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Constrained Motion Control Using
Vector Potential Fields

Samer A. Masoud and Ahmad A. Masoud

Abstract—This paper discusses the generation of a control signal I's,
thatwould instruct the actuators of a robotics manipulatorto drive T,
motion along a safe and well-behaved path to a desired target. The Q
proposed concept of navigation control along with the tools neces-
sary for its construction achieve this goal. The most significant tool
is the artificial vector potential field which shows a better ability to
steer motion than does a scalar potential field. The synthesis proce-
dure empha5|zes flexibility so that the effort needed to modify the x x
control is commensurate with the change in the geometry of the en(q)
workspace. Theoretical development along with simulation results "

q,9,9

are provided. et(q.)
_Index Terms—Motion planning, nonlinear control, robotics ma- 2?(((;1))
nipulators, vector potential fields. o
e,
NOMENCLATURE qr
NC Navigation control. In,In
PF Potential field. &e
VPF Vector potential field.
SPF Scalar potential field. &
BVP Boundary value problem. Qa)
VBVP Vector boundary value problem. Qn(q)
SBVP Scalar boundary value problem. Qi)
BEM Boundary element method. M(q)
LAC Local alignment control. 1
PPC Penetration prevention control. Mo (q)
BLAC Boundary local alignment control. M”(q)
BPPC Boundary penetration prevention control. Gth
v Vector potential field. & =
V Scalar potential field. D’(H)
A Vector potential field with a zero gaug® - A = 0). C(q )
V() Gradient operator. 4
VX() Curl operator.
V() Divergence operator. %( q). )
O Pre-existing set of obstacles. Kq],3q
@] Newly introduced obstacles. ’
Onew Oold uo. C
Os, Region surrounding). v
Os Region surrounding bot& andOs. Ed
0, Avoidance region in the velocity space. g
¢ Empty set.
od Minimum width of theO;4 region. W
r Boundary ofO (I' = 00).
Is Boundary ofOs.
up,
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Fig. 1. (a) Classical HLC-LLC setting. (b) Navigation control.

() Scalar positive function that is modulating theOn the other hand, a NC has the form
strength of the normal unit vectors & 1 when
used withe,, (q), ¢ = 2 with e, (q)). .
Bi() Same asy;, but used with the tangent unit vectors. u=h(xf,T,k) ®3)

|. INTRODUCTION wherex eRM is_ a point_in the state space of the syste_m (state
o - _vector),x is its time derivativen € R" is the control input
WHAT makes an agent (robot) usefulis its ability to exhibi{,actor of the systemh € RV is a vector functionf € RM
ayielding purposive behavior. Yielding to the influencgnaracterizes the dynamics of the systéiis, an estimate of,
of an external agent (usually a human operator) may be achieyegt 5 gescription of the external environment of the robot,
by equipping the robot with a certain class of intelligent motiof the reference to be tracked by the classical controlletand
controllers that are called motion planners. The setting for cofascribes the task which the NC is required to help the robot
structing such controllers has remained reliant on a high lev@lhieve. In a classical controllaris seen as a unit in a series
controller (HLC) that utilizes classical or evolutionary Al techys |gcal references which, if executed in the proper sequence,
niques to convert the goal of the robot, the constraints on figy|ize the task. In the NG does not explicitly appear in the
behavior, and the information about its environment into a S&rgument of the control; rather, it implicitly generateshein
quence of reference commands which are in turn fed to a clggs proper sequence) frof'nF, andtk.
sical low level controller (LLC) whose function is to generate a The tools for constructing a NC differ fundamentally from
control signal enabling the robot to follow the reference set Rijose used by classical controllers. Classical controllers use
the HLC [Fig. 1(a)]. _ o rigid, whole-domain control functions that are unequipped
One shortcoming of the aforementioned setting is the lack comply with the stringent behavioral constraints a robot
guarantees that the HLC ge_nerated reference can be convel_rgaqmes for successful purposive behavior. Instead, a NC gen-
into a successful control action by the LLC. To get around thigates the control action by operating on a potential field with
difficulty, a new fundamentally different class of controllers ig, yector partial differential operator that functions to induce a
needed to integrate the function of both the HLC and LLC igense set of infinitesimal actions (controls) that homogeneously
one control module [Fig. 1(b)]. A controller that can achievggyer the agent's domain of viability (workspace). This results
such integration is called a navigation control (NC). in a freely-configurable vector being assigned to each point
Classical' controllers (LLC’s).are only concerned with referbelonging to the workspace(x)). A structure for the control
ence following, a behavior that is local in nature, detached froactor group has to be determined so that the resulting solution
any context, and wholly dependent on the HLC for meaning ag@jectory conforms to the priori specified differential and
success. The behavioral difference between the NC and a clgste constraints (a valid group structure.) The proper structure
sical controller may be directly observed from the arguments o the control field is what convert the infinitesimal controls
their respective control functions. For a dynamical system of thigg one functional unit that instructs the robot on how to reach

form the goal and satisfy behavioral constraints. Fig. 2(a) shows
% = f(x,u) (1) a control group structure for the_sim_ple dynqmical system
’ [de/dt dy/dt]" = [uz uy]® developing into a valid structure.
a conventional controller has the form The resulting structure is able to drive the state of the system to
R the target set while avoiding undesired regions in state space.
u=h(x,r, ). (2) Having the freedom to specify independently a control vector
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Fig. 2. (a) Evolution of a valid control group structure in a NC constructed using a hybrid, PDE-ODE, potential-based system. (b) Basic strugforie,of a h
PDE-ODE, Potential-based planning method.

at each point in state space is important for constructing a Ni6to a decoupled system of unit masses using D(x)F* +
It also has other advantages described in [1]-[6]. C(x,x) + g(x), wherex is an operational set of coordinates
The potential field approach to motion planning is rich wittj17], D(X) is a symmetric, positive definite inertia matrig,
techniques that can embed an agent in the context of its erigia vector containing the coriolos and centripetal forgas the
ronment. For an extensive survey of potential-based planniggavity vector, andh is the externally applied generalized force.
methods that covers up to 1994, see Masoud [6]. To the besiltie vecto®™* is the sum of the following forces: a ford®, that
these authors' knowledge, the potential approach was the firsistthe negative gradient flow of an attractive potential field which
be used for generating a paradigm for motion guidance [7], [&urrounds a reference point, a repulsion fafgegenerated by
The paradigm is based on the simple idea of an attractor field sitrepulsive potential field that fences the obstacles, and a linear
uated onthe target and arepeller field fencing the obstacles. Sgamping forceF ;.
eral decades later, the paradigm surfaced again through the littl&lthough the approach proved effective, it suffered from two
known work of Loef and Soni which was carried out in the earlgroblems: 1) a cluttered environment causes local minima to
1970’s [9], [10]. Not until the mid-1980's did this approachHorm which traps the manipulator before reaching its target, and
achieve recognition in the path planning literature through tt# the potential used for the obstacles is an inverse quadratic
works of Khatib [11], Krogh [12], [13], Takegaki and Arimotofunction that may result in a high force, which causes an un-
[14] in Japan, and Pavlov and Voronin [15] in the former Sovietalizable control effort. Also, the interaction betwdénand
Union. Andrews and Hogan also worked on the idea in the coR; may cause transients that are hard to control. Andrews and

text of force control [16]. Hogan adopted an impedance control approach to path planning
Khatib began by transforming the system equation of the mia-which the environment is treated as an admittance and the ma-
nipulator nipulator as an impedance.

The approach closely resembles Khatib's method. As in
D(x)x+ C(x,%x) + g(X)=u (4) Kbhatib's approach, trap situations due to local equilibrium
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Fig. 3. (a) A general, curvilinear, boundary-fitted coordinate system from a vector potential realized by two gradient fields from scalas pdeStiatching
field from a VPF augmenting a plan field from a SPF.

zones were also a problem. Newman and Hogan expressed thdnfortunately, he did not supply a formal procedure for de-
potential approach using an energy interpretation that is simitaring the GPF. Also, his attempt to restrict the control fencing
to the time optimal bang-bang control [18]. The approach wése obstacles to the boundary of the forbidden regions raises se-
later developed by Newmaet al. in [79]-[81]. Takegaki and rious questions about the ability of a finite strength control to
Arimoto started by deriving the system equation using tlgrevent the state from entering those regions. Tilove compared
Hamiltonian. A robust feedback stabilization infut) to steer the classical potential field with the generalized potential using
an arbitrary point in the unconstrained configuration space taléferent utilization strategies [19]. He found that the results ob-
target point was constructed by modifying the potential energgined using the generalized potential field yield a smoother tra-

of the system using the feedback jectory that better suits the dynamics of the robot. Another com-
parison and a critical, empirical study of potential field methods
aveN' v\’ may be found in [73] and [74] respectively.
u=- (a—x) (a_x> (5) A method for constructing a NC that bears great resemblance

to a potential field method is avoidance control. Avoidance con-
wherel? is a desirable potential function that is constructed itnol was suggested to keep the state of a dynamical system out-
accordance with the aim of the control, arids the potential of side a specific region in state space [20]. A refinement of Avoid-
the system. ance control, the optimal avoidance control (OAC), was also
Krogh suggested making the strength of repulsion directbuggested [21]. OAC functions to maximize the minimum dis-
proportional to the speed of approach and inversely propgance from an avoidance region while transferring the dynam-
tional to the minimum avoidance time [12]. He proposed th&tal system from an initial state to a final one. More work on the
the avoidance vector for an obstacle be the gradient of a pasibject may be found in [22]-[25]. Unfortunately, the approach
tion and velocity-dependent potential figltf (x, x)) which he faced two major stumbling blocks, halting further investigation.
referred to as the generalized potential field (GPF) [12]. InBhe first problem was its inability to provide a formal procedure
subsequent work, Krogh approached the problem more gerfer-deriving the control; only guidelines were provided. Gener-
ally: to transfer the state of a dynamical system from an initiaking a form for the control was left to the subjectivity of the
state to a final one, avoiding undesired regions along the wdgsigner. The second and more serious difficulty was the OAC's
[13]. failure to handle nonconvex regions. Even in [25], where con-
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ditions for navigation in the presence of nonconvex avoidance en(q+) q en(q+) q
regions were derived, the authors reported failure in every at-
tempt to use these conditions for constructing a control for the T, 4=0 T.- =0
nonconvex case. v
In [26], Koditschek showed that it is impossible to construct R
a potential function with a vector field that can guarantee global L < .
convergence to a target point. However, “Almost Global” con- ] N . v q
vergence is possible. Procedures were suggested for building en-(q+) .oenda)

navigation potential functions for a variety of workspaces
that are geometrically different but topologically equiva|erﬁig. 5. Possible combinations of PPC's in the positions and velocity spaces.
[27]-[30]. Koditscheket alshowed that the gradient of the
potential field, with the appropriate dissipative vector fisl) method was proposed by Satoh in the mid-1980's [35]. By
is satisfactory for constructing the navigation control [31]-[33kquiring the potential fieldV'(x)) to be harmonic, thereby
satisfying the Laplace equatigW?V (x) = 0), itis possible to
u=—-Vu(z)+d(z, ). (6) generate a gradient field-VV'(x)) with flow-lines that mark
collision-free paths to the target set. Unfortunately, because
Unfortunately, the control scheme does not mention how to débé work was published only in Japanese, it received minimal
with the gravity term. Therefore, these authors will assume thatposure. For an English version of the work, see [36].
they relied on the troublesome cancellation strategy. Also, theyOther methods for utilizing harmonic potential fields in mo-
imposed an initial speed limit on the robot which has to be prtion planning were later suggested in [37]-[51]. Biharmonic
vided as a function of the initial position. The violation of thigotential field techniquesi{(x) satisfiesV*V (x) = 0) were
constraint could lead to the robot penetrating an avoidance fednd to favorably compare to their harmonic counterparts by
gion. No method for computing this limit was provided. Sundgroducing paths with lower curvature and potential fields that
and Shiller combined the idea of acceleration lines with that o&n be reliably computed for workspaces with excessively com-
potential fields to achieve a near time-optimal trajectory to th@ex geometry [52]. Furthermore, techniques based on potential
target [34]. Their strategy is to augment the above technigfields that satisfy the diffusion equation [53] or the wave equa-
with an acceleration potential and a deceleration potential at tiien [54] were suggested for motion planning for nonstationary
terminal points of motion. This potential is designed so thattiargets. Unfortunately, the above techniques only mark a safe
does not introduce undesirable local equilibrium, and it fadesth to a target set.
away with distance from the terminal points. The authors re- Additional conditioning is required to convert the guidance
ported that in most of their experiments the resulting time camégnal that such potential fields provide into a control signal
as close as 2% to the optimal one. However, there is no mentibat would instruct the robot to properly deploy its actuators of
of the effect of initial acceleration on the collision avoidancenotion, enabling the target to be safely reached. An interesting
ability of the method. approach for generating a NC signal from a guidance field signal
Of particular significance are potential field methods thatas suggested by Utkiet al.[55]-[59]. The approach utilizes
use the flow-lines of surfaces providing solutions to certathe sliding mode theory to force the state of the robot to track the
boundary value problems. These methods can be expressses of the guidance field. The authors applied their approach
in the hybrid partial differential equation-ordinary differentiafor the special case of a gradient guidance field. However, the
equation (PDE-ODE) system format shown in Fig. 2(b). Thigpproach is so general that any type of guidance field could
class of planners is well suited for integrating an agent e accommodated. Also, for the control effort to be finite, the
the context of its environment, and, in turn, for constructinines of V" must have bounded curvature. Other procedures for
a NC. For a detailed discussion of this class of planners samverting the guidance field from a harmonic potential to a NC
[1]-[6]. To the best of this authors' knowledge the first suckignal may be found in [60] and [61].
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e T tion VI introduces nonlinear, anisotropic motion damping. In

' Section VIl two examples are supplied to demonstrate the ca-
pabilities of the proposed method. Conclusions are presented in
Section VIILI.

Il. WHY A VECTORPOTENTIAL

|
\l
‘\ Projecting an action that satisfies the goal and upholds the
. ) constraints on behavior requires the generation of a sequence of
NG 7 P control signalgus, uz,. .., w;) that yield a corresponding se-
- 'é‘l_ - guence of statefx1,x2,...x;) so that the final statéx;) is
\,_\\\ 1 AT ™. r the desired target state and all the transient states satisfy the
1 (g; ) \\_7."' € constraints on behavior. Such a sequence is called a plan. In
r ks a potential field approach, such a plan is a member of a field
l [ ] ; of plans (action field) that densely covers state space, so that
: L . . regardless of the starting poifito), a plan always exists to
t e safely propel the robot to its destination. SPF methods, espe-
l ‘ 7 cially those that utilize the potential field in the context of a Hy-
‘ brid PDE-ODE system, were proven to be efficient tools for gen-
e erating the above capabilities. Fig. 3(a) shows the action field for
\" / the simple drift-free system = u, generated by the method in
N ST PR [52].
CONT T Such methods require a model of the environment that is
known a priori to be able to generate the NC. Unfortunately,
a realistic changing environment significantly shortens the life
of any a priori nown odel. This may render part or all of the
plans which the action field encodes to be invalid. What makes
Fig. 6. Computing an exit point on the surface of an obstacle. the plans generated by a SPF particularly susceptible to changes
in the environment is the fact that each starting point in state
) o ) . space defines one and only one plan to the target. If the plan
In _[75]’ a p_otentlal _functlon IS treated as a L_|apunov funCt'Ofbils, the robot needs to recompute the whole action field taking
and_ls used in r_eal-tlme to d_erlve a control 5|gnal_ for the COfkto account the new information about the workspace in order
strained proximity maneuvering of a I_ow-earth-orblt space plqta generate a new valid plan. This is a considerable burden, par-
form. The mgr_leuver_con5|s_ts_ of driving the platform toa r_e'i‘i'cularly when considering a multidimensional workspace.
dezvous position while avoiding a convex obstruction region. Instead of recomputing the whole action field, it is more rea-

Potential fields were also used_for design_ing impact C(_)ntr0|le§8nable for the robot to attempt to ameliorate utilization by
to tackle the problem of real-_t|me, collision-free mot|qn of %Witching from the failed plan to a valid one which, when found,

proach of surfaces to be contacted or docked with,

control [76]. In [84] potential shaping and dissipation are eNspE techniques generate the NC field from the gradient flow.

ployed to obtain fuII_exponentiaI stabilization to a desired tre&v( )) of a surface that is either the potential itself, or a scalar
jectory of a mechanical system. function (S( )) of that potential

Despite the variety of methods that were proposed for

building a NC, there is still a strong demand for constructing u=-V(S(V(x))) ©)
NC'’s that can satisfactorily control the quality of behavior and
provide strict guarantees that practical behavioral constraingsg., the control may bexn = —VV or, as in [52],

can be imposed and satisfied. Most importantly is a demagfd— —V(V3V))

to yield a flexible control signal so that the amount of change |tis well known that the gradient flow of a surface degenerates
to the constraints on behavior is commensurate with the eff@fbng the family of equipotential contours [tangent space of the
needed to adjust the NC. This paper presents an attempiiface which is orthogonal to the gradient flow (normal space

attain such qualities in a NC. The suggested approach heayfthe surface)]. This may be deduced from the vector identity
relies on Vector potential fields (VPF's) for inducing the con-

trol action. VPF’s fundamentally differ in nature from scalar Vx(VS(V(x)) =0 (8)
potential fields (SPF’'s) which, to the best of these authors'
knowledge, have previously been the only kind of potentiathereV x is the curl operator which is used to detect the circu-
fields used for synthesizing NC's. lating field along the tangent space.

In Section 11, the need to use a VPF to generate a NC insteadd SPF control field is incapable of driving motion along a tra-
of a SPF is discussed. A strategy for navigation is suggesijedtory orthogonal to the gradient flow lines. Therefore, a SPF
in Section Ill. Sections IV and V discuss NC generation. SedlC is incapable of switching between plans, confining the mo-
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whereV is the scalar potential ef, A being its vector potential,
V - is the divergence operator

0 —90/0z 0/dy Ay (x)
VXA(x)=| 9/0z 0 —0/0x | | Ay(x)
—0/d0y 0/0= 0 A, (x)
has a purely circulating naturd,(x) = [Az(x)Ay(x)Az(x)]t,
andx = [z y z]'. Since the control component is intended

for use as a local modifier of the preexisting, global control,
the restrictions for partitioning are applicable. As illustrated,
the control field from a VPF does accommodate the action field
from a SPF. Moreover, it provides the robot with the option of
switching from one plan to another if needed [Fig. 3(b)].

The underlying potential field from which a modifying con-
trol action is generated may be derived by solving a properly
formulated boundary value problem (BVP.) Formulating a BVP
requires

a) a partial differential relation to govern the differential

properties of the field,;

b) boundary conditions (in the sequel, boundary conditions

are called boundary control).

The governing partial differential relation should be selected to
guarantee the ability of the local control field to modify the pre-
existing, global control component. Synthesizing the conserva-
tive gradient term of (9), Action Field, can be carried out with
no difficulties in a multidimensional space. Unfortunately, this
is not so for the curl component of the control. While a defi-
nition of the curl operator exists in two-dimensional, three-di-
(b) mensional, and four-dimensional spaces ([83], p. 135), the au-
Fig. 7. (a PPC component. (b) LAC component. thors were not able to find a general definition for this operator
in N-dimensional spaces. Since there is no proof that the oper-

) ) ) ator cannot be defined for higher dimensional spaces, its exis-
tion of the state to one and only one solution trajectory. A SR cq ig assumed along with the ability to synthesize a control

gf?‘die”t field has no CO”V?' over motion in the tangent Spacg-(ion froma in N-dimensional spaces. Thus, the authors sug-

With the loss of controllability over the tangent space, known .o 5 general method for realizing a control component from
s?fanly —1 deg;eﬁs of f:fedofml'(;' allvi-d|m|en5|onal spacle, thethe vector potential while bypassing the need to have an ex-
€ ectl_veness_o the gra |ent_ € (normg space gontro_compﬁﬁcit definition of the curl operator. The suggested procedure is
_nent) In steering motion §er|ously deteno_rates with an INCreag8pired by the Gram-Schmidt orthogonalization method [82].

in the space dimensionality. To remedy this shortcoming, vectpfis method is used to convert a set of vectors into an orthog-
pote_ntlal fields(V(x)) are SuggeSted' \_/PF s are able to sy onal one. Gram—Schmidt method begins by arbitrarily selecting
thesize a complete set of basis vector fields that may be useq tg,e mper from the set that is to be orthogonalized as the first
construct a control that has better ability to steer a robot in %ctor in the orthogonal set. Therefore we will begin by se-

workspace. To see the relevance to the plan switching pmbl?éEting the Action Field-S(V (x)) as the first component in the

described above, Helmholtz's theorem is used to partition tgﬁhogonal set of basis vector fields used to constnudts will
control action from a general vector potential fiM) into two . <1 own later. the conservative comporent'V, S(x) = x)

functionally _distinct compqnents ([62, \{ol. 1, p. 52]). The ﬁrSF_niiy be generated by solving the BVP
component is a conservative gradient field of a scalar potentia

that functions as the action field of the robot. The second compo- V.UV =V =0 (10)
nent is generated from the curl of a constrained vector potential -

to play the role of the tangential switching field circulating th%ubject to the proper set of boundary conditions (BC). Although
equipotential surfaces of the action field. Helmholtz's theoreR € RV, due to the auxiliary conditioR - A = 0, the inde-

's stated below with minor change_s to Fhe notation. pendent scalar quantities needed for completely specifing
Theorem: Any vector fieldu that is finite, uniform, vanishes drop from A to NV — 1. ThereforeN — 1 scalar potential fields
at infinity, and continuous may be expressed as the sum ogzl \

;¢ =1,...,N — 1) are needed to represet V; may be

gradient scalar field and the curl of zero-divergence vector fie Zﬁerated by solving the BVP

u=-VS(V(x)) + VXA(x), V-A(x)=0 (9 Vi =0 (11)
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Q(qu/) g

Fig. 8. Field lines near the boundary. X
Fig. 9. Motion damping along the lines 6.
subject to the first set of boundary conditions (BC1). BC1 has
to be chosen so that old solution trajectories that are still valid. The new NC has the
form
VVivV =0
u = uy(q) +w(q,uy). (13)

V3 is generated by solving the BVP
u, functions as a NC for the pre-existing obsta®s,4) such

Vi, =0 that for

subject to the second set of boundary conditions (BC2). BC2 D(q)q+c(q,9q)+g(a) =u (14)
has to be chosen so that

VViVV =0, and VViVVi=0. )
limq(t) = q, t—
The above is continued till all th& — 1 scalar potentials are

computed. The control action frod is constructed as an

N-1 qt)NOqa =¢ forallt
VXAX)= -VVi(x 12 , . " .
&0 ; () (12) whereq(t), q(t), q(¢) all € R are the position, velocity, and
o _ acceleration vectors of the robot in its natural coordinates,
where it is required that the empty set, ang. is the desired target point in the workspace.
; ] Note thatD,4 may be the empty seét andu, may be as simple
VS(V(x)'VVi(x)=0 i=1,...,N—-1 as a Proportional-Derivative (PD) controller [63]
and u,=K-(q4-q,)+B-q (15)
VVix)'VVi(x) =0 i#j. whereK andB are N x N positive definite matrices. On the

other handu; handles the newly introduced set of obstacles

The above procedure is equivalent to the parameterizatign(p = §0). The new obstacleg),...,) are the union of the
of space using fitted, general curvilinear coordinate systemstso_,, andO

[Fig. 3(a)]. It is shown in the sequel that only one out of the

N —1 scalar potential field components is needed to construct a Opew = Oo1q U O. (16)
control action fromA (V x A = —V V1) that can successfully
steer the state toward valid solution trajectories. The local steering contr@ly; ) is strictly localized to the vicinity
of O. Itis designed so that is able to make the system in (14)
IIl. THE PROPOSEDNAVIGATION STRATEGY satisfy

To achieve the flexibility that is desired in a NC, a decen-
tralized approach is used to accommodate the presence of hew
obstacles in the navigation process. Here, the existing®N¢ and
is augmented with local, noninteracting control compoitant
to steer the state away from old solution trajectories (trajectories q(t) N Onew = ¢ forallt. (17)
formed byu,) that violate the newly introduced constraints to

limq(t) = q, t—
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A. Time domain response B. Phase-Plane. of 06 (I'é4 = 000) is derived in the following sections, while
et Bl the control on and outside the outer bounddt) is set to zero.
The steering control insid@¢ is generated by solving a vector
boundary value problem (VBVP) which, for convenience, is re-
placed by the solution of, at the most, four scalar boundary value
problems (at the most two for each componenipobne to con-
struct the phase control field and the other to construct the mag-
nitude field). The rest of this paper discusses the construction of

. 2 . . . L] 7 " " a4 o2 . e e4 68 as . 12 ul .
Time [sec) Poskiom

@

A. Time domain response. ' B. Phase-Plane.
x — In this section the steering control at the boundar@ ¢far;)
is derived for later use in generating. The boundary con-
trol is derived in terms of the obstacle's normal and tangent
basis vectorse,(q) ande:(q) respectively. In the next sec-
3 tion, the generation of these vectors along with the steering con-
P - k ..................... } ..... trol are discussed. Similar t@;, ur; has two components: the

...... Boundary Penetration Prevention Control (BPRE;,), and
the Boundary Local Alignment Control (BLAGy ;).

IV. THE BOUNDARY STEERING CONTROL

a4 a7 8 62 w4 s w1 12
Poshion

(b) A. The BPPC in the Position Space
A. Time domain response. B. Phase-Plane Proposition-1: For a control law of the form
phoereereee e e se e L A A urln(qa q) = al(qa q)en (Q) q c O(Sd
P OO SOUUSUUUURRRR where

a1(q,q) = a11(q, q) + k- |qy| (19)

11 is a scalar function is a constant, and,, = q’e,(q),
there exist amvy; > 0, and ak > 0 such that the above control

4 42 e az 4 65 w1 a2

(©) preventsy in (14) from entering)
Fig. 10 (a) Unconstrained systetn,(b) Velocity constrained not to go below
—0.2. (c) Velocity constrained not to go belew0.2, and position constrained qnNO =¢ forallt. (20)

not to be go below 0.0.
Proof: Let ¢, be the normal distance frofto the present
The local componerity ) is designed in the local coordinates ofocation of the robot:
the obstacles, then transformed to the natural coordinates of the ,
robot. Itis divided into the two functionally distinct components 4n = 9q'en(q)- (21)

u; andul .
" ! Let G be the distance measure

= i e (18) G =1/242. (22)
The first (uy,) is called the penetration prevention control . . . .
(PPC.) It acts normally to the surface of O to prevent the roblt the following, _'t IS shqwn _that there is a choice foanda;
from penetrating that region. The other compon@mt) is that makes the time derivative 6fgreater than or equal to zero
called the local alignment control (LAC). This component acts G — taval > 0
tangentially to the surface @ in order to drive the robot to = Gndn = gl (@)a] 2 0.
a proper position o’ whereu, can assume command of th
navigation process and sweep the robajto

The steering controhu; ) is made to occupy a small neigh-
borhood(Oé4) aroundO that has a minimum width of; and
a boundanl'é;(I'6s = 0064). The added region is needed el (q)q > 0. (23)
to guarantee that; is bounded. As will be shown in the se- -
quel, &4 is inversely proportional to the magnitude wf (see The speed at timeémay be represented as
Example 1). For a smooth diversion of motion away from the
obstaclesy; is made to gradually decay to zero in a finite re- . !
gion Oé surroundingDéd. The control on the inner boundary qat) = /

®rhis is sufficient to prove that the robot will never tou€h
Since, initially,q ¢ 0 (i.e. ¢, > 0), the condition for guar-
anteeing tha€ > 0 is reduced to guaranteeing that

(1) dt. (24)
t0
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Fig. 11. (a) Response to different valuessof (b). corresponding forces.

Assuming that motion starts outsifle and at the present time The first term guarantees that the robot will not be accelerated
is insidel'd4, the above integral can be divided into two partsinside O64, while the second term guarantees that the kinetic
energy acquired prior to the robot enteri@g, is dissipated.

I 13 . . . .
o . N The independent nature of the two terms is a good indicator
qlt) = / a()de+ /t_ a() dt that such a division does not lead to a conservative control law.
L t . . Since an integral with a positive argument is positive, the first

=q + /t_ [f(q,q) + D™ (q)u] dt (25)  condition can be enforced by choosing
. . . et :
wheref(q,q) = —D~1(q)[C(q, q) + g(q) — u,], t0 is the Infaqgs(q,q) > Supqq en(@f(a 9) - (3D
time at which motion starts, is the present time;” is the time a,9 ~ Infg (e}, (q)D~(q)en(q))

at which the robot enteiS;,, andq™~ is the corresponding en- ] 1 N o _
trance speedfatT'é,). Substituting the speed in (23) we haveNotice that sinceD™(q) is positive definite and:,(q) is a
basis vector (i.e., it cannot be zero), the denominator is always

13 . .
" o . 1 greater than zero. As for the second tekns computed by first
[e"(q) [q t /t [f(q, @)+ D™ (q)u] dt” ’ (26) constructing the following lower bound on the integral in (30)

For the above to be greater than or equal to zero, one must have [* , _
/ [k - |dnler, (@)D~ (q)en (q)] dt
13

. -
e (a)ff(a,q) + D~ (quldt > |q;|  (27) : o
[ et D > > i (el (@D(@en(@) [k finlar
‘-
whereq, = el q~ (note thate, is constant with respect to =k -min (e} (@)D (q)en(q)) |ga(ts) — ¢a(t7)].
time). Substitutingxry, in (27), we have 4
' Using the inequality¢,(t;) — ¢.(t~)| > é4 to further bound
/ el (q)[f(q,q) + (211(q, ) the above, we have the integral bounded by
-
+ k- |a. DD Hqlen(q)] dt > | |. 28 . _
DD Wenl@ldr 1,1 @) >t fmin (e (@D (en(@)| @
One way to guarantee that the above inequality holds is to re-
quire that wheret ; is the time the force field stops the robot short of hitting
the obstacle. Therefore, the second condition can be guaranteed
. if
[ et @f(a.d) + an(a e (@D e (@] de 2 0 o -
= k- 64 |min (e}, (@D~ (@)en(a)) | > ;] (33)
(29) a
and
or, equivalently
[+ laule@p et > 7| @0 pp el L B
- - ~ 8¢ ming (e,(@)D7H(q)en(q))
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M With the assumption that the initial velocity of the manipulator
2r M Stat is outsideO, (i.e.,4, > 0), the condition for making+ non-
negative reduces to

st e,(@)-4>0. (40)
Substituting forq we have
it r e, (a) [f(q, @) + D™ (q)ul's,]

= [ea(@)" £(q, @)+a2(q, @) e, (@D (@)en(@)] > 0.
(41)

05
SinceD~1(q) is positive definite anet,,(¢) is a basis vector

6 End A (i.e., it cannot be zero), the following choice @ guarantees
. . " . thatq N O, = ¢ for all ¢

X o ( . ) > Supq,q |e;(q)f(qa q)|
DY = 1ot o (ef (@D (q)el (@)

(X313 ° [
/\ aosl] C. The Combined Position-Velocity Space

o1 A situation may be contemplated where, in addition to
a1 avoiding the obstacles, the speed of the robot is required not to
| exceed a certain value. This requires the BPPC to act in both

©2

onl the position and velocity spaces

025

(42)

0.04 - 03

B C ul',(q,q) = a1(q,q) - ex(q) + a2(q,q) -en(q). (43)

° ; u.o 18 z:: 2 o, ; |.o |'s z.o 25 . . . . .

Time [soc] Time [sec] 1) Joint Constraints: Since in the state space representation
a surface specified in the position space is orthogonal to that

Fig. 12. (a) Robot trajectory in free space, (b) corresponding torque, and §Becified in the velocity space, we have
corresponding force. !

Oll(q, q) . a2(qa q) =0 (44)
B. The BPPC in the Velocity Space h
when
Proposition-2: For a control law of the form
. . _ q¢ 06; and q¢T,
urin (4 4) = o2 enld) a €T (39) q€08; and q¢T,
wherex, is a scalar functior;, is the boundary of an avoidance qg 06 and qel,.

region in the velocity spac@, ), ande,(q) is a normal basis
vector exactly placed oh,, there exist arvg > 0 so that the
above control prevents of the system in (14) from enterin@, q¢06; and qeT,

However, when

qnNo, =¢ forallt. (36) the above product is not zero. Such a condition occurs at the
intersection of the two hypercylinders which are the extension
Note that unlike the BPPC in the position space which requirgg poth 0s, andT, along¢ andq respectively (Fig. 4). As a
a finite region of minimum width$; aroundO in order to be result ofq andq being related by
realizable, a bounded BPPC in the velocity space placed exactly

onT, can stop from enteringO, . . _dq(t) _ q(t) —q(t —di) (45)
Proof: Letg, be the normal distance betwegmndl’, in dt dt
the velocity space andul';, simultaneously actuating motion in both the velocity
. N and position spaces, a conflict may arise between the avoidance
Gn = €,(4n)a 37) specifications in both the velocity and position spaces. In the

following, the relation between the avoidance forces from both
spaces is studied for the one-dimensional case at the intersection

(38) of the two surfaces. Based on this analysis, restrictions on the
N-dimensional case are deduced.

To guarantee that will not enterO,,, it must be shown that for ~ LetI' be acontour point on theaxis,e, (¢+) ande, (¢—) are

the BPPC in (35) the time derivative 6fis always nonnegative Pointing in the positive and negative directiongoéspectively.
Also, letI',4, andI',— be point contours on the positive and

G(dn) = Gniin = dn [eh(a) - §] > 0. (39) negative parts of the axis, respectively. Le¢, + (¢-+) be a

andG be the distance measure
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M 7) en(q—) ande, —(¢+) is a do not care situation; and
Start 8) en(q—) ande,—(q—) is, also, a do not care situation.
For convenience, let us separately list the admissible situations

a.e,(g+) and e,—(¢+) b.e,(¢—) and e,+(¢—).

151

........................... (46)
i As can be seen, regardless of the directior,gfy), no con-
+ r flict can arise as long as,(¢) is pointing in a direction that at-
o/ tempts to reduce speed (i.en(¢) pointing toward the origin of
................................................................ ¢). Such a condition can be separately applied to the individual
osl \[_6 components of thé/-dimensionak,, ().
Therefore, to guarantee that no conflict will arise, the fol-
lowing conditions have to be enforced for glie T,
End A - .
oo 05 1 15 2 25 3 Qiem(q) < 0 = 1, .. .,N (47)
_ X - whereg; ande,,; are thei'th component of ande,, (¢), respec-
: [ tively.
Proof of Avoidance:
! A A Proposition-3: For the control law
HETTT e .y
ot n = a1(q, q)en(q) + az(q, Q)en(q) (48)
. NIRRTy _ .
i VoV v v vt there exist amvy and anxg such that for the system in (14)
B ol C q¢ O and q¢ 0O, forallt
T r..:lmn Tt T Tin:[secl T provided that the conditions in (46) are satisfied.

Proof: Let d be a distance that is defied as
Fig. 13. Obstacle present, only PPC s used, (a) trajectory, (b) torque, (c) force.

d= 1/2(xten(av))2
PPC unit vector ot’,,; and pointing in the positive direction of = 1/2952 (49)
4, en+(4—), e,—(¢+), ande,,—(¢—) are defined in a similar
manner. In the following all possible combinations of the PPQiherex’ = [q' ¢'], andel,(x) = [e}(q) € (q)]. The time
in ¢ andq are examined to determine the situations of conflictlerivative ofd is
1) e,(g¢+) ande, + (¢+) (Fig. 5.1)
This situation cannot occur since motion tow&rnplies
thatq(t) < ¢(t—dt). This forces;j to be negative. In other
words, the PPC's i) andq can never be simultaneously

d=in - in = (x'en(x)) (X en(x)). (50)

For avoidance to be successfdllmust be

active(a; - a» = 0). Such a situation is disregarded as a d>0.
do not care situation. -

2) en(q+) ande,+(¢—) (Fig. 5.2) Since the state is assumed to be initially outside the avoidance
This situation is similar to the one above (a do not cafiegions (i.e.x,(0) > 0), the conditions for successful avoid-
situation). ance reduces to

3) en(q+) ande,—(g+) (Fig. 5.3)

For this case, it is possible fgrto be atl’ andg to be at x'e,(x) > 0. (51)

I',— atthe same time. Here, (¢+) attempts to driveg in
the positive direction making(t) > ¢(t — dt). In other The above expression is equivalent to
words, e, (g+) acts to driveg in the positive direction, '
whichisin ac_cord with what,, —(¢+) tries_ to d(_). Th_ere- d'en(q) +den(q) = en(q)’ / [f(q,q) + D_l(q)ul] dt
fore, no conflict can happen, an admissible situation. t0
4) e,(¢+) ande,—(¢—) (Fig. 5.4) +en(q)'[f(a,9) + D™ (q)uy] > 0.
In this case, while;, (4+) attempts to drivg in the posi- (52)
tive direction,e, —(¢—) acts to drive;j in the negative di-
rection. This is a conflict situation that cannot be simultgSubstitutingul’;,, in (52), we have
neously enforced by, —(¢+) ande, —(¢—). Using sim- ]
ilar arguments, it lcan_be show_n thgt: _ e;(q)/ [F(q, @) + o1 (q, @)D~ (q)en (q)] dt
5) en(q—) ande,+(g+) is a conflict situation; 10
6) e,(g—) ande,+(¢—) is an admissible situation; + el (Q)[f(q, q) + a2(q, @)D~ (q)en(q)]
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Fig. 14. Obstacle present, PPC, and clamping control used: (a) trajectory,

torque, and (c) force.

+ /to[al(qa q)e; (q)D_l(q)en (q)] dt

+ [o2(q, Yen (@)D~ (q)en(q)] - (53)

The first two terms of the above expression are guaranteed to be

263

(56)

In other wordsge,(q) = Fen(q).

From (46) it can be seen that for the constraints on the avoid-
ance regions to be admissible, beth(q) ande,, (q) must have
the same sign (i.e., at the intersection(@fand O, e,(q) =
en(q)). Therefore, (54) reduces to

[ Tt el (@D @pen(a) o

+ [a2(q, @)e), (@D (@)en(q)] - (57)

Sincea; anda are restricted to be positive, a1 is a posi-

tive definite matrix, the above expression is always greater than
or equal to zero. Thereford,is always greater than or equal to
zero and avoidance in the joint position-velocity space is guar-
anteed by simply guaranteeing avoidance in the separate spaces
along with the consistency of the avoidance constraints.[]

D. The BLAC in Position Space

The BLAC begins to function once the state is about to touch
I' (The PPC will prevent the state from actually touching
The motion of the robot is then restricted to the surface of the
obstaclgI') and driven to a location ofi whereu, regains the

ility to steer motion to the target along an obstacle-free path.

ihally, command of the robot is transferredig once that
location is reached. The first step in implementing the above
behavior is to partitio into two parts,[', andI', (PPC is
assumed to be present), so that at ¢4

if q(t1) €T, then Jim q(t) — q,

. 58
andif q(t1) €', then tlim q(t) €T, 8)

greater than or equal to zero by enforcing conditions (31), (34),

and (42). This reduces the avoidance conditions in the pij
space to guaranteeing that

| losta et @D e ()] d

+ [az(q, @)el, (@D (@)en(q)] > 0. (54)

The second step is to clampto the ', part of I'. The final
step is to construct a control field that is tangenf'tand has
the ability to drive motion towardl, (ur,, ). To construct such a
field, a polar coordinate system is embedded ifThis system
spans only one degree of freedom of {é — 1) degrees of
freedom that are available to the unit vector fieldq) which is
tangent td". In this coordinate system a point bris described

Before tackling the above expression, the relation betweerbythe vector
unit vector in the position space and the corresponding one in

the velocity space needs to be examined. Assume that the robot

(€@ (59)

£= [ &n-a]

is moving along a trajectoryy,, ) that corresponds to the unit _ ) o _ N1
vectore, (q) in the position space. The corresponding speed c4fteret is the domain on whicli is defined ¢ € 7%, (s

be calculated as

o = SO0l )

_ Q(t)ten(q) — ;lt(t — dt)ten(q) en(Q)~

(55)

The velocity unit vectoe, (q) is computed as

. q
en(@® = 1 ]
n

an obstacle-free space). The polar coordinateg are simple
star-shaped lines that sink in the focal pgjat Any point in @
(and in turn orl’) can be uniquely determined by specifying its
distance fron€, (|¢]) and a set of angle@(&)) that are mea-
sured from a reference line . Hereq is a mapping between
@ andl' (q: @ — TI'). This mapping (see Appendix I) is one-to-
one and onto. The focal point of the coordinate systgn is
chosen such thaj(¢, ) € T'.. Ensuring global convergence &f
to &, (i.e.,q(¢) — q(&;)), ensures that the robot will entEr,
after whichu, drives it toq;,.
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M wheref,,(q(¢),q) = el(q(&))f;(a(¢)). The time derivative of
2f start the above Liapunov function is
== (f - fr)té
W = (€~ &) (f,,(a(€)) + D} (a(€))uT (&)
""""""""""""""" —/ — _61 (q(f)) (€ B €7‘)tD_1(q(€))(€ B 67‘)
||€ - €r||
] P + (€ =)' (al0) (65)
I~ /\ ................... Lete,(¢) be the radial basis vector @
“l 6 ep(6) = 5% 66
N (0
0 s = A ande; (¢) be the basis vector i) that is normal tee,,. Letf,,
0 ! 2 3 be represented in terms of these two basis vectors
X
o[ o £y, = m(a(€))ep (&) + n2(a(§))e-(€) (67)
wheren: = fgfe,(§), andnz = fgje,(£). Substituting the
' L N above term irE we get
. — tp-1 —
. A o e ) lﬂg _(ﬁl))(ﬁ &)
/ + 116 = & lleh (€) (m a(€))e, (&)
B C + n2(a(é))e-(€)) o
) 4 —— . 12 ° ‘. e o s 12 — _61(q(€)) (€ B €r) ]:|)|€ _((gfﬂ))(& - €7“)
+72(a(€)) - 1€ = & |l- (68)

Fig. 15. Obstacle present, PPC, clamping, and nonlinear anisotropic damping

controls used: (a) trajectory, (b) torque, and (c) force. To guarantee that the above is negative definite, the following
inequality must hold

(€ = &)'DHa(©)(E — &)

Proposition-4: For a control of the form

§—¢&
ur,, (§) = —p1(a(§)) - =6l q¢) el (60) Ar(ale)) € =&
> e —=&-||- 69
wherep; is a scalar function, there existsla > 0 such that (@) -lle =&l (69)
. A choice for3; which guarantees that the above inequality hold
Hme—¢& is
Proof: To prove global asymptotic convergence&adbé, , Br(gl€)) > n1(a(§)) - |l€ — & 112 (70)
it is shown that the time derivative of the following Liapunov 1 (=&)D" (q(o)E - &)
function
L O
= — (¢ _ tie _
=(8) = 2(5 &) E=&) (61) E. Computing the Exit Poir{y(&,))
is always negative definite While it may be desirable to partitiohi into I', U T, it is
- nevertheless sufficient to compute only one paj(§, ) on T,
2(€) <0. (62) in order to construct the BLAC. The following steps are rec-

To begin proving the above, it must first be noticed that asenmended forcomputing(f,«) for a general nonconvex region
consequence of the passivity property of robotics manipulatéed a globally, asymptotically-convergent global nonlinear con-
[64], the system forces that determine convergence to a pointi@! field uy (Fig. 6)

the position space of the manipulator's state space have the forrd) Choose a poing; on T
[63] 2) Construct the following differential equation

f,(q) = éllifg)f (a,9). (63) q=1f,(q). (71)

With the boundary steering control disabled-, = 0),
forward traverse the flow lines df, toward the target
using (71). Motion should start frorg, (q(0) = q,) and

é =1, (a(§)) + D_l(q(f))up”(f) (64) end atq., where|q, — q.| = ¢, ande — 0.

Consequently, the system equation that governs the motién of 3)
is
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Y so that the resulting configuration of the gradient flow-lines on
2r sant I matches that of the obstacle's local coordinates (i.e.,

VVM (q)

—————e, el

]~ (@9

and

VVu(q)
T _—e ) 73
SV = W) (73)

It ought to be noticed thaf;; can be used to construct an invert-
ible mapping betweeé andq € I' (see Appendix I). The PPC
and LAC are each divided into two components: a vector phase
field component, and a scalar magnitude field component

X mt(q) = Mt(Q) 'Qt(Q) (74)

zvpm; FiN)
" where Q,, and Q; are the basis vector phase fields for the
normal and tangential coordinates respectivélf, and M,
' ﬂ wl are the scalar magnitude fields for the normal and tangent
) AVV’L coordinates, respectively.
K .J\ e A. The PPC
o V To generatd},, the following SBVP is solved [Fig. 7(a)]
. B a5} -~ C V3Vin(q) =0 (75)
Tineleecl Timeteect subject to

Fig. 16. Obstacle present, PPC, LAC, clamping, nonlinear anisotropic _ _
damping controls used: (a) trajectory, (b) torque, and (c) force. Vin(q)lr =C, and Via(q)lrs =0 €' >0
VV1n (q)

4) Now, starting fromy. , traverse the field lines df, back- Qila) = IVVan (@)

ward toward the obstacle using the equation The magnitude field is generated by solving the SBVP

4= (72) V?Vn(q) = 0 (76)
5) The first point that the backward path touchedas the
desired pointy(¢, ).
Although it is not necessary for computing the BLAG, can Va2n(q)|rs, =1 and Vaz,(q)||rs =0
be fully computed by repeating the above procedure for a suffi-
ciently dense set of points (excluding t§eandq. points from

subject to

preyipus trials) th_at are used as starting points for (71). The re- M ) = a1(q, q) q € 084
maining part ofl" is taken ad’,. n\q,9) = a1(q, a)Van(q) q €068, q €Té,
V. THE STEERING CONTROL If the PPC is to clamp the robot i, as well, the following

] ) additional boundary condition is needed:
In the previous section the BPPC and BLAC are constructed

in the local coordinates of the obstacle. This is carried out under Vanlr, = —1 (77)

the assumption that a normal and tangential set of coordinates . _ . .
already exist. In this section a procedure is suggested for cdyfierel’; is the portion ofl” that corresponds tb,, andI” is

structing these coordinates in a manner that enables their dir€duipotential surface &%, insideOé chosen equal t6'/2.
utilization for motion steering in the natural coordinates of thg The LAC

robot. These coordinates, along with the BPPC and BLAC, aré

used for constructing smooth PPC and LAC components thafl he following steps are used to construct the LAC component
would gradually decelerate the robot, prevent collision, and dé&ig. 7(b)]:

flect motion towardy(¢, ) where it is subsequently steeredioy 1) Chooseq(¢, ) insidel’,, andq(&, ) insidel’,.

to q,. These components occupy a finite reg{@?) that sur- 2) Construct the following lines
roundsO. The suggested procedure constructs two scalar har- .
monic potential fields¥1., (q) andVi;(q)) one for each compo- pr =14 4(t) = =Qa(q), 0 <t < 7,q(0) = q(¢r)

nent of the steering control. The potential fields are constructed q(r) € I'6}
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control over the field. It is enough to specify (a south
pole) alone in the above generating BVP in order for a
north pole(p,) to automatically form in the resulting
field. Since the distance from a north pole to a south pole
is the same regardless of the direction from which mo-
tion proceeds, a steering control constructed in this way
will sweep the robot along the shortest path around the
obstacle td’,.

C. Orthogonality ofQ,, to Q;

Here a proof of the orthogonality of the PPC to the LAC is
supplied.

Proposition-5: The phase field that is constructed in V.A
(Qn(q)) is orthogonal to the one constructed in (8 (q))

X VVin(@)VVi(q) = 0. (81)

TN
. (N.M F{N

. Proof: Since both the BVP’s that generaltg,, and V¢
have unique solutions, the flow lines that are marked¥.,
! do not intersect each other. The same goes for the flow lines that
nn osr are marked by V3,. Consequently, the equipotential contours
nm\vﬂv A that are associated with any of the gradient-flow are parallel and
VVV . do not intersect. With this in mind, it is easy to see that proving
the parallelism of the gradient flow from one potential field to
the family of equipotential contours of the other is equivalent to
) ) . B ost . ) - C proving that the flow lines of the potential flows orthogonally
% ¢ N * * ° ¢ 0 " » intersect each other.
Time [sec] Tima fsec] _ o ) .
Let p,, be the flow line of Vi3, (Q,) which is defined in

Fig. 17. Same as Fig. 16 without nonlinear anisotropic damping control, ({)A. Note that by choice of boundary conditions, is also an

o

trajectory, (b) torque, and (c) force. equipotential line of3,. Let p. be another flow line o V1,
that starts froml" a small distance (¢ — 0) away fromp,
pn ={a:q(t) = —Qxr(q),0 <t < 7,q(0) = q(¢,), (Fig. 8). Letp. be an equipotential line dfy; that also starts
q(r) € I'6}. (78) frome. Sincepy is simultaneously an equipotential line 16f;
and a gradient flow line of4,, p, is parallel to bothy. and
3) Solve the following BVP pe . From the unigueness of the solutions of both BVP's, the ini-
2 tial position¢ defines one and only one gradient flow line of
V*Va(q) =0 (79) V1, and equipotential line o¥4,. Therefore,p. andp. must

be identical. By repeatedly applying this argument to consecu-

subject to . . . S~
tive gradient flow and equipotential lines &f,, andV/; respec-
Vir(a)l,, =0, and Vi(q)|,, =C C>0 tively, it can be shown that the gradient flow &f,, is identical
OVie(q)/dn =0 atl’,T, and T to the equipotential lines df;;. Since equipotential lines inter-
! " TV ’) ’ sect their gradient flow lines orthogonally,}4,, lines intersect
Qi(q) = m V'V, lines orthogonally; hence,
t _
4) Compute the magnitude field by solving the following VV1 ViV =0. (82)
BVP: Q. andQ; may be viewed as boundary-fitted, general, curvi-
2 _ linear coordinates that are used for synthesizing the control in-
ViVai(a) =0 (80) side the admissible region of state space (i.e., workspace). Other
subject to methods for building coordinate systems may be found in [77]
and [78].

Vai(q)=P1(a)lr, Vae(@)=PFa(a)lr, and Vai(q)lrs =0 _
D. Implementation
It is possible to obtain a closed form solution to the Laplace
Mi(q) = Vai(q). Equation for simple or even relatively involved cases [65]. How-
ever, one should take into consideration that the path-planning
Existence and uniqueness of the solution of the aboseage is an intermediate module in a robotics system. This stage
BVP were proven in [62]. It ought to be mentioned thatakes information from the sensors and the system operator (nu-
pr andp, are both specified to give the designer mormerical data about the target and obstacle), and feeds processed
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contours. It ought to be noted that all the inputs to (83) are spec-
ified in terms of the local coordinates of the obstacles. However,

the generated output (steering control) is produced in the natural
coordinates of the robot.

15
VI. NONLINEAR ANISOTROPICDAMPING OF MOTION

A position PPC acts to prevent motion beyond a specified
level of the NC flow contours that are made to coincide with
the contours of the obstacles. A need may arise (see Example-2)
where instead of strictly forcing motion away from certain sec-
tors in the workspace, it is only required that motion be dis-
couraged (damped) from proceeding along the directions (flow-

oS5}

End A lines) that lead to these regions (Fig. 9). In the following, a
0 : : : : : damping control that can achieve the above task is suggested.
o 05 1 15 2 25 3 .
x Proposition-6: A control of the form
T I wy(q,4) = —M(a)[d'Q(¢)]Q(a) (84)
\ can damp motion along the flow-lines &, whereQ(q) is the
osh basis vector phase field that define the directions along which
n ﬂ N Ay motion is impeded, and/(q) is a positive scalar field that con-
— ’\ [\ N A trols the degree of damping.
0 7 VT Proof: Letqg(q) be the component af that is in phase
! with Q(q)
2l - ” - B - ”o- - = - c > qQ (q) = th(q)' (85)
Time [sec] Time {sec] . . .
SinceQ(q) does not vary with time, we have
Fig. 18. Both damping and clamping controls removed, (a) trajectory, (b) . ¢
torque, and (c) force. qqQ (Q) =q Q((I)
and
information to the motion actuators. To suit the nature of such a B B
task, numerical methods have to be used for the solution. There do(a) = 4'Q(a). (86)

are different numerical techniques that can be used to so
PDE’s [66]—[68]. Itis important to choose a method that is co
patible with the type of information describing the workspace.

One technique for solving a given BVP is called the Boundary i'Q(q) = Q(q)f(q,q) + Q'(q)D™(q)u
Element Method (BEM). This technique approximates the so- . . : D1
lution to the field by discritizing dela) = fola, ) + Q' (@) (a)u 87)

Wﬁ“e system equation, as seen from @eoordinates, has the
orm

wherefo(q, ) = Q'(¢)f(q, q). Substitutingu, in the above
oG
Vi(r)= 271_]{ <8V( 9 ~G(r,q) —V(q) - M) dl’ equation

oV (x) ava?q) 9G(r,q) o dq(a) = fo(a, @) + Q' (@D~ (@) (—M(a)[d' Q(a)]Q()
dqi(v) Qﬁ]{ ( ) =1o(q, (:l) - (M(Q)Qt(Q)D_l(Q)Q(Q))('lQ(Q)~
Vi) ) aG(r,q)> r ©3) =fo(a, @) — x(a) - aq(a) (88)
dgi(x)  om wherex (q) = (M(q)Q'(q)D~*(q)Q(q)) is the damping co-

wherel is the closed surface surroundif¥g, r is a point inside efflment _Of the_ .SySte”_‘ _equat|0n alo_ng t@ﬂqw Imes._Slnce
D~1(q) is positive definite, and/ (q) is a positive function, the

0é, qisapointonl’, andG(r, q) is the fundamental solution of ticiont is al t five d
the Laplace BVP (Green's function) in the specified dimensmﬂampIng coefficient is always positive (i.e., negative damping)
nd motion is always impeded along the flow contourdof

A list of these functions can be found in [69]. Details on how t8"
apply this method can be found in [70] and [71]. This technig verywhere in the position space. It is easy to see that motion
has two properties that are instrumental to an efficient impl long a flow that is orthogonal 1 will not be affected by the
mentation. The first is its ability to reduce the dimensionalit amping control. =

and, in turn, the complexity of the problem by one. The second
has to do with generating the field from its value at the boundary.
This is of a considerable importance since most of the methoddHere, two examples are provided to demonstrate the capabil-
describing the workspace represent it by encoding its boundéigs of the proposed approach.

VIl. RESULTS
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Y r. where
/ \ | Start 2wm =b/m and w2 =k/m. (91)

For simplicity,m andk are assumed to be equal to one. For this
case( determines the nature of the responsd] ik ( < 1
the system is underdamped;(if= 1 the system is critically
damped; and if > 1 the system is overdamped.

The local component of the contr@l;) has the form

(X, X) = (X, X) + w3 (X, X) | .
= Mon(X, X)Qn(X) 4+ Min (X, X)Qn(X)

0 (92)
0.5
whereu,; constrains the system in the position space while
Y '|'1’ constrains the system in the velocity space. SiggéX) acts
/ ~ Start along one degree of freedom and is pointing in the positive di-
2r rection of X
Qn(X)=1.
Also
1 3 . .
Men(X,X) = a1 (X, X))V, (X) (93)
where
o V2V (X) =0
0.5
subject to
Fig. 19. (a) Robot trajectory, nonconvex obstacle, PPC, LAC, clamping, and _ _
damping controls present. (b) Removal of the damping control results in a shaky V”(O) =1 and V, (6x) =0 & >0
trajectory. )
Solving the above BVP, we have
-1
A. Example 1 Vo(X) = [5_ X+ 1] Xe0d) (94

This example demonstrates the use of the PPC to apply
constraints on the position and speed of a simple second orﬂfsro we have
system. The navigation control is required to drive a njass
along one degree of freedom th& {axis) from an initial point oy ﬁ - .

X(O) = 1 to a final pointX(oc) = 0 without crossing the (X, X) = [T k=10, (%5)
= 0 axis. The control is also required to prevent the speed
from exceeding or going below a certain specified value. [{1€ resulting control has the form

is well known that the dynamic equation for this system is a & 1
simple second order linear differential equation wpy, (X X) _ ( ) |X| [ <X + 1] X €10, 6,]
. zero elsewhere
m-X =u (89) (96)
The PPC anngY is required to prevent the speed from going
whereu is the applied force and is the acceleration. To drive belowv. (v, = —0.2); therefore, sinc&),(X) is pointing in

the state to its equilibrium positidiX’ = 0, X = 0), the control the positive direction ofX,
law in the unconstrained state spz(ug(X X)) is taken as a

simple PD controller QH(X) =1 97)
: : Also,
ug (X, X)=—-[b- X +k-X] >0, k>0 (90)
- _ M (X, X) = aa(X, X))V, (X)
Substitutingu = 4 + u;, the system equation becomes . 1. .
Vn(X): ?~(X—UC)+1 XE[UC—I—(%,UC]

. . 1 .
A 2w - X op, - X = —w az(X, X) = (2¢ - |vo| + |X]) 65 >0. (98)
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For the unconstrained second order system above, it canse¢tled short of reaching its target. Fig. 14 shows the response
shown that when an additional control is used to confine the gripper ta an
priori specified region around the obstacle that has a boundary
|X|<X(0)=1 forallt. (99) I’ (clamping control). The minimum distance betwd&hand
I is set tod; = 0.1. Such a control reduced the magnitude of
the oscillations and confined the motion to apriori known
region.
To further reduce the oscillations, a control field is placed be-
tweenl’ andI” to damp the motion along the normal flow lines
to the obstacle's surface (Fig. 15). This control component al-
up, (X, X) = lows for a steady path around the obstacle while enabling the
1 . . motion to slide unimpeded along the obstacle's surface. Such
(2¢ - |ve| + 1) - 5 (X —v)+1| X €lv.+6:,0v] anapproach does not slow down the system unlike the case in
v which path smoothness is achieved by increasing the damping
term of the PD controller. In addition to improving the quality of
the path, the damping control results in a well-behaved torque

In Fig. 10(a), the response in both time and phase-plane and force waveforms that have lower magnitudes and less en-

spectively, is plotted for; = 0 with { = 0.3. In Fig. 10(b), ergy than those in WhiCh damping is not pre/sgnt.

the response is shown when the speed alone is constrained nd Fig- 16, an LAC/'S added betweéTandF with astrength

to go belowv, = —0.2 at all times. Fig. 10(c) shows the re_that is set to zero dt’. The clamping control and the damping
sponse when both the position and speed are constrained (?T%}Fr.ol are present. The LA,‘C yanked the arm from th? local
to go belowX = 0 and X = —0.2. In Fig. 11(a), only the equilibrium zone and drove it arognd the opstaclg soﬂigas' '
position is constrained, the response is plotted for diffefgnt able to sweep '_t to .the target. In Fig. 17, anlsotroplc damping is
and the critically damped response of the free system 1) is removed resulting in a shaky path. Also, the quality of the con-

also plotted for comparison. Fig. 11(b) shows the correspondiHQI signal has deterlorated, with an increase in the peak mag-
forces. As can be seen, reducifigleads to an increase in thel ude of the control signal as well as the appearance of oscil-

magnitude of the decelerating force. By observing the time r!l_;“l_nons. This increases the s'tram on the robot's actuators. It also
sponse, it can be noticed that the improvement in performadegreaseS energy consumption.

(in terms of the settling time) is not commensurate with the in- In F'g',l& the clamping control is alsp removeq. As a re-
crease in the magnitude of the force sult, the field fromu, pushed the arm outside the region of effi-

cacy of the LAC, thereby, trapping the robot in a local minimum.
B. Example 2 Fig. 19(a) dgmon.s'Frates the decoupled nature .of the suggested
) o _ ) __control and its ability to handle nonconvex regions. The pres-
_S|mulat|on IS dpne for a polar manipulator W'th onl_y Snce of the small rectangular obstacle did not at all interfere with
gripper operating in the workspace. The dynamic equation ffe gperation of the steering control of the nonconvex obstacle.
such a system is This enables the designer to remove it or change its location
Mr2 0 i OMrif T without having to worry about .the effect that this might have
[ 0 M] [ ] |:_Mr6',2:| = [F] (102)  on the other steering controls in the workspace. In Fig. 19(b),
the anisotropic damping component of the control is removed,
whereM is the massN/ = 1 kg), r is the radial distancé,is yielding a shaky path.
the angle measured from thé-axis.u, is a PD controlle(T =
kp(6—0d)+kd-6, F =kp(r—rd)+kd-7). kp =5, kd = 3,
0(0) = 45°, 1(0) = /8, 0d = 0,rd = 2,0(0) = #(0) = 0,

Therefore,x, is taken as
az(X, X) = (2 - o]+ 1). (100)

The velocity control component has the form

Zero elsewhere
(101)

;

VIIl. CONCLUSION

u, = [T FJ'. In this paper a method is suggested for applying constraints
Fig. 12(a) shows the path of the robot's gripper in the fremn the state of a robot manipulator using the artificial vector
space(w; = 0). Fig. 12(b) and (c) show the correspondingotential approach. The path planning problem considered in

torque and force€X andF') respectively. In Fig. 13, arectangularthis work enables the robot to be driven along a well-behaved
obstacle occupying the regidf.6 < z < 6,0.8 < y < 1.2) and safe path to a desired destination. Such a task is performed
is placed in the path of the arm. To prevent collision, a PPCtisrough a special kind of control called the navigation control
placed around the obstacle in a surrounding rectangular reg{tNC). In effect, this control functions to provide the robot with
of minimum widthé = 0.1. The strength of the PPC is set toa goal-oriented awareness of its environment. The NC is de-
zero at the outer boundaty and is set to the maximum valuesigned so that the effort needed to adjust the control following
at the obstacle bounda(¥/). The PPC was constructed withouta change in the geometry of the environment be proportional
the 06, region. This is made possible by making sure that thie that change. This design enables the construction of a set
average strength of the PPCaI$ satisfies (31). of behavioral primitives that consists of ready-to-use global
In Fig. 13, the radial force field successfully prevented thigelds, each designed to perform anpriori specified task
gripper from colliding with the obstacle. However, the motiomvhere change in the environment can be, with reasonable
bounced back and forth on the obstacle's surface until it finakffort, accounted for.
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“3o0) [G= 0]

Fig. 20. Field lines near the exit point on the surface of the obst&ylend its image?.

The suggested new approach for NC synthesis is necessBHhnjs path is made to terminateq(f; ) € T=. The length of is
to avoid the difficulties encountered by the past approaches.téken ag¢|, and theArg(VVi;(q(é;))) is equal tod(§).

particular, the local decentralized strategy to navigation, the su-
perior steering capabilities of a VPF, the flexibility of a BVP
formulation, and the response conditioning of the anisotropic
damping control are keys to the success of the proposed NC agll
proach.
APPENDIX | [2]
Here, a procedure that uség (q) is suggested for mapping a
given¢ to the corresponding(¢), and vice versa. Sindé, is a
Harmonic (and in turn analytic) function, the mapping which is
defined by it is conformal (i.e., angle-preserving) except When[4
its derivative is zero (e.g., &(¢,) [72, p. 565])). This property
is used for specifying an angié) for the vectok. First, letl'.
be a tiny sphere ilf with q(¢,) as its center (Fig. 20)

(3]

(5]

Ie={q:lq—q(§e)]} ¢—0, qel. (103)

For a very smalt, the gradient flow lines o¥3, insidel's have

the same configuration as thosefom ¢ (assuming a differ-
entiablel’). This makes it possible to assign4ahe angle at

q € I's which is measured from an arbitrarily chosen reference
positionq(¢,) € I'. Given & (both magnitud¢|¢|) and angle
(8)), the corresponding(¢) can be computed by first choosing

aq(és) € T'e such that

(6]

(71
(8]

9]

[10]
Arg(VVii(a(és)) = 6(8) (104)
then using the differential equation (11
4= YVu(a) q(0) = q&) (105) 12
to traverse a patfp) onT that has alength equal {§|. Theend  [13]

point of p(q(€ 7)) is the point of interest that corresponds to the
givené. Vice versa, given g(¢; ), the corresponding can be
computed by traversing a pattusing the differential equation

[14]

[15]

q=-VVi(a) q(0)=q(&;) (106)
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