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Motion Planning in the Presence of Directional and
Regional Avoidance Constraints Using Nonlinear,
Anisotropic, Harmonic Potential Fields:
A Physical Metaphor

Samer A. Masoud and Ahmad A. Masoud

Abstract—Motion planning, or goal-oriented, context-sensitive, FAC
intelligent control is essential if an agentis to actin auseful manner. pf
This paper suggests a new class of motion planners that can mark HPE
a constrained trajectory to a target zone in an environment that
need not necessarily ba priori known. The novelty of the suggested
planner lies in its ability to enforce region avoidance and direction PRF

satisfaction constraints jointly. To the best of the authors’ knowl- CRF

edge, this is the first time that directional constraints have been ad-
dressed in the motion planning literature. To build such a planner,
the potential field approach is used for inducing the control ac- X
tion. In addition, to cope with the presence of the above constraints 7
(in particular, the directional constraints), a new type of potential %
field, called the nonlinear anisotropic harmonic potential field, is V
suggested. The planner has applications in traffic management and 12
operations research among others. Development of the approach, V.
proofs of correctness, and simulation results are supplied.

0
Index Terms—Harmonic potential fields, intelligent control, mo- ()’
bile robot, motion planning, navigation. T
n
|. NOMENCLATURE Q/
IMC Intelligent motion controller. 1(3,
HLC High-level controller. I
LLC Low-level controller. b
NC Navigation control. -
BVP Boundary value problem.
PDE Partial differential equation. o
ODE Ordinary differential equation.
HPC Hybrid PDE-ODE controller. g
EHPC Evolutionary HPC.
LFC Lyapunov function candidate. 1@
LF Lyapunov function. w"
Al Artificial intelligence. FS
AL Artificial life. QC
P-Type  Pheno type of behavior. ¢C
G-Type  Geno type of behavior. 0
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1) Dirac-Delta function.

G Directed graph.

N Set of vertices.

Z Corresponding set of edges.

K Number of vertices in a graph.
Np Initial vertex.

Nt Target vertex.

T, Normalized CPU execution time.
Ny Null space ofg.

Il. INTRODUCTION

TILITY and meaning in the behavior of an agent are

highly contingent on the agent’s ability to semantically
embed its actions in the context of its environment. Such ¢
ability is cloned into an agent using a class of intelligent motio
controllers (IMCs) that are called motion planners. Despit
the diversity of motion planning methods [1]-[3], all existin
techniques, to the best of the authors’ knowledge, are unified'i
considering isotropic workspaces (a workspace is an admissible
subset of state space) where, at any point in the workspace, dhenissible region of state space (i.e., the workspace) cannot be
agent is permitted to arbitrarily direct the motion of its statejolated even if the agent’s actuators have the ability to do so.
motion actuators permitting. Practical workspaces, on the othehile there are many planning approaches from which one
hand, face a serious traffic management task that is usuathay choose a candidate to modify in order to incorporate di-
handled by dividing the available space into structured domairetional constraints, the authors believe that the PF approach
each assigned a set of rules for directing traffic [4], [5]. Ito motion planning, in particular the HPF approach, is an ideal
most cases, such rules extend beyond region avoidance to tzatdidate for such a choice. To the best of the authors’ knowl-
of restricting the direction along which motion is allowed t@dge, the PF approach was the first to be used to generate a para-
proceed (Fig. 1). In a typical environment it is customary tdigm for motion guidance [10], [11]. The paradigm began from
find regions where traffic is prohibited, regions where traffithe simple idea of an attractor field situated on the target and
flow is regulated (e.g., ENTER and EXIT signs, etc.) and repeller field fencing the obstacles. Several decades later, the
others where traffic is free. It is unusual to find a modern rogshradigm surfaced again through the little-known work of Loef
or building where the above does not apply. Tackling suchamd Soni which was carried out in the early 1970s [12], [13].
situation requires that motion to the target be conditioned wiNot until the mid-1980s did this approach achieve recognition
joint regional-avoidance directional-satisfaction constraints. in the path planning literature through the works of Khatib [14],

Directional constraints acquire special significance whefrogh [15], [16], Takegaki and Arimoto [17], and Nishiasa
they are applied to a directed graph (di-graph) [6], [7] ial.[18] in Japan, and Pavlov and Voronin [19], Vereshchaagin
order to govern motion between its vertices. An intelligerdl. [20], Malyshev [21], Aksenoet al.[22], as well as Petrov
controller that is configured to operate in this manner magnd Sirota [23], [24] in the former Soviet Union. It ought to be
be used for finding the shortest route in a di-graph. Findingentioned that the work of Petrov and Sirota is probably the
the shortest route on a graph in a manner that is sensitivefitat attempt for constructing a provably-correct, sensor-based
direction is an important problem in operations research withotion planner that can guide a robot with an arbitrary shape in
numerous applications in equipment replacement, schedulegluttered, unknown environment using only highly localized
of complex projects, and least cost travel [8]. Other applicatiosensory information. In [23], the planner was developed for a
of directional constraints are demonstrated in the sequel.  two-dimensional (2-D) environment. Later, in [24], the planner
From an Al point of view, the incorporation of directionalwas generalized for the three-dimensional (3-D) case. Andrews

constraints along with regional avoidance in governing the aand Hogan also worked on the idea in the context of force con-
tions of an agent while making no assumptions about the gesl [25]. Although a paradigm to describe motion using HPFs
ometry or topology of the environment is a formidable planninigas been available for more than three decades [26]-[28] it was
challenge. To the best of the authors’ knowledge, this situatiant until 1987 that Sato [29] formally used it as a tool for motion
has not yet been addressed in the motion planning literatureplinning. Unfortunately, the work was written in Japanese and
fundamentally differs from planning under nonholonomic cortiad very little exposure (an English version of the work may be
straints [9] in which an agent may not be able to project motidound in [30]). A few years after, the approach was formally in-
along certain directions in the workspace due to the inability éfoduced to the robotics and intelligent control literature through
its actuators to drive motion along these directions (i.e., the cahe independent work of Connolbt al[31], Prassler [32] and
straints in the control space, which limit the efficacy of the mdFarassenket al.[33], who demonstrated the approach using an
tion actuators, are the ones responsible for this behavior). @ectric network analogy, Lei [34] and Plumer [35], who used
the other hand, directional constraints that are imposed in theeural network setting, and Keymeulehal. [36], [37] and

iﬂ' 1. Signals for directing traffic.
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Fig. 3. Evolution of the control field in an HPC.
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Fig. 2. Hybrid, PDE-ODE control structure.
Goal Evolving | mnstruct- Re-action Real
Akishita et al.[38], who utilized a fluid dynamic metaphor in | Belief |ions _} ., Ess
their development of the approach (the neural net suggestec Potential field — )
Lei was also motivated by a fluid dynamic metaphor). Cher Action
et al. [39]-[41] utilized harmonic potential fields for the con- ] I I
struction of silicon retina, VLSI wire routing, and robot motior
planning. A unity resistive grid was used for computing the pc Initial guess of ~ Agent’s State
tential. In [42], Dunskaya and Pyatnitskiy suggested a pote environemnt _ Reality
tial field whose differential properties are governed by the inh¢  Dissonance Reduction l linked to
) . . . Self-Organization. [ belief
mogeneous Poisson equation for constructing a nonlinear ci

troller for a robotic manipulator taking into consideration ob-
stacles and joint limits. Other work may be found in [43]—-[68]Fig. 4. Evolutionary, hybrid, PDE-ODE control structure constructed by
While not directly related to robot motion planning dtial.[69] coupling the HPC structure to a hybrid discrete time—continuous time system.
used the harmonic potential approach in the Dirichlet setting to
plan the motion of the pixels of an image so that controlled shapilization of PFs in the context of an AL paradigm for motion
transformation may be achieved. synthesis and behavior generation. In [75], he used allegory to
The harmonic potential field approach is an expression @gscribe how the behavior of a robot unfolds (P-Type) as a re-
the, more general, hybrid, partial differential equation-ordinagylt of the interpretation of a set of behavioral rules (G-Type) in
differential equation (PDE-ODE) paradigm to motion synthesige context of the robot's environment.
(Fig. 2) [50], [70]-[73]. A hybrid, PDE-ODE controller (HPC) Implicit in the ability of an agent to successfully reach its
functions to convert the data that is available to the agent ab&#fget is the availability of a necessary and sufficient level of
its environment into in-formation that is encoded in the structugita for the HPC to grind into action. Unfortunately, in a real-
of the differential control action group which the agent uses t8tic situation, no such guarantees are provided. This is a serious
steer itself. In this class of controllers the conversion mech&eakness of HPCs that negatively impacts on their ability to
nism is constructed in conformity with the AL approach to besteer the utilizing agent to its target state. This weakness, how-
havior generation [74]. To achieve this mode of operation, firgver, may be remedied by grounding the agent in its physical
the lucidity of the control action is established by inducing th@nvironment using evolutionary, hybrid, PDE-ODE controllers
control action group on a potential field surface using a vect@eHPCs) [70]-{72].
partial differential operator. The behavior of each member of An evolutionary, hybrid, PDE-ODE (Fig. 4) controller con-
the group (differential control action) is constrained with resists of two parts:
spect to the other members in its immediate neighborhood usingl) a discrete time-continuous time system to couple the
a proper partial differential operator (G-type of behavior). The discrete-in-nature data acquisition process to the contin-
group control action (P-type) evolves in space and time as are- uous-in-nature action release process;
sult of the interpretation of the G-type in the context of the en- 2) a hybrid, PDE-ODE controller to convert the acquired
vironment. This is achieved by using boundary conditions to  data into in-formation that is encoded in the structure of
factor the influence of the environment in the behavior genera-  the differential control action group.
tion process. Fig. 3 shows an evolving control action group inanEHPCs are situated, embodied, intelligent, and emergent
HPC. In essence, HPCs function to convert available data abmgchanisms for behavior generation [76]. They require no
the environment into in-formation the agent uses to steer its @&c-priori knowledge of their multidimensional environment
tions. To our knowledge, Asimov was the first to describe the guarantee that an agent with an arbitrary unknown shape
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Fig. 5. EHPC navigating an unknown maze. (a) First attempt. (b) Second attempt. (c) Third attempt.

will converge to its target from the first attempt (first attempt
completeness (FAC) characterizes the state where initially the
agent has no information about its environment). Moreover, in
this class of planners, the range of the sensors has no influence
on convergence. Even local sensing, such as tactile sensing,
is enough to guarantee that the controller can mark a con-
straint-satisfying trajectory to the target in a multidimensional
environment. The range of the sensors controls only the speed
at which this trajectory can be carved. Fig. 5 shows three
attempts of a point agent to reach its target at the center of a
maze. Despite the total lack ef priori knowledge about the
maze and the use of proximity sensing, the agent manages . . isting HPC
to reach its target at every attempt, each time enhancing jtg O Domanoran exising ’
performance until it converges along an optimal path to the
target. vector, f: RN x RM — RY, Xr is the target stat&) is the

In this paper, the capabilities of EHPCs are upgraded $6t of forbidden regions in state space which the agent should
enable them to plan in nonlinear, anisotropic workspacégvays avoid, and' is the boundary of (I' = 90). While on-
supporting joint directional-regional avoidance constraintgoing work is focused on developing HPCs that can realistically
This is accomplished by modifying the second component tsickle both the dynamics and kinematics of an agent [77], here,
an EHPC, the hybrid, PDE-ODE controller so that it can irthe focus is only on kinematics, i.e., the equation of motion is
corporate direction among the set of constraints it is enforcing. .
The core of the modified HPC component is a new group of X =u (2)

PFs called NAHPF. This new group of PFs makes it possibleto ) )
condition the induced control with the desired directional arl§ @ddition, the HPC used here is expressed using an(HR i

regional avoidance constraints. the Dirichlet setting. Other ways for expressing an HPC may be
Section |1 of the paper contains the problem formulation. Sef@und in [S0] and [73]. For this case, existing HPCs are required

tion Il describes the physical metaphor used in deriving @ Synthesize the control signal

NAHPF and in turn the modified HPC. Section IV contains the

mathematical description of the modified HPC. Section V con-

tains proofs of the validity of the suggested HPC. Results, and . . .
: . : . so that for a system described by (2), the conditions in (1) are
conclusions are placed in Section VI and VII, respectively. satisfied.V” is constructed by solving the BVP

uw=-VV(X,T, Xr) ©)

Ill. FORMULATION Xen
In the following, the behaviors of the modified HPC and V(X7) =0, V(X)|xer=C ()

EHPCs are mathematically described.

, where( is the workspacé2 = RN — 0), andV?, V are the

A. Problem Formulation, HPC Laplacian and gradient operators, respectively. The directional
In its most general form, an HPC is required to synthesizecanstraints that the modified HPC is required to enforce are de-

control signalu for a dynamical system that is described by théined on)’ (' C Q). They assume the form of the vector field

nonlinear state-space equation (Fig. 6) U(X), X € @, ¥: RN — RN. The compliance of the agent

. with these constraints is detected using the inner product

X :f(X u)

such thatlim X(t) = X7, &X(H)NO=¢ VYt (1) Xu(X) (5)

where X is an N-dimensional vector describing the agent'such that ifX*W(X) > 0, the constraints are enforced, and if
state in its natural coordinates,is an N-dimensional control X*¥(X) < 0, the constraints are violated.
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Fig. 7. Domain of a modified HPC.
. » ) ) ) set of successively dependdnts {V;:i = 1,...,L < c0) SO
In this work, the modified HPC is required to synthesize th@ at for the gradient dynamical system
control signal (Fig. 7)

X =-VVi(X,T,Q,Vi—y) X(0)eQ

U=-VV(X, ¥ X),I',Xr) Xe (6)
limX(t) - Xr Vo =V(X,T.(0),Xr)
such that for a system described by (2) i—L ie[l,... 1]
tlim X(t) =Xr t—o0, te€ [to./.. .., 00)
- - alsoX (t)N O =¢ and¥P (X)(X) >0 Vi 11
XtHNO=¢ VYt,and X'¥(X)>0 XeQ, Vt. (7) ®) ¢ (X)(X) > (11)
For convenience, in the remainder of the pap&rX) is used
to refer toV (X, ¥(X), T, X7). IV. PHYSICAL METAPHOR
] In this section, a physical metaphor is developed to aid in
B. Problem Formulation—EHPC the derivation of the BVP needed for constructing an HPC that

Let O be a set of priori unknown regions i which the encodes both directional and regional avoidance constraints in
agent is required to avoid; is the boundary 0® (I' = 90), the differential properties of the PF. The encoding is done so that
and( is the space in which the agent is permitted to operaifee motion generated by the corresponding gradient dynamical
(= RN — 0). In addition, letQ?’ bea priori unknown. LetS  system satisfies the conditions in (7).
be a sphere with a radiyscentered around the location of the Analogy with natural processes is an important and pow-
agentX (¢). S represents the region which the agent’s on-boagdful tool for problem solving [78]. A proper analogy between

sensors can illuminate at tinte a well-understood natural process and the problem at hand may
serve as a feasible alternative to the arduous task of mathemat-
St) ={X:|IX = X@®)|| < p}. (8) ically deriving a provably-correct solution to a problem. The

LetI'. and(2. be the accumulating representations for the avoiH-PF approach to motion planning lends itself to this mode of

ance and directional regions, respectively, andjeandc, be problem solving. It is well known that a path generated by the

. Y : . .%adient dynamical system from an HPF in the Dirichlet setting
the avoidance and directional subregions, respectively, whi : .
the sensors of the robot can pick up from the pait IS analogous to the path marked by the electric current moving
P P pairit), in aresistive grid (Fig. 8) with the potential set to a positive con-

T.(t) =(S(t)NT) — (S(t) NTu(t — dt)) stant value at the nodes marking the boundary of the forbidden
_ N Ve, regions and to zero at the node that is located on the target point
ws(t) = (S(E) N &) — (8(t) N Q(t — dt)) , and [32],[33], [51], [53]. The correctness of such an analogy may be
Le(t) =Le(t — dt) UTs(t) easily deduced by discretizing the 2-D Laplacian operator (sim-
QL(t) =QL(t — dt) U wg(t). (9) ilar treatment can be applied to dimensions greater than two)

Let @ be a time function whose range is restricted to a value
from the binary sef{0, 1}. Its value depends on the activities
registered by the local sensors such that

?V(x,y) 0?°V(z,y)
2 _ ;! ;!
VV(z,y) = 92 + By

12)

in order to construct the difference equation
0, T, e¢andw, € ¢

Q= 1 Else. (10)

The agent reacts to the transition#atof @ from 0 to 1 by +o(i+1,5)+v( —1,5)]. (13)
modifying its control so that a reverse transition@ffrom 1

to O occurs at;,. The control att; is denoted by the vector Equation (13) may be interpreted as an element with four equal
field uw; = =VV;(X, Xr,Q, V;_1). For the generation of a suc-resistors(R = 1) connected to a node with (i, j) voltage
cessful control action, the agent is required to synthesize a finffég. 9).

=] =
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Fig. 13. (a) Environment with directional and regional avoidance constraints.

. . Lo (b) Electric grid with diodes and linear resistors used to generate the potential
As can be seen, in the harmonic approach, a resistive elemgiise gradient can generate motion that enforce both types of constraints.

is the one manipulating the electric current or, equivalently, the

motion of the agent. A resistor is a linear, bilateral electric cong5¢fic is constrained(?’), a diode element is used in the con-

ponentwith characteristics that remain unchanged, regardlesg@fiction of the grid so that it is placed in a backward-biased

the direction the current assumes inside the element (Fig. 1Ghode along the inadmissible direction of traffic. The voltage
To add the needed directional sensitivity, an electric elemegitihe nodes marking the boundary of the forbidden regions is

that is sensitive to the direction of the current needs to be usgq 1o a constant, positive voltage, and the voltage of the node
along with the resistive element for building a grid that woulgharking the target is set to zero.

manipulate the flow of the electric currentin the desired manner.

The new element is a diode [79]. Ideally, a diode is a voltage; NonLINEAR, ANISOTROPIG NAVIGATION FIELD SYNTHESIS
controlled switch that can be in either one of two states (Fig. 11):

either a forward-biased state, in which its resistance is zero, oBased on the metaphor suggested in Section Ill, the modified
backward-biased, in which the resistance is infinite. BVP that is capable of encoding both directional and regional
A more realistic model of a diode is that of a resistive eleme@¥oidance constraints is derived.
whose resistancéR;) remains finite but varies depending on . . .
the direction in which the current flows (Fig. 12): A. Modified Differential Operator
_ _ An HPF is constructed by forcing the divergeri&é) of the
Ry = Ry if forward blgsedJ’ gradient of the PF, which is analogous to the electric current in
Ry, if backward biase a resistive grid, to zero inside

whereR;, > Ry. V-VV(X)=VV(X)=0 XeQ. (14)

A diode and a resistor are sufficient elements for building
a grid that would control the flow of the electric current inThis condition guarantees the continuity of the current, which
a manner that is analogous to the behavior of the suggesiedurn guarantees the continuity of motion, insideAs a re-
planner. In the regions of the workspace marked as free traffialt, deadlock is prevented and motion is steered to the global
zoneg 2 — '), aresistive element only is used for building theninimum of V' (X), which is situated oX . As can be seen,
motion control grid (Fig. 13). In regions where the direction dfy choosing the Laplacian operator as the governing relation
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of the differential behavior of the electric current (i.e., motionktarting point inQ2 in a manner that satisfies both the direc-
no preferable direction for motion to proceed along can be a@mnal and regional avoidance constraints. However, in the fol-
coded in the behavior of the agent (i.e., the workspace is lindawing, a mathematical proof is provided to verify these capa-
and isotropic). To modify the governing differential operator shilities. First, it ought to be mentioned that since the BVP in
that along with guaranteeing the continuity of motion insije (17) is constructed based on an analogy with a natural process,
favorable directions of motion insid¢’ may also be enforced, its solution exists. It can be mathematically shown that the so-
the metaphor in Section lll is used. At a poiXite ', aninfini- lutions of BVPs connected with the partial differential operator
tesimal diode is assumed to be present and oriented in a marWiefo () VV ()], which includes the BVP in (17), exist. How-
such that the favorable direction of motion, which is marked bgver, the proof is mathematically involved and will not be dis-
the vector (X), coincides with the direction in which the diodecussed in this paper. For a proof of existence, see [80]-[82].

is in a forward-biased mode. This means that the current experi- _

ences low resistanc®;, or equivalently high conductaneg, A Differential Operator

along that direction. On the other hand, the current experienceghe governing partial differential relation {if (13) is re-ex-
high resistance?;, or equivalently low conductanee,, along pressed as

the opposite direction. Therefore, the electric current inSitle

may be expressed as V- [Z(X) VV(X)]=0 Xe
N
~X(X)VV(X) (15) = Z <om a‘gii )>
where ;
_ 82V( ) | V(X)) 904i(X)
o (X) 0 ... 0 = z_: [ o L } (18)
E(X) _ 0 UTQ(X) 0 =

sinceo,i(X) = o + (0 — 0p)®(VV(X)' T (X)), the above
0 0 coooan(X) expression becomes (19), shown at the bottom of the page,
where®() is the unit step function, anél) is the Dirac-delta

and function. As can be seen, the second term of (19) is either zero
= o7 ~VV(X)'W(X)>0 . . N or infinity. Since the solution of the operator subject to the
02i(X) = o, —VV(X)'W(X)<0 t=5ees boundary conditions in (17) exists, the value of the differential

operator should be zero everywhere M. Therefore, the
oy > op. After sensitizing the electric current to a favorable digoverning differential relation may be written as
rection of motion, the continuity constraint is applied by forcing

the divergence of the current to be identically zero insie Z 82V X) 0 Xeo 20)
oxi®
V- [3(X) VV(X)]=0 X e (16) =1
or
L N 2
X
B. Modified BVP S ki x)?2 ‘V‘(,2 )—0 xeq 21)
A BVP, which may be used to generate a PF for constructing i=1 O

the gradient control signal in (6) that is capable of enforcm\%h
the regional avoidance and the directional constraints, is the fol-
lowing: solve i (X) = { o XeQ-q

VV(X)=0 XeQ-Q
andV - [2(X) VV(X)]=0 X e B. Maximum Principle

subject toV (X7) =0, V(X)|xer = C. (17)  proposition 1: The PF generated by the BVP in (17) assumes
its extrema on its boundary.
Proof: If at any pointX € Q V(X) < 0, 3 alocal min-
VI. PERFORMANCEVERIFICATION imum insideQ such that?V (X)/oxi? > 0. Since allk;(X)’s
It may be clear from the analogy in Section Il that motiorare positive, (21) will be violated. Thereforg(X) should be
from the gradient dynamical system representing the contgpleater than zero for all € Q. In a similar way, if at any point
signal in (6) will be steered to the target stafg- from any X € Q V(X) > C, 3 a local maximum insidé2 such that

AV (X) 0V (X)) T(X)

19
oxi oxi (19)

2
=3 [0 TG 4 (o = a0 B 0))

COzi2
=1
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will become infinite, making the relation in (20) impos-
sible to satisfy. This possibility is already ruled out by the
fact that the solution of the suggested BVP exists.

2) X*W¥(Xo) < 0. For this caseg,i(Xo) = o;. When
constructing the NAHPFy; is chosen to be a very small
positive numberfo, < 1). This results in a high value
for V(X1) that will exceed the value of the potential at
I' i.e,V(X1) > C. This possibility is ruled out since it
leads to the violation of the maximum principle.

As can be seen, the only remaining possibility is that

X'¥(Xo) > 0, Xo € . In other words, the directional
constraints must be satisfied.

Fig. 14. Point insidd?’.

9*V(X)/0zi* < 0. Therefore, the value df (X) cannot be g pfE Generated by (17) Is an HPF
equal to or exceed’ in Q. In other words V' (X) assumes its

maximum and minimum on its boundary. Proposition 4: Within the context of the BVP in (17), the

partial differential operator

C. Uniqueness of the Potential
0’V (X)

Oxi?

N
Proposition 2: There is one and only one solution to the BVP Z ki (X) =0 Xe (25)
in (17). i=1
Proof: Let us assume that there are two SO|Uti0aneduces to the simple Laplacian operator

(V1,V2) to (17) inQ2. Let DV be the difference between these P P P
two solutionsDV = V1 — V2. It ought to be noticed that DV
is also a solution to (17). Proving that DV vanishes everywhere
in Q proves that the solution is unique. i=1

LetI'7 be the boundary of an infinitesimal circle surrounding
X7 on which the potential o#/1 and V2 is set to zero. In
addition, V1 and V2 are forced to have equal positive con
stant values oii. In other words, DV is identically zero on the
boundary ofQ2. As a result of the maximum principle, DV is XeQ—q
zero everywhere if. This proves the uniqueness of solution of ki(X) = {Of’ (27)

' ‘ ) Xeq
; of

the BVP in (17).

N
02V (X
X _y xea (26)
Ox12

Proof: This simply follows from Proposition 3. Since
directional constraints are satisfied for every point (3,
UM(X) =of VXe,ie.,

. . L ) which reduces (25) to
D. Satisfaction of the Directional Constraints
N

Proposition 3: For any pointX € @/, X'W(X) > 0. 2?V(X) _
Proof: Let Xo be a point inside?’ (Fig. 14). LetX1 be Z;Cff oxi2 0 Xel (28)
another pointin that region constructed by extendinga small =
distancg Ar) along the direction of the unit vectdt( X o), i.e., or, equivalently, to
X1 =Xo+ ¥Y(Xo)Ar. :
By integrating the partial differential relation in (20) along a ?V(X) _ 0 Xeo
the ¥(X o) direction, one can approximate the potentiakat - ori2 €
as =
, \ which is the well-known Laplacian operator. In other words,
V(X1) =V (Xo) + m”vv(XO)"IJ(XO)”AT V(X) is an HPF.
k AV (Xo) . . . . .
=V(X A 22) F Satisfaction of the Regional Avoidance Constraints
V(Xo)+ o) | 9w (x0) ‘ oo @ 9

Proposition 5: If X(0) € 2, the motion steered by the gra-
wherek is a finite positive constant. Let us assume that the diient dynamical system in (6) will always remain insidéi.e.,
rectional constraints are violated, i.e., X(tH)NO =¢Vi).

Proof: Consider the part d® near an obstacle (Fig. 15).
Let n(X) be a vector that is normal to the surface of the ob-
staclel', X € I'. Let O’ be a region created by infinitesi-
mally expanding the forbidden regi@ghsuch thaO c O’, and
I" = 00'. The radial derivative o/ (X) alongn(X) may be
computed as

X'W(X0) <0, Xoe(. (23)

Note thatX = —VV(X). There are two possibilities:
1) X*W(Xo0) = 0. Here, the second term of (19), i.e.,

N '
> (of - Ub)é(AV(X)t\IJ(X))mgS'() avwgg’iqj()ﬂ

=1

V(X)) _ V(X')-V(X) -
(24) on(X) - (X’ —X)tn(X)’ X'el (29)
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Constraints Constraints
Environment HLC Goal | Environment NG Goal
Reference (Xr) l
LLC Control (u)
Control (u) } A B

Fig. 15. Region constructed by expanding the boundary of an obstacle.

Fig. 16. Settings for intelligent controllers. (a) HLC-LLC setting. (b) Naviga-

whereX’ is taken as the minimum distance betwegmndI’. tion control.
Since the value of the potential fis less tharC', and X' lies

inside 2, the radial derivative of the potential alomgX) is aforementioned setting is the lack of guarantees that the HLC

negative generated reference can be converted into a successful control
action by the LLC. Recently, a new class of controllers called
IV (X) <0 (30) navigation control (NC) was suggested to get around this diffi-
on(X) ' culty [77]. Such controllers aim at integrating the functions of

Let us assume that (¢) is initially located atX’, andd is the
distance betweeX (¢) and X

d = n(X)N(X(t) - X). (31)

both the HLC and LLC in one control module, therefore elim-
inating the potential for conflict [Fig. 16(b)]. Instead of using
rigid, whole-domain control functions that are unequipped to
comply with the stringent behavioral constraints an agent re-

quires for successful purposive behavior, the control action in
an NC is induced on a PF surface. Therefore to accommodate
the manner in which an NC functions, the potential field must
have a dual nature: one that is related to Al, while the other is
related to classical control.

As was briefly discussed at the beginning of this paper and
with some details in [70]-[72], the potential fie{@ (X)) may
be viewed as an evolutionary, intelligent, AL machine. Here, we

Note that sinceX” is initially inside(?, d is initially positive. Let
L be a measure of that distance
L =d>. (32)

Noting thatn(X) is not a function of time, andV/on =
ntVV, the rate of change df with respect to time may be com-

puted as show thatV (X)) is also a Lyapunov function candidate (LFC.)
dL . . ) . Lyapunov’s method [83], [84] is the leading tool for the analysis
—7 =2dd = 2dn*(X)X(t) = ~2dn (X)VV(X) of nonlinear control systems. By proving tHat X) is also an
IV (X) LFC, the dual nature of this group of PFs is established, hence,
=- dan(X) > 0. (33) its usability for constructing an NC.

1) Lyapunov’s Method:In order for the system
Therefored is increasing with time an& (¢) is being steered
away fromI'. This makes it impossible faK (¢) to intersecO
at any time, i.e.,

X = f(X) (35)

to be globally asymptotically stable (i.&m; .. X (t) — X7),
) it is sufficient that there exists a scalar functié(X ) with con-

X(HNo= Yt 34) ! . L .
(*) ¢ ( tinuous first partial derivatives with respecti so that

aV(X)=0 X=Xr
b)V(X) >0 X # Xy
(i.e.,V(X) is positive definitg

G. V(X) Is a Lyapunov Function Candidate

The aim of this work is for it to be a step toward designing
an intelligent controller that would sensitize an agent in a con-
strained, goal-oriented manner to its surroundings. Such a t : _
entails the ability of the control device to fuse Al capabilitiesﬂEj forV(X) = (9V(X)/dt)
with classical control action. Until recently the setting forcon- c.o =0 X = Xr
strqcting such controllers has remained rgliant onanHLC that 4 <0 X #Xr, [ie.V
utilizes classical or evolutionary Al techniques to convert the
goal of the agent, the constraints on its behavior, and the datd’(X) that satisfies: andb is called an LFC. IfV(X) sat-
about its environment into a sequence of reference commaisfies all of the above conditions, it is called an LF. Usually,
which are in turn fed to a classical LLC whose function is tanother condition fo¥’(X) to be a LF is forV (X)) — oo with
generate a control signal enabling the robot to follow the reffX|| — oo. However, since we are dealing with finite domains,
erence set by the HLC [Fig. 16(a)]. One shortcoming of this condition is not applicable.

(36)

(X) is negative definite
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Proposition 6: The potential field/ (X ), which is generated

by the BVP in (17), is an LFC. r, \
Proof: Since by constructio (Xr) = 0, showing that
V(X) is an LFC requires only showing thet(X) > 0V X ¢ T N r
Q. This directly follows from the maximum principle. There- \ 4 - |— Q |[—
fore, V(X) is an LFC. ™ g, ~ Y
"‘; »X
H. Convergence X\
To examine the convergence of motion from any poinfin
to X7, a variation of the Lyapunov method called the LaSalle 4 Q
theorem [88] is needed. This theorem is stated below for conve- - 3-»

nience.
Theorem: Assume that for the dynamical system

X = f(X) (37)

there exists the scalar functién(X') such that

Fig. 17. Gradient field configurations of an NAHPF.

Proof: Let us construct the following energy functional
from the control signal in (6):

V(X)>0 VX #Xp, V(Xp)=0, and -, .,
dV((X)) 7 Vi) Jz/ /utudQ: / /VV(X)tVV(X)dQ
<0 VX. (38)
Let E be the set of all points whetd/ (X)/dt = 0, and letM //Z( o ) z1...dz;...dey.  (41)

be the largest invariant set containeddinThen, every solution
of the above system bounded fio>> 0 approached/ ast — The above functional is well known in the calculus of varia-

0. tions. It is called the Dirichlet integral. It is also a well-known
Proposition 7: The motion generated by the control signal imesult that this functional is globally minimized ¥(X) satis-
(6) will globally and asymptotically converge 6+ fies Laplace’s equation (see [86, pp. 18] and [87, pp. 17]). This
is called the Dirichlet principle. Since the control action (6) is
Am X () — X VX(0) € Q. (39) derived from the gradient of a potential field that satisfies the

Laplace equation, it minimizes the above energy functional. In
Proof: From the maximum principle, it is obvious thatyther words, the control is optimum.

V(X)isanLFC,ie.V(X) > 0V X # Xp, V(Xp) = 0.
As for the time derivative of/, it may be computed as VIl. SIMULATION RESULTS

V=VV(X)X(t) = -VV(X)'VV(X) = —||[VV(X)]|. The following simulation examples are intended to highlight
(40) some of the properties of the suggested method. They also
Since it was shown that the dynamical system in (6) can orfgmonstrate the diversity of applications the method can
generate solution trajectories that are boundefl tthe zeros handle.
of the gradient o/ (X) (VV (X)) are the ones that determine

convergence. A. HPF Versus NAHPF
The value ofVV (X) is zero in the following cases. It is not hard to see that the behavior an NAHPF-based HPC
1) By design, the gradient dynamical system (6) has a staidecapable of projecting subsumes that of an HPF-based HPC
equilibrium point at the target location. (Fig. 17). While there are salient similarities in behavior from

2) In [85], Koditschek showed that the gradient field of &oth HPC forms, there are, nevertheless, profound differences
scalar potential contains at least one zero-measu(e setthat are not amenable to analysis or interpretation within the
of unstable equilibrium. framework of HPFs. The following example is intended to high-

3) Anunstable equilibrium zone may form on a sulig&t light some of these differences. An environment similar to the
of the interface between the nonlinear, anisotropic regiame in Fig. 13 is chosen for this test. It consists of three different

and the rest of the workspa¢E’). types of domains:
While £ = {X7} U {x} U {I'} }, the largest invariant set 1) forbidden regions;
M consists of the only stable equilibrium subsetfof{ M = 2) constrained-traffic regions;
{Xr}.) Therefore, the motion of the gradient system in (6) will 3) free-traffic regions.
converge toXr. The forbidden region i® = O1 U 02,01 = {40 < z <
S 0,40 <y <0}, T1={40<2 <0,y =0} U{40 <z <0,
. Optimality y =40} U{x = 0,40 < y < 0} U {z = 0,40 < y < 40},

Proposition 8: The control action generated by the gradier®2 = I'2 = {8 < x < 32,y = 20}. The constrained-traffic
dynamical system in (6) from the underlying PF of the BVP iregion is2’ = Q1’ U Q2', Q1" = {8 <z < 32,20 < y < 40},
(17) is optimal. Ul(x,y) = [z/]2]|0]" z,y € Q1, Q2'{8 <z < 32,0 <y <
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Fig. 18. HPF-based HPC. (a) Generated trajectory. (b) Corresponding,
gation, gradient field.

20}, U2(z,y) = [—z/|z| O0]" z,y € Q2. The free-traffic
zonesaré®)l = {0 <z <80<y<40},02={32<z<
40,0 < y < 40}. The target point iz = 5,y7 = 35), and
the starting point igz(0) = 35,y(0) = 35). In other words,
the environment consists of two unidirectional lanes where the
agent can only switch lanes at either the beginning or the end
of the road without crossing a forbidden region. First, the HPF-
based planner is tested.

The potential is generated by solving the BVP

2 2
*V(z,y)  O°V(z,y) _ 0 z,yeQLUN2UNT UNY
Oz dy?
(42)
subject to
V(zr,yr) =0, V(z,y)|zyer = C.

As can be seen from Fig. 18(a), the planner totally disregarded
the directional constraints and drove the state along the shortest
path (a straight line) to the target. The corresponding gradient
navigation field is shown in Fig. 18(b). The NAHPF field is
generated by solving the BVP

T
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(z,y) + (2,y) =0 z,yeQlUN2

Fig. 20. NAHPF-based HPC. (a) Generated trajectory. (b) Corresponding,

Ox? Oy?
?V(x,y *V(x,y
(o) o 4 ) T o

x,y €1’ U Q2

subject toV (z7,y(T)) =0, V(2,y)|zyer =C.

constraints. In Fig. 20(a), the target and starting points are in-
terchanged, i.e(zr = 35,y = 35), (2(0) = 5,y(0) = 35).

As can be seen, the modified planner drove the state along
a straight line to the target as if it were being steered by a
linear, harmonic planner. The steering gradient field is shown
in Fig. 20(b).

The path generated by the modified planner is shown inAlthough from a first casual look the gradient field of the
Fig. 19(a), and the corresponding gradient field is shown MAHPF may appear similar to that of the HPF, the fact is that
Fig. 19(b). As can be seen, the gradient field from the modhe gradient of the modified potential possesses unique struc-
fied potential successfully steered the state toward the targetal properties that are significantly different from those of a
avoiding the forbidden regions and enforcing the directiongtadient field generated from the HPF. Consider, for example,
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F|g 21. Field Conﬁguration around the boundary of an obstacle. Flg 22. NAHPE-baSed HPC, target |nS|de the‘nor_llineal’ ar.liSOtl’-OpiC I’egion.
(a) Generated trajectory. (b) Corresponding, navigation, gradient field.

the field from the NAHPF in Fig. 19(b) in comparison with that
from the HPF in Fig. 18(b), in particular, the vertical straight W*l
line pattern that appears at the left corner of the upper corridor

the modified field [Fig. 19(b)]. It may appear as if the field from
the modified potential is obtained by adding a boundary cond |

tion at{z = 8,20 < y < 40} and solving a linear harmonic End
BVP similar to the one in (42). In the following, the fallacy of |
this assumption is proven. There are two basic settings in whi | < A

boundary conditions can be applied to a harmonic BVP:

1) a homogeneous, Dirichlet boundary conditions in which
the value of the potential at the boundary is kept constaRty. 23. NAHPF-based HPC, a more complex environment. (a) Generated
ie., V(X) =CX €T trajectory. (b) Corresponding, navigation, gradient field.
2) a homogenous Neumann boundary conditions in which
the radial derivative of the potential is set to zer@ions constitute no danger of trapping motion before it reaches
AV(X)/on = 0X e T. the target, due to their unstable nature. The presence of such
Itis possib|e to use combinations of the above two to genermints is eaSily detectable in the "near, harmonic gradient field
other boundary conditions. Since in the first case the voltageiiid=ig- 18(b) (right upper corner of the bottom corridor). This re-
kept constant along the boundary, the gradient along the téﬁlt no Ionger holds for the class of NAHPFs introduced in this
gent to the boundary is zero (i.&V (z)/dt = 0, X € T. In paper. Earlier in this section, it was shown that it is impossible
other words, for this case, the gradient field can only be prfr the line pattern appearing in the field in Fig. 19(b) to have
jected normal td" [Fig. 21(a)]. For the homogeneous NeumanReen caused by the addition of a boundary condition. This leaves
case, the choice of the boundary condition forces the radial cotfie only possibility that the line pattern in Fig. 19(b), which con-
ponent of the gradient field alorigto zero. Therefore, in a sit- stitutes an unstable equilibrium zone of zero width, but finite
uation where the Neuman setting is present, the gradient figigight, is inherent in the structure of the gradient fields gener-
has to be tangent to the boundary [Fig. 21(b)]. It is not hard &ed by the NAHPF. These zones are no longer a set of isolated
see that the two settings are mutually exclusive in the sense th@ints.
the presence of one field pattern at any side of the boundary im-
mediately excludes the presence of the other field pattern on fireMOre Examples—NAHPF
other side. Now let us examine the structure of the gradient fieldin Fig. 22, the target was placed inside the nonlinear,
around both sides of the line patternin Fig. 19(b). At one side ahisotropic region of the space. As can be seen, the planner
the line, the gradient field is normal 14 and at the other side, functioned as expected enforcing both directional and regional
a component of the gradient field is tangentit¢Fig. 21(c)]. avoidance constraints. Fig. 22(a) shows the trajectory laid
As can be seen, attempting to attribute the appearance of llyethe planner, whereas Fig. 22(b) shows the corresponding
above straight line pattern in the gradient field of the NAHPF tgradient, navigation field.
an added boundary condition will immediately lead to a logical In Fig. 23, the planner is presented with a more complex en-
contradiction. vironment. Fig. 23(a) shows the laid trajectory, and Fig. 23(b)
Another point in which the structure of the gradient field fronshows the corresponding gradient navigation field. It can be seen
the modified potential departs from that of a linear harmontbat NAHPFs suffer from the same vanishing field problem as
potential, or any linear potential for that matter, has to do witteir HPF counterparts. In [50], the authors introduced bihar-
the nature of the critical points of the field. In [85], Koditscheknonic potential fields as an alternative that does not suffer from
showed that the construction of a PF (the class of fields this problem. The authors hope to be able to extend the bihar-
was considered being scalar fields) with a gradient that does noinic approach to accommodate nonlinear, anisotropic spaces.
vanish anywhere ifi2, except at the target point, is impossible. Inthe above example, the planner is assumedxgori know
Zones of zero measures (i.e., points) will always be presehe constraints on motion (i.e., the avoidance and directionally-
in the gradient at which the field vanishes. However those reenstrained regions). In the following example, this information
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Fig. 24. Trajectories generated by an NAHPF-based EHPC. (a) First attempt.
(b) Second attempt.
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>

is nota priori available to the planner. The target location is

the only piece of information that ia priori known. To plan B. Directed Edge.

under such conditions, the NAHPF is configured in an EHPC

mode where partial information about the environment is fed _ _

online to the controller and used to evolve the control polic§!9- 25 ©raph components and their analogous electric components.

Fig. 24 shows the trajectories laid by the EHPC, NAHPF-based

controller in an environment similar to the one in Fig. 23(a). Conjecture 1:Let G be a directed graphy a set of ver-

The controller proceeds with guiding the agent totally obliviouéces, Z the corresponding set of edge¥; the initial vertex,

to the presence of the avoidance and traffic-regulated regigi¥ N the target vertex. Assume that at each veftexthere

[Fig. 24(a)]. Each time a constraint is discovered, the controllisr & voltageV (IV;), and the terminal vertices are assigned the

integrates it in its database and then modifies the control poli¢fluesV (Ny) = 1, V(Nr) = 0. Let the cost of moving be-

Although the agent wanders a little at the first attempt, it doé4een vertices andj be R;; if the edge is bilateral, anfd,;

not violate any constraint and succeeds in reaching the tardethe edge is directed

Equipped with the knowledge it gained from the first attempt,

the controller is utilized in a second attempt to guide the agent to Rd;; = [gl{U “//((]]\\]]f)) <> 1‘//((11\7\6))

the target [Fig. 24(b)]. As can be seen, the controller eliminates 1 vo= 77

all unnecessary detours from the path, significantly enhanCiggsume that every vertex i is governed by Kirchoff's current

the quality of the trajectory and shortening the distance travelggly (summation of the currents entering or leaving a vertex is
equal to zero [89], i.e., no accumulation of charge is permitted)

(44)

C. Di-Graphs

_Thg NAHPF-based _con_troller has special sign_ificance when AL = Z V(Ni) = V(N;) -0 (45)
Q is discritezed. In a discritezed workspace, motion of the state Rt
is limited to a web of infinitesimal passages. This situation is
analogous to a graph where a passage resembles an edg&herelt;; = R;; ifthe edge is bilateral, anfit;; = Rd,; ifthe
a graph and a junction in the web represents a vertex in tB@ge is directed. This law may be considered as the equivalent
graph. NAHPFs make it possible to tackle an important clatLaplace’s equation in discrete domains.
of graphs called directed-graphs. Unlike regular graphs whereThe trajectory (sequence of vertices) that is constructed by
bilateral transitions between vertices are allowed, the cost ofraversing the edges with the highest current flowing out of the
transition from one vertex in a di-graph to another differ frorertex under consideration starting fray and ending with
that of the reverse transition. Nr is the minimum cost path connectifg to Nr.

The cost assigned to an edge is analogous to the resistance dhe following examples illustrate the application of the
the corresponding passage. This is represented as a lumped ré#éiPF-based algorithm to solving the minimum path problem
tive element connecting the corresponding vertices [Fig. 25(a)). @ di-graph. Fig. 26 shows four di-graphs with a different
As for a di-graph, the cost associated with the edges markigmber of vertice$ K') and associated costs of transitions. The
the forward and reverse transitions between two vertices &@rents flowing in the edges of a graph are represented using
analogous to the forward and backward resistances of a didde matrix = [I;;], wherei is the starting vertex from which
[Fig. 25(b)]. As was mentioned at the beginning of this papdhe current enters, andis the ending vertex from which the
the problem of finding the least cost path linking two verticegurrent leaves.
in a di-graph is an important problem in operations research.1) K = 3 [Fig. 26(a)]:

Motivated by the physical fact that the highest value of an
electrical current between two points tends to flow along the

i *

Nr=1, Np=2 {V1=1V2=0,V3=05}

minimum resistance (or equivalently, minimum cost) path, the 00 001 05
authors believe that there is a strong possibility thatthe suggested [ = | —=0.01 0.0 0.5
NAHPF-based control scheme can be used to solve this problem. -05 05 00

The following conjecture is an expression of this possibility. path=1 — 3 — 2, cost=2.
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4 s
Number of Vertices
Fig. 27. Scaled CPU execution time versus the number of vertices.

(Fig. 27). The scaling is carried out by dividing the CPU time
each simulation took by the time needed to run the simulation
for the graph in Fig. 26(aJK = 3). As can be seen, the

Fig. 26. Different graphs and the corresponding costs of transitions. execution time grows linearly with the number of vertices.
2) K = 4 [Fig. 26(b)]: D. Multiagent Motion Planning

Ny=1, Nr=3, {V1=1,V2=05V3=0V4=0.5} Asituationwhere the NAHPF-based control scheme may be

0.0 0.5 0.0l 0.05 applied is multi-robot, multi-target motion planning in a sta-
~05 00 05 0.0 tionary environment (here, a robot is assumed to be a disk with

I= —0.01 —05 00 —0.05 radiusd; ). In [90]-[92], the AL approach to behavior syn-
—0.05 0.0 005 0.0 thesis expressed using a hybrid vector-harmonic PF is used for
path=1 — 2 — 3, cost= 2. constructing a motion planner of the above type. The planner

consists of two components. The firstis a component that is con-

3) K = 5[Fig. 26(c)]: See the first equation at the bottonstructed for each robot, isolated from the others, to drive each
of the page. robot to its respective target in a constrained manner. This part
4) K = 6 [Fig. 26(d)]: See the second equation at thef the multiagent controller is referred to as the PRF of the con-
bottom of the page. To measure the computational complexitgl. The second component of the control functions to mediate
of the algorithm suggested in conjecture-1, the scaled CRidy conflict that may arise due to the robots’ disregard to each

execution time of the PC on which simulation was carried oother’s presence when constructing their PRFs. This component
(T,) is plotted versus the number of vertices of each gracalled the CRF of the control. The planner is a decentralized,

Ny=1, Nr=5, {Vi=1V,=0.7592,V5=0.526,V, = 0.2981, V5 = 0}

0.0 0.2408 0.0 0.0702 0.01
—0.2408 0.0 0.2332 0.0 0.00759
1= 0.0 —0.2332 0.0 0.2279  0.00526
—0.0702 0.0 —0.2279 0.0 0.00298

—-0.01 —-0.00759 —0.00526 —0.00298 0.0
path=1—-2—3 —4 —5, cost=4.

Ny=1, Np=4, {Vi=1V,=0.4928 Vs =0.2464, Vs = 0.0000, V5 = 0.073, Vs = 0.7390}

0.0 0.0051 0.0 0.0 0.0 0.2610
—0.0051 0.0 0.2464  0.0049 0.0 —0.2463

7= 0.0 —0.2464 0.0 0.2464 0.0 0.0
0.0 —0.0049 —-0.2464 0.0 —0.0073 —0.0074
0.0 0.0 0.0 0.0073 0.0 —0.0073

—0.2610  0.2463 0.0 0.0074  0.0073 0.0
path=1—6 — 2 — 3 — 4.



MASOUD AND MASOUD: MOTION PLANNING IN THE PRESENCE OF AVOIDANCE CONSTRAINTS 719

ENCIONOXO),

® i S

®
®
®

@ 1 ‘ S
1 6 11 16 21 26 31 36

° Fig. 29. Workspace with tight passages.
O

- . A
) ) - 4
e c

O A
Fs @

@
" @O B

EEE®

Fig. 28. Collective, decentralized problem solving, multiagent control.

o g g g 70 El v

Fig. 30. Gradient fields from an HPF-based HPC. (a) PRF-1. (b) PRF-2.

self-organizing machine with a computational complexity that

is linear in the number of agents. Moreover, the planner is com- R
plete (i.e., if a solution exists, the planner will find it; otherwise "- /——\
it will give an indication that the problem is not solvable) pro- .-

vided that the condition 1| @)

VX' €QIX, X e{X:|IX-Xi|[<plCQ (46)

F2
is satisfied, wherg = d) +d}, d} andd, are the radii of the two " //__\\
largest robots in the set of robots occupying the environment. o
This condition simply means that the narrowest passage in the 1
environment should be large enough to allow any two robots

in the group to simultaneously pass each other. In Fig. 28, the * g
capabilities of the multiagent planner are demonstrated. Two "- /—\
groups of four robots each are moving along a road blocking .- / \

each other’s way. The goal is for the two groups to pass each
other (i.e., the left group should move to the right, and vice versa
for the left group.) The two groups collectively resolved the con-
flict by forming right and left lanes and confining the motion ofig. 31. Failure of an HPF-based, multiagent planner in driving the agents to
each group to one of the lanes. their targets.

While condition (46) is by no means stringent (after all, it
is only reasonable for a two-way street to be wide enough toConsider the workspace in Fig. 29. Two rob@$ and D2
allow two vehicles to pass at the same time,) there are nevertaee required to exchange positions. As can be seen, the passages
less environments with tight passages that have only room foiQ2 are not wide enough for the two robots to pass at the same
one robot at a time. In such a situation there are no guarantéese.
that the multiagent planner in [90]-[92] will function properly. Fig. 30(a) and (b) shows the HPF-based PRFs for ath
One way to remedy this situation is to mark a tight passageasd D2. Fig. 31 shows, using snapshots, the locations of the
a one-way street (i.e., constrain motion in such passages to twdots that are generated by the multiagent controller at different
come unidirectional.) This may be accomplished by using tlestants of the solution. As can be seen, an unresolvable con-
NAHPF-based control scheme in synthesizing the PRF contflitt arises betweerD1 and D2. Fig. 32(a) and (b) shows the
component of the multiagent controller. The following examplRAHPF-based PRFs fab1 and D2. Fig. 33 shows the corre-
illustrates the use of NAHPFs for such a purpose. sponding locations of the robots at different instants in time. As
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Fig. 32. Gradient field from an NAHPF-based HPC. (a) PRF-1. (b) PRF-2.
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Fig. 34. Highway switch.

E. Highway Switching

One possible application of the NAHPF-based control is
highway switching. The aim is to minimize disruption to traffic
by sparing a vehicle from having to slow down too much or
stop when changing roads, or reversing direction. Coping with
this situation requires the design of a highway switching node
[5]. This switch may be looked at as a multi-input, multi-output
network [93] with the proper topology and geometry. A dynam-
ical system is then induced on this network in order to build a
switch that would autonomously control the trajectory of the
vehicle concerned in the desired manner. The NAHPF-based
control is essential for inducing this type of control on the
network. This is illustrated by the following example.

Fig. 34 shows two perpendicular highways intersecting each
other. Each highway contains two unidirectional lanes. A switch
is placed at the intersection. A lane leading to the switch is
marked as an input/) and a lane leading out of it is marked
as an outpufO). The circuit used in building the switch con-
sists of four roundabouts symmetrically placed to connect the
adjacent lanes of the highway. A large roundabout is also added
to link the four smaller roundabouts. The direction of traffic in
all roundabouts is constrained to move clockwise. Fig. 35 shows
the different routes (solid lines) generated by the switch (dotted
lines). As can be seen, no sharp turns appear in the generated
trajectories.

VIII. DIscussiON ANDCONCLUSIONS

The method reported in this paper is a part of ongoing work
to build a new class of intelligent motion controllers that have
a good chance of meeting the demands a realistic environment
may present an agent with. The behavior of agents equipped
with such controllers is goal-oriented, context-sensitive (i.e.,
meaningfully react to the events happening in their external en-
vironment), and intelligent. This intelligence is measured by an
agent’s ability to accommodate internal and external factors in
generating its actions. Itis also related to its ability to act online

Fig. 33. Success of an NAHPF-based multiagent planner in driving the agepi§sed on the fragments of data its sensors feedback, as well as

to their respective targets.

its ability to convert this discrete-in-time data flow into a suc-
cessful continuous-in-time flow of action instructions. The au-

can be seen, conflict was resolved by marking the tight passages's strongly believe in the ability of EHPCs to function in this

as one-way streets.

manner.
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It is obvious from the above that EHPCs have to be imple- X3 Cone of
mented in a declarative mode where a@riori known struc- Admissible
ture is imposed on the control field. Rather, the structure of the Directions ;
controller evolves with the online sensory data feedback taking _ Sxe
into account the aim of the control and the constraints on be- X/'v.-j")r
havior. To obtain the needed lucidity of structure, the control X
has to be induced by operating on a potential surface with a par- X() X,

tial differential operator. The potential field approach, of which
the NAHPF is a new addition, is very suitable for use in con-
structing declarative controllers, especially when configured in X1
a PDE-ODE mode.
An important issue on which the work in this paper assists X2
in shedding some light is the use of evolution versus the use ®
of search (it ought to be noticed that function minimization is
a form of search) as a paradigm for action selection. One may
conclude that evolution has a more generic nature than search. %N
It allows the handling of a wider class of constraints compared
to a search-based method. For example, directional constraints,
which are encoded with the aid of relations (not functions), .
cannot be handled by a search-based approach. Another advan- B
tage of evolutionary techniques is their ability to manage the
complexity of massive systems such as the interactive collec-
tive of microcontrollers composing the AL machine used fQfy 36 Fioating nature of nonholonomic constraints.
converting the database of the agent into a control action.
It is unfortunate that the perception reflected by the sizable . . o .
literature on HPF’s has remained trapped in the classical lind$HintX, in state space the inadmissible directions,, = Ng)
representation of the approach which is stated using Lapalc@'§ & function of the previous value &t (X ™), Fig. 36(a) and
equation. NAHPFs are a proof that more rich representatio: Depending of the value ok ~, Ng acquires an orienta-
of the HPF approackio exist This brings with it the strong fion Wlth respect to the state space _coordl_na'_[es. An admissible
possibility of expanding the horizon of existing motion planne/@irection atXp (X*) may become inadmissible if the value
to tackle new and challenging problems in the area. pf X~ ghanges. Therefore, fqr a nonholonomic controller it is.
One last point the authors want to emphasize is the distingtrossible to specify a direction relative to state space coordi-
nature of nonholonomic control and NAHPF-based control. LEAtes along which the direction of motion may be constrained.

us first consider the static, nonholonomic system in (47), whef$ Was clearly demonstrated in this paper, this is not the case
for NAHPF-based controllers.

X = g(uw). (47) The authors are optimistic that further exploration of the HPF
approach will reveal many interesting features that could furnish
Any action solicited byu has to filter throughy in order to in- a good basis for tackling difficult problems such as planning
duce a change itX . It is not hard to see that the state is prewith aging information, multiagent multitarget planning in clut-
vented from proceeding along the directions lying in the nuiéred environments and jointly accounting for the dynamic and
space ofy(Ng). Unfortunately, such directions are not native t&inematic of an agent when planning relying on sensory data
state space. This is illustrated with the help of Fig. 36(a). Atfaedback only.
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