'+14]e T /20
o

3(T) is the Kronecker delta function.
The variances of the noise at the
input and output are:
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el = om:, co” = 3VC§:[on“/03] (7)
1. The ZC-based Method

We need to compute the following
Conditional Probability Distribution
Functions (PDF’s). The first is Pno(T)
which 1is the conditiocnal probability
that the first ZC after time t occur
between t+T and t+t+dTr given a ZC at
time t when the input is I.. The seco-
nd is Pso(T) which is the same except
it is computed when the input to the
LoG is I:. For a smooth zero mean Gau-
ssian noise McFadden [18,19] derived
an approximation to Pno as

)2

p" (T) (1-p(T) ") +p(T)p' (T

2¥p* (0) [l-p(T)

where p(t) 1is the normalized auto
correlatien function, and p', p" are
the first and second derivative of p
with respect to T. Assuming idependen-
ce of the intervals between successive
Z2C’s cf the output noise. The probabi-
lity of validating a false ZC is
th _
[1- JP[\O(T)dT 1° (9)
0

To compute Pso(T) we shall first appr-
oximate the GoG as follow:

Prno(T)=

[N]

]3/2 (8)

R (10)
2A - 3 A0sin( 2n x) |x]|=To
Gx(x)= —Xe U; = T
c” 0 | x|zTo
-1
Tu=4xm, xn:d‘/\/: , and Ao=v -e /ZA/O‘

xm is the distance at which Gx reaches
its peak, and Ao is the corresponding
magnitude. Figure-4 shows the GoG and
its approximation. The fit is good for
lx]SXm. However, for ]xtBXr the appro-
ximation has a lower magnitude which
is acceptable since it provide a lower
bound on Pso. Using this approximaticn
we can use the result by COBB [20] for
the distribution of intervals between
the ZC's of a sinwave in AWGN

2
Ao/on

ZVQ woVp (T)-cos (woT)

[——E;izl—cos(ggz) + wosin(egz)].

Fa

Pso(T) =

l+p(T)

_ zcos‘wot))
l+p(T) T2 {(11)

where wo=2m/To. This distribution is
accurate for relatively high SNR, and
tend to Pno as SNR goes to zero. For a
moderate SNR we shall assume that d+
and d- are strongly dependent. By
Baves theorem [21]) we have:

P(d+>th,d->th)=P(d+>th/d~->th)P(d->th)
« 1-P(d->th)=P(d+>th)

therefore, we can compute Pcs as
th
Pcs = 1 - J- Psc(T)dT (12)
0

2. The GoG-based scheme
Here, Pcs and Pcn are computed for
the following decision rule :

if |Di(x)| = th  2Zi is valid
else Zi is false (13)

To do this we need to compute the fol-
lwoing conditional PDF’s: Pso(a) which
is: P(a<Di(x)=a+da/Li(x)=0) when the
input ic I:,and Pno which is the same,
but the input is Iz. Rc at the output
of the GoG and its variance are

2 - P
Ro(T) = -g§— ? lo°-1-)e T /20"
T 2
oo’s T (14)

o 2

Since the noise is Gaussian and the
GoG is a linear operator, the output
noise 1is, also, Gaussian. Assuming a
relatively high SNR and a small ¢, the
dislocation in the position of the
edge can be disregarded and Pso, and
Pno are approximated as

2 2
Pso(a) et . o (@"R)7/(2007)

ooV (2m)

Pno(a):——l——- e-a /2007) (15)

ooV (2m)

Pcn, Pcs can be computed as

th th
Pen= IPno(a)da, Pcs= —JPson(a)da
-th -th (16)

In Figure-5 the minimum achievable Pe
that is obtained by optimally setting
th is plotted gs a function of A for a
fixed ¢ and on .
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IV. RESULTS

The test image Figure-6 1s chosen to
include rough and smooth regions, and
edges cf widely varying contrasts. The
size of the image is 256x256 pixels,
and the size of the operator is 5x5
with o¢=1. Figure-7 shows the edge
centours from the LoG operator alocone.
As can be seen the output is highly
contaminated with noise. Figures-8,9
show the edge contours that are filte-
red using the proposed method with a
window of 3x3 and a 5x5 with edges
with |GoG|<.002-max|GoG| eliminated.
At least one pixel above and below the
contours are required to be free of
zercs to decide the validity of the
contour. As can be seen many false
edges were removed,and very faint
edges were detected. In Figure-10
false 2C’'s were removed using a
threshold on the magnitude of the
corresponding GoG.The threshold is set
to th:.OS-maxID(i,j)|. It can be seen
that even a small threshold can lead
to the loss of significant low
intensity edges.In Figure-11 the edges

are detected using a rather involved
technique [22] that obtain the edges
by minimizing an energy cost

functional using the steepest descent
technigue.

s
-

Figure 8: Edges, ZC-based, 3x3.

.o

Figure 9: Edges, ZC-based, 5x5.
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Figure 11:Edges, Energy Functional.

V. CONCLUSIONS

This paper suggests a method for
enhancing the performance of the LoG
edge detector. The approach propose to
augment the LoG operator with a noise
removal mechanism that operate to
determine the wvalidity of a ZC. This
mechanism is based on the proximity of
the ZC under consideration to the
surrounding ZC’s.Basing discrimination
on a feature that is weakly coupled to
the signal energy such as the distance
between successive ZC’'s prove to have
several significant merits. Moreover,
by transferring the task of noise rem-
oval to the discrimination mechanism,
the combined detector is permitted to
maintain the attractive properties of
a small scale LoG detector. Despite
its simplicity, the performance of the
proposed detector c¢an compete with
that of more sophisticated techniques.
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