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Constrained Motion Control Using
Vector Potential Fields

Samer A. Masoud and Ahmad A. Masoud

Abstract—This paper discusses the generation of a control signal
that would instruct the actuators of a robotics manipulator to drive
motion along a safe and well-behaved path to a desired target. The
proposed concept of navigation control along with the tools neces-
sary for its construction achieve this goal. The most significant tool
is the artificial vector potential field which shows a better ability to
steer motion than does a scalar potential field. The synthesis proce-
dure emphasizes flexibility so that the effort needed to modify the
control is commensurate with the change in the geometry of the
workspace. Theoretical development along with simulation results
are provided.

Index Terms—Motion planning, nonlinear control, robotics ma-
nipulators, vector potential fields.

NOMENCLATURE

NC Navigation control.
PF Potential field.
VPF Vector potential field.
SPF Scalar potential field.
BVP Boundary value problem.
VBVP Vector boundary value problem.
SBVP Scalar boundary value problem.
BEM Boundary element method.
LAC Local alignment control.
PPC Penetration prevention control.
BLAC Boundary local alignment control.
BPPC Boundary penetration prevention control.
V Vector potential field.
V Scalar potential field.
A Vector potential field with a zero gauge(r�A � 0).
r( ) Gradient operator.
rX( ) Curl operator.
r � ( ) Divergence operator.
Oold Pre-existing set of obstacles.
O Newly introduced obstacles.
Onew Oold [ O.
O�d Region surroundingO.
O� Region surrounding bothO andO�d.
Ov Avoidance region in the velocity space.
� Empty set.
�d Minimum width of theO�d region.
� Boundary ofO (� = @O).
�� Boundary ofO� .
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��d Boundary ofO�d .
�v Boundary ofOv.
Q Image of�.
t Time.
q; _q; �q Position, velocity, and acceleration vectors in the

natural coordinates of the robot.
x; _x [qt _qt]t; [ _qt �qt]t respectively.
en(q) Unit basis vector orthogonal to�.
et(q) Unit basis vector tangent to�.
en( _q) Unit basis vector orthogonal to�v.
et( _q) Unit basis vector tangent to�v.
e� Radial unit vector inQ.
e� Unit vector inQ normal toe�.
qr Reference vector (point) in the position space.
qn; _qn Inner product ofq, and _q with en(q) respectively.
�; _� Position vector and its time derivative in the polar

coordinate system inQ which is embedded in�.
�r Reference point inQ.
Q(q) General phase vector field.
Qn(q) Phase field that is normal to�; ��d, and�� .
Qt(q) Phase field tangent to�; ��d, and�� and normal to

Qn.
M (q) Magnitude field that is modulating the strength of

Q(q).
Mn(q) Magnitude field modulating the strength ofQn(q).
Mt(q) Magnitude field modulating the strength ofQt(q).
G;� Liapunov functions.
_G; _� Their time derivatives.
D(q) Robot's inertia matrix.
C(q; _q) C(q; _q) Vector containing the coriolos and cen-

tripetal forces of the robot.
g(q) Gravity vector.
f (q; _q) An N-D vector function.
K;B Positive definite matrices.
� Damping coefficient.
u Input torque vector to the robot.
ud Damping component of the torque vector.
ug Global component of the torque that is responsible

for driving the robot to the target.
ul Local component of the torque which prevents the

robot from entering the newly introduced forbidden
regions without blocking its motion toward the
target (steering control).

uln Penetration prevention component oful.
ult Local alignment component oful.
u�l Value oful at�.
u�ln Value ofuln at�.
u�lt Value ofult at�.
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Fig. 1. (a) Classical HLC-LLC setting. (b) Navigation control.

�i( ) Scalar positive function that is modulating the
strength of the normal unit vectors (i = 1 when
used withen(q); i = 2 with en( _q)).

�i( ) Same as�i, but used with the tangent unit vectors.

I. INTRODUCTION

WHAT makes an agent (robot) useful is its ability to exhibit
a yielding purposive behavior. Yielding to the influence

of an external agent (usually a human operator) may be achieved
by equipping the robot with a certain class of intelligent motion
controllers that are called motion planners. The setting for con-
structing such controllers has remained reliant on a high level
controller (HLC) that utilizes classical or evolutionary AI tech-
niques to convert the goal of the robot, the constraints on its
behavior, and the information about its environment into a se-
quence of reference commands which are in turn fed to a clas-
sical low level controller (LLC) whose function is to generate a
control signal enabling the robot to follow the reference set by
the HLC [Fig. 1(a)].

One shortcoming of the aforementioned setting is the lack of
guarantees that the HLC generated reference can be converted
into a successful control action by the LLC. To get around this
difficulty, a new fundamentally different class of controllers is
needed to integrate the function of both the HLC and LLC in
one control module [Fig. 1(b)]. A controller that can achieve
such integration is called a navigation control (NC).

Classical controllers (LLC’s) are only concerned with refer-
ence following, a behavior that is local in nature, detached from
any context, and wholly dependent on the HLC for meaning and
success. The behavioral difference between the NC and a clas-
sical controller may be directly observed from the arguments of
their respective control functions. For a dynamical system of the
form

_x = f (x;u) (1)

a conventional controller has the form

u = h(x; r; f̂): (2)

On the other hand, a NC has the form

u = h(x; f̂;�; tk) (3)

wherex 2 RM is a point in the state space of the system (state
vector), _x is its time derivative,u 2 RN is the control input
vector of the system,h 2 RN is a vector function,f 2 RM

characterizes the dynamics of the system,f̂ is an estimate off ;
� is a description of the external environment of the robot,r

is the reference to be tracked by the classical controller andtk

describes the task which the NC is required to help the robot
achieve. In a classical controller,r is seen as a unit in a series
of local references which, if executed in the proper sequence,
realize the task. In the NC,r does not explicitly appear in the
argument of the control; rather, it implicitly generates thers (in
the proper sequence) from̂f ; �, andtk.

The tools for constructing a NC differ fundamentally from
those used by classical controllers. Classical controllers use
rigid, whole-domain control functions that are unequipped
to comply with the stringent behavioral constraints a robot
requires for successful purposive behavior. Instead, a NC gen-
erates the control action by operating on a potential field with
a vector partial differential operator that functions to induce a
dense set of infinitesimal actions (controls) that homogeneously
cover the agent's domain of viability (workspace). This results
in a freely-configurable vector being assigned to each point
belonging to the workspace (u(x)). A structure for the control
vector group has to be determined so that the resulting solution
trajectory conforms to thea priori specified differential and
state constraints (a valid group structure.) The proper structure
for the control field is what convert the infinitesimal controls
into one functional unit that instructs the robot on how to reach
the goal and satisfy behavioral constraints. Fig. 2(a) shows
a control group structure for the simple dynamical system
[dx=dt dy=dt]t = [ux uy]t developing into a valid structure.
The resulting structure is able to drive the state of the system to
the target set while avoiding undesired regions in state space.
Having the freedom to specify independently a control vector
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(a)

(b)

Fig. 2. (a) Evolution of a valid control group structure in a NC constructed using a hybrid, PDE-ODE, potential-based system. (b) Basic structure of a hybrid,
PDE-ODE, Potential-based planning method.

at each point in state space is important for constructing a NC.
It also has other advantages described in [1]–[6].

The potential field approach to motion planning is rich with
techniques that can embed an agent in the context of its envi-
ronment. For an extensive survey of potential-based planning
methods that covers up to 1994, see Masoud [6]. To the best of
these authors' knowledge, the potential approach was the first to
be used for generating a paradigm for motion guidance [7], [8].
The paradigm is based on the simple idea of an attractor field sit-
uated on the target and a repeller field fencing the obstacles. Sev-
eral decades later, the paradigm surfaced again through the little
known work of Loef and Soni which was carried out in the early
1970’s [9], [10]. Not until the mid-1980’s did this approach
achieve recognition in the path planning literature through the
works of Khatib [11], Krogh [12], [13], Takegaki and Arimoto
[14] in Japan, and Pavlov and Voronin [15] in the former Soviet
Union. Andrews and Hogan also worked on the idea in the con-
text of force control [16].

Khatib began by transforming the system equation of the ma-
nipulator

D(x)�x +C(x; _x) + g(X) = u (4)

into a decoupled system of unit masses usingu = D(x)F� +
C(x; _x) + g(x), wherex is an operational set of coordinates
[17], D(X) is a symmetric, positive definite inertia matrix,C
is a vector containing the coriolos and centripetal forces,g is the
gravity vector, andu is the externally applied generalized force.
The vectorF� is the sum of the following forces: a forceF� that
is the negative gradient flow of an attractive potential field which
surrounds a reference point, a repulsion forceFr generated by
a repulsive potential field that fences the obstacles, and a linear
damping forceFd.

Although the approach proved effective, it suffered from two
problems: 1) a cluttered environment causes local minima to
form which traps the manipulator before reaching its target, and
2) the potential used for the obstacles is an inverse quadratic
function that may result in a high force, which causes an un-
realizable control effort. Also, the interaction betweenFr and
F� may cause transients that are hard to control. Andrews and
Hogan adopted an impedance control approach to path planning
in which the environment is treated as an admittance and the ma-
nipulator as an impedance.

The approach closely resembles Khatib's method. As in
Khatib's approach, trap situations due to local equilibrium
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(a)

(b)

Fig. 3. (a) A general, curvilinear, boundary-fitted coordinate system from a vector potential realized by two gradient fields from scalar potentials. (b) Switching
field from a VPF augmenting a plan field from a SPF.

zones were also a problem. Newman and Hogan expressed the
potential approach using an energy interpretation that is similar
to the time optimal bang-bang control [18]. The approach was
later developed by Newmanet al. in [79]–[81]. Takegaki and
Arimoto started by deriving the system equation using the
Hamiltonian. A robust feedback stabilization input(u) to steer
an arbitrary point in the unconstrained configuration space to a
target point was constructed by modifying the potential energy
of the system using the feedback

u = �

�
@V o

@x

�t

+

�
@V

@x

�t

(5)

whereV o is a desirable potential function that is constructed in
accordance with the aim of the control, andV is the potential of
the system.

Krogh suggested making the strength of repulsion directly
proportional to the speed of approach and inversely propor-
tional to the minimum avoidance time [12]. He proposed that
the avoidance vector for an obstacle be the gradient of a posi-
tion and velocity-dependent potential field(V (x; _x)) which he
referred to as the generalized potential field (GPF) [12]. In a
subsequent work, Krogh approached the problem more gener-
ally: to transfer the state of a dynamical system from an initial
state to a final one, avoiding undesired regions along the way
[13].

Unfortunately, he did not supply a formal procedure for de-
riving the GPF. Also, his attempt to restrict the control fencing
the obstacles to the boundary of the forbidden regions raises se-
rious questions about the ability of a finite strength control to
prevent the state from entering those regions. Tilove compared
the classical potential field with the generalized potential using
different utilization strategies [19]. He found that the results ob-
tained using the generalized potential field yield a smoother tra-
jectory that better suits the dynamics of the robot. Another com-
parison and a critical, empirical study of potential field methods
may be found in [73] and [74] respectively.

A method for constructing a NC that bears great resemblance
to a potential field method is avoidance control. Avoidance con-
trol was suggested to keep the state of a dynamical system out-
side a specific region in state space [20]. A refinement of Avoid-
ance control, the optimal avoidance control (OAC), was also
suggested [21]. OAC functions to maximize the minimum dis-
tance from an avoidance region while transferring the dynam-
ical system from an initial state to a final one. More work on the
subject may be found in [22]–[25]. Unfortunately, the approach
faced two major stumbling blocks, halting further investigation.
The first problem was its inability to provide a formal procedure
for deriving the control; only guidelines were provided. Gener-
ating a form for the control was left to the subjectivity of the
designer. The second and more serious difficulty was the OAC's
failure to handle nonconvex regions. Even in [25], where con-
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Fig. 4. Hyper-cylinders representing the velocity and position avoidance
regions and their intersectionS.

ditions for navigation in the presence of nonconvex avoidance
regions were derived, the authors reported failure in every at-
tempt to use these conditions for constructing a control for the
nonconvex case.

In [26], Koditschek showed that it is impossible to construct
a potential function with a vector field that can guarantee global
convergence to a target point. However, “Almost Global” con-
vergence is possible. Procedures were suggested for building
navigation potential functions for a variety of workspaces
that are geometrically different but topologically equivalent
[27]–[30]. Koditscheket al.showed that the gradient of the
potential field, with the appropriate dissipative vector field(d)
is satisfactory for constructing the navigation control [31]–[33]

u = �rv(x) + d(x; _x): (6)

Unfortunately, the control scheme does not mention how to deal
with the gravity term. Therefore, these authors will assume that
they relied on the troublesome cancellation strategy. Also, they
imposed an initial speed limit on the robot which has to be pro-
vided as a function of the initial position. The violation of this
constraint could lead to the robot penetrating an avoidance re-
gion. No method for computing this limit was provided. Sundar
and Shiller combined the idea of acceleration lines with that of
potential fields to achieve a near time-optimal trajectory to the
target [34]. Their strategy is to augment the above technique
with an acceleration potential and a deceleration potential at the
terminal points of motion. This potential is designed so that it
does not introduce undesirable local equilibrium, and it fades
away with distance from the terminal points. The authors re-
ported that in most of their experiments the resulting time came
as close as 2% to the optimal one. However, there is no mention
of the effect of initial acceleration on the collision avoidance
ability of the method.

Of particular significance are potential field methods that
use the flow-lines of surfaces providing solutions to certain
boundary value problems. These methods can be expressed
in the hybrid partial differential equation-ordinary differential
equation (PDE-ODE) system format shown in Fig. 2(b). This
class of planners is well suited for integrating an agent in
the context of its environment, and, in turn, for constructing
a NC. For a detailed discussion of this class of planners see
[1]–[6]. To the best of this authors' knowledge the first such

Fig. 5. Possible combinations of PPC's in the positions and velocity spaces.

method was proposed by Satoh in the mid-1980’s [35]. By
requiring the potential field(V (x)) to be harmonic, thereby
satisfying the Laplace equation(r2V (x) = 0), it is possible to
generate a gradient field(�rV (x)) with flow-lines that mark
collision-free paths to the target set. Unfortunately, because
the work was published only in Japanese, it received minimal
exposure. For an English version of the work, see [36].

Other methods for utilizing harmonic potential fields in mo-
tion planning were later suggested in [37]–[51]. Biharmonic
potential field techniques (V (x) satisfiesr4V (x) = 0) were
found to favorably compare to their harmonic counterparts by
producing paths with lower curvature and potential fields that
can be reliably computed for workspaces with excessively com-
plex geometry [52]. Furthermore, techniques based on potential
fields that satisfy the diffusion equation [53] or the wave equa-
tion [54] were suggested for motion planning for nonstationary
targets. Unfortunately, the above techniques only mark a safe
path to a target set.

Additional conditioning is required to convert the guidance
signal that such potential fields provide into a control signal
that would instruct the robot to properly deploy its actuators of
motion, enabling the target to be safely reached. An interesting
approach for generating a NC signal from a guidance field signal
was suggested by Utkinet al. [55]–[59]. The approach utilizes
the sliding mode theory to force the state of the robot to track the
lines of the guidance field. The authors applied their approach
for the special case of a gradient guidance field. However, the
approach is so general that any type of guidance field could
be accommodated. Also, for the control effort to be finite, the
lines ofrV must have bounded curvature. Other procedures for
converting the guidance field from a harmonic potential to a NC
signal may be found in [60] and [61].
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Fig. 6. Computing an exit point on the surface of an obstacle.

In [75], a potential function is treated as a Liapunov function
and is used in real-time to derive a control signal for the con-
strained proximity maneuvering of a low-earth-orbit space plat-
form. The maneuver consists of driving the platform to a ren-
dezvous position while avoiding a convex obstruction region.
Potential fields were also used for designing impact controllers
to tackle the problem of real-time, collision-free motion of a
space vehicle through an environment, reduced velocity of ap-
proach of surfaces to be contacted or docked with, and force
control [76]. In [84] potential shaping and dissipation are em-
ployed to obtain full exponential stabilization to a desired tra-
jectory of a mechanical system.

Despite the variety of methods that were proposed for
building a NC, there is still a strong demand for constructing
NC’s that can satisfactorily control the quality of behavior and
provide strict guarantees that practical behavioral constraints
can be imposed and satisfied. Most importantly is a demand
to yield a flexible control signal so that the amount of change
to the constraints on behavior is commensurate with the effort
needed to adjust the NC. This paper presents an attempt to
attain such qualities in a NC. The suggested approach heavily
relies on Vector potential fields (VPF’s) for inducing the con-
trol action. VPF’s fundamentally differ in nature from scalar
potential fields (SPF’s) which, to the best of these authors'
knowledge, have previously been the only kind of potential
fields used for synthesizing NC’s.

In Section II, the need to use a VPF to generate a NC instead
of a SPF is discussed. A strategy for navigation is suggested
in Section III. Sections IV and V discuss NC generation. Sec-

tion VI introduces nonlinear, anisotropic motion damping. In
Section VII two examples are supplied to demonstrate the ca-
pabilities of the proposed method. Conclusions are presented in
Section VIII.

II. WHY A VECTORPOTENTIAL

Projecting an action that satisfies the goal and upholds the
constraints on behavior requires the generation of a sequence of
control signals(u1;u2; . . . ;ul) that yield a corresponding se-
quence of states(x1;x2; . . .xl) so that the final state(xl) is
the desired target state and all the transient states satisfy the
constraints on behavior. Such a sequence is called a plan. In
a potential field approach, such a plan is a member of a field
of plans (action field) that densely covers state space, so that
regardless of the starting point(x0), a plan always exists to
safely propel the robot to its destination. SPF methods, espe-
cially those that utilize the potential field in the context of a Hy-
brid PDE-ODE system, were proven to be efficient tools for gen-
erating the above capabilities. Fig. 3(a) shows the action field for
the simple drift-free system_x = u, generated by the method in
[52].

Such methods require a model of the environment that is
known a priori to be able to generate the NC. Unfortunately,
a realistic changing environment significantly shortens the life
of any a priori nown odel. This may render part or all of the
plans which the action field encodes to be invalid. What makes
the plans generated by a SPF particularly susceptible to changes
in the environment is the fact that each starting point in state
space defines one and only one plan to the target. If the plan
fails, the robot needs to recompute the whole action field taking
into account the new information about the workspace in order
to generate a new valid plan. This is a considerable burden, par-
ticularly when considering a multidimensional workspace.

Instead of recomputing the whole action field, it is more rea-
sonable for the robot to attempt to ameliorate utilization by
switching from the failed plan to a valid one which, when found,
can safely guide the robot to its target. Unfortunately, SPF tech-
niques are inherently incapable of functioning in such a manner.
SPF techniques generate the NC field from the gradient flow
(r( )) of a surface that is either the potential itself, or a scalar
function(S( )) of that potential

u = �r(S(V (x))) (7)

(e.g., the control may beu = �rV or, as in [52],
u = �r(r2V ).)

It is well known that the gradient flow of a surface degenerates
along the family of equipotential contours [tangent space of the
surface which is orthogonal to the gradient flow (normal space
of the surface)]. This may be deduced from the vector identity

rX (rS(V (x))) � 0 (8)

whererX is the curl operator which is used to detect the circu-
lating field along the tangent space.

A SPF control field is incapable of driving motion along a tra-
jectory orthogonal to the gradient flow lines. Therefore, a SPF
NC is incapable of switching between plans, confining the mo-
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(a)

(b)

Fig. 7. (a PPC component. (b) LAC component.

tion of the state to one and only one solution trajectory. A SPF
gradient field has no control over motion in the tangent space.
With the loss of controllability over the tangent space, known to
spanN � 1 degrees of freedom in anN -dimensional space, the
effectiveness of the gradient field (normal space control compo-
nent) in steering motion seriously deteriorates with an increase
in the space dimensionality. To remedy this shortcoming, vector
potential fields(V(x)) are suggested. VPF’s are able to syn-
thesize a complete set of basis vector fields that may be used to
construct a control that has better ability to steer a robot in its
workspace. To see the relevance to the plan switching problem
described above, Helmholtz's theorem is used to partition the
control action from a general vector potential field(V) into two
functionally distinct components ([62, vol. 1, p. 52]). The first
component is a conservative gradient field of a scalar potential
that functions as the action field of the robot. The second compo-
nent is generated from the curl of a constrained vector potential
to play the role of the tangential switching field circulating the
equipotential surfaces of the action field. Helmholtz's theorem
is stated below with minor changes to the notation.

Theorem: Any vector fieldu that is finite, uniform, vanishes
at infinity, and continuous may be expressed as the sum of a
gradient scalar field and the curl of zero-divergence vector field

u = �rS(V (x)) +rXA(x); r �A(x) � 0 (9)

whereV is the scalar potential ofu;A being its vector potential,
r � is the divergence operator

rXA(x) =

2
4

0 �@=@z @=@y
@=@z 0 �@=@x
�@=@y @=@x 0

3
5
2
4
Ax(x)
Ay(x)
Az(x)

3
5

has a purely circulating nature,A(x) = [Ax(x)Ay(x)Az(x)]t,
andx = [x y z]t. Since the control component is intended
for use as a local modifier of the preexisting, global control,
the restrictions for partitioningu are applicable. As illustrated,
the control field from a VPF does accommodate the action field
from a SPF. Moreover, it provides the robot with the option of
switching from one plan to another if needed [Fig. 3(b)].

The underlying potential field from which a modifying con-
trol action is generated may be derived by solving a properly
formulated boundary value problem (BVP.) Formulating a BVP
requires

a) a partial differential relation to govern the differential
properties of the field;

b) boundary conditions (in the sequel, boundary conditions
are called boundary control).

The governing partial differential relation should be selected to
guarantee the ability of the local control field to modify the pre-
existing, global control component. Synthesizing the conserva-
tive gradient term of (9), Action Field, can be carried out with
no difficulties in a multidimensional space. Unfortunately, this
is not so for the curl component of the control. While a defi-
nition of the curl operator exists in two-dimensional, three-di-
mensional, and four-dimensional spaces ([83], p. 135), the au-
thors were not able to find a general definition for this operator
in N -dimensional spaces. Since there is no proof that the oper-
ator cannot be defined for higher dimensional spaces, its exis-
tence is assumed along with the ability to synthesize a control
action fromA in N -dimensional spaces. Thus, the authors sug-
gest a general method for realizing a control component from
the vector potential while bypassing the need to have an ex-
plicit definition of the curl operator. The suggested procedure is
inspired by the Gram–Schmidt orthogonalization method [82].
This method is used to convert a set of vectors into an orthog-
onal one. Gram–Schmidt method begins by arbitrarily selecting
a member from the set that is to be orthogonalized as the first
vector in the orthogonal set. Therefore we will begin by se-
lecting the Action Field�S(V (x)) as the first component in the
orthogonal set of basis vector fields used to constructu. As will
be shown later, the conservative component(�rV; S(x) = x)
may be generated by solving the BVP

r � rV = r
2V � 0: (10)

Subject to the proper set of boundary conditions (BC). Although
A 2 RN , due to the auxiliary conditionr �A � 0, the inde-
pendent scalar quantities needed for completely specifyingA

drop fromN toN � 1. ThereforeN � 1 scalar potential fields
(Vi: i = 1; . . . ; N � 1) are needed to representA. V1 may be
generated by solving the BVP

r
2V1 � 0 (11)
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Fig. 8. Field lines near the boundary.

subject to the first set of boundary conditions (BC1). BC1 has
to be chosen so that

rV t
1
rV � 0

V2 is generated by solving the BVP

r2V2 � 0

subject to the second set of boundary conditions (BC2). BC2
has to be chosen so that

rV t
2
rV � 0; and rV t

2
rV1 � 0:

The above is continued till all theN � 1 scalar potentials are
computed. The control action fromA is constructed as

rXA(X) =
N�1X

i=1

�rVi(x) (12)

where it is required that

rS(V (x))trVi(x) � 0 i = 1; . . . ; N � 1

and

rVi(x)
trVj(x) � 0 i 6= j:

The above procedure is equivalent to the parameterization
of space using fitted, general curvilinear coordinate systems
[Fig. 3(a)]. It is shown in the sequel that only one out of the
N �1 scalar potential field components is needed to construct a
control action fromA (r�A = �rV 1) that can successfully
steer the state toward valid solution trajectories.

III. T HE PROPOSEDNAVIGATION STRATEGY

To achieve the flexibility that is desired in a NC, a decen-
tralized approach is used to accommodate the presence of new
obstacles in the navigation process. Here, the existing NC(ug)
is augmented with local, noninteracting control component(ul)
to steer the state away from old solution trajectories (trajectories
formed byug) that violate the newly introduced constraints to

Fig. 9. Motion damping along the lines ofQ.

old solution trajectories that are still valid. The new NC has the
form

u = ug(q) + ul(q;ug): (13)

ug functions as a NC for the pre-existing obstacles(Oold) such
that for

D(q)�q + c(q; _q) + g(q) = u (14)

limq(t)! qr t!1

and

q(t) \Oold = � for all t

whereq(t); _q(t); �q(t) all 2 RN are the position, velocity, and
acceleration vectors of the robot in its natural coordinates,� is
the empty set, andqr is the desired target point in the workspace.
Note thatOold may be the empty set�, andug may be as simple
as a Proportional-Derivative (PD) controller [63]

ug = K � (q � qr) +B � _q (15)

whereK andB areN � N positive definite matrices. On the
other hand,ul handles the newly introduced set of obstacles
O (� = @O). The new obstacles(Onew) are the union of the
setsOold andO

Onew = Oold [O: (16)

The local steering control(ul) is strictly localized to the vicinity
of O. It is designed so thatu is able to make the system in (14)
satisfy

limq(t)! qr t!1

and

q(t) \Onew = � for all t: (17)
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(a)

(b)

(c)

Fig. 10 (a) Unconstrained system,� . (b) Velocity constrained not to go below
�0.2. (c) Velocity constrained not to go below�0.2, and position constrained
not to be go below 0.0.

The local component(ul) is designed in the local coordinates of
the obstacles, then transformed to the natural coordinates of the
robot. It is divided into the two functionally distinct components
uln andult

ul = uln + ult: (18)

The first (uln) is called the penetration prevention control
(PPC.) It acts normally to the surface of O to prevent the robot
from penetrating that region. The other component(ult) is
called the local alignment control (LAC). This component acts
tangentially to the surface ofO in order to drive the robot to
a proper position on� whereug can assume command of the
navigation process and sweep the robot toqr.

The steering control(ul) is made to occupy a small neigh-
borhood(O�d) aroundO that has a minimum width of�d and
a boundary��d(��d = @O�d). The added region is needed
to guarantee thatul is bounded. As will be shown in the se-
quel, �d is inversely proportional to the magnitude oful (see
Example 1). For a smooth diversion of motion away from the
obstacles,ul is made to gradually decay to zero in a finite re-
gion O� surroundingO�d. The control on the inner boundary

of O� (��d = @O�) is derived in the following sections, while
the control on and outside the outer boundary(��) is set to zero.
The steering control insideO� is generated by solving a vector
boundary value problem (VBVP) which, for convenience, is re-
placed by the solution of, at the most, four scalar boundary value
problems (at the most two for each component oful one to con-
struct the phase control field and the other to construct the mag-
nitude field). The rest of this paper discusses the construction of
ul.

IV. THE BOUNDARY STEERING CONTROL

In this section the steering control at the boundary ofO (u�l)
is derived for later use in generatingul. The boundary con-
trol is derived in terms of the obstacle's normal and tangent
basis vectorsen(q) and et(q) respectively. In the next sec-
tion, the generation of these vectors along with the steering con-
trol are discussed. Similar toul; u�l has two components: the
Boundary Penetration Prevention Control (BPPC,u�ln), and
the Boundary Local Alignment Control (BLAC,u�lt).

A. The BPPC in the Position Space

Proposition-1: For a control law of the form

u�ln (q; _q) = �1(q; _q)en(q) q 2 O�d

where

�1(q; _q) = �11(q; _q) + k � j _qnj (19)

�11 is a scalar function,k is a constant, and_qn = _qten(q),
there exist an�11 > 0, and ak > 0 such that the above control
preventsq in (14) from enteringO

q \O = � for all t: (20)

Proof: Let qn be the normal distance from� to the present
location of the robot:

qn = q
t
en(q): (21)

Let G be the distance measure

G = 1=2q2n: (22)

In the following, it is shown that there is a choice fork and�11
that makes the time derivative ofG greater than or equal to zero

_G = qn _qn = qn[e
t(q) _q] � 0:

This is sufficient to prove that the robot will never touch�.
Since, initially,q 62 0 (i.e. qn > 0), the condition for guar-
anteeing that_G � 0 is reduced to guaranteeing that

e
t
n(q) _q � 0: (23)

The speed at timet may be represented as

_q(t) =

Z t

t0

�q(t) dt: (24)
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Fig. 11. (a) Response to different values of�x , (b). corresponding forces.

Assuming that motion starts outside�, and at the present time
is inside��d, the above integral can be divided into two parts:

_q(t) =

Z t�

t0

�q(t) dt+

Z t

t�
�q(t) dt

= _q� +

Z t

t�
[f (q; _q) +D�1(q)u] dt (25)

wheref (q; _q) = �D�1(q)[C(q; _q) + g(q) � ug ]; t0 is the
time at which motion starts,t is the present time,t� is the time
at which the robot entersO�d , and _q� is the corresponding en-
trance speed (_q at��d). Substituting the speed in (23) we have

�
etn(q)

�
_q� +

Z t

t�
[f (q; _q) +D�1(q)u] dt

��
: (26)

For the above to be greater than or equal to zero, one must have

Z t

t�
etn(q)[f (q; _q) +D�1(q)u] dt � j _q�n j (27)

where _q�n = etn _q
� (note thaten is constant with respect to

time). Substitutingu�ln in (27), we have

Z t

t�
etn(q)[f (q; _q) + (�11(q; _q)

+ k � j _qnj)D
�1(q)en(q)] dt � j _q�n j: (28)

One way to guarantee that the above inequality holds is to re-
quire that

Z t

t�

�
etn(q)f (q; _q) + �11(q; _q)e

t
n(q)D

�1(q)en(q)
�
dt � 0

(29)
and

Z t

t�
k � j _qnje

t
n(q)D

�1(q)en(q) dt � j _q�n j: (30)

The first term guarantees that the robot will not be accelerated
insideO�d, while the second term guarantees that the kinetic
energy acquired prior to the robot enteringO�d is dissipated.
The independent nature of the two terms is a good indicator
that such a division does not lead to a conservative control law.
Since an integral with a positive argument is positive, the first
condition can be enforced by choosing

Inf
q; _q

�11(q; _q) �
Supq; _q je

t
n(q)f (q; _q)j

Infq (etn(q)D
�1(q)en(q))

: (31)

Notice that sinceD�1(q) is positive definite anden(q) is a
basis vector (i.e., it cannot be zero), the denominator is always
greater than zero. As for the second term,k is computed by first
constructing the following lower bound on the integral in (30)

Z t

t�

�
k � j _qnje

t
n(q)D

�1(q)en(q)
�
dt

� min
q

�
etn(q)D(q)en(q)

� Z t

t�
k � j _qnj dt

= k �min
q

�
etn(q)D

�1(q)en(q)
�
jqn(tf ) � qn(t

�)j:

Using the inequalityjqn(tf ) � qn(t�)j � �d to further bound
the above, we have the integral bounded by

� k � �d

�
min
q

�
etn(q)D

�1(q)en(q)
��

(32)

wheretf is the time the force field stops the robot short of hitting
the obstacle. Therefore, the second condition can be guaranteed
if

k � �d

�
min
q

�
etn(q)D

�1(q)en(q)
��

� j _q�n j (33)

or, equivalently

k �
j _qnj

�d
�

1

minq (etn(q)D
�1(q)en(q))

: (34)
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Fig. 12. (a) Robot trajectory in free space, (b) corresponding torque, and (c)
corresponding force.

B. The BPPC in the Velocity Space

Proposition-2: For a control law of the form

u�ln(q; _q) = �2(q; _q)en( _q) q 2 �v (35)

where�2 is a scalar function,�v is the boundary of an avoidance
region in the velocity space(Ov), anden( _q) is a normal basis
vector exactly placed on�v, there exist an�2 > 0 so that the
above control prevents_q of the system in (14) from enteringOv

_q \Ov = � for all t: (36)

Note that unlike the BPPC in the position space which requires
a finite region of minimum width�d aroundO in order to be
realizable, a bounded BPPC in the velocity space placed exactly
on�v can stop_q from enteringOv.

Proof: Let _qn be the normal distance between_q and�v in
the velocity space

_qn = etn( _qn) _q (37)

andG be the distance measure

G = 1=2 � _q2n: (38)

To guarantee that_q will not enterOv, it must be shown that for
the BPPC in (35) the time derivative ofG is always nonnegative

_G( _qn) = _qn�qn = _qn
�
etn( _q) � �q

�
� 0: (39)

With the assumption that the initial velocity of the manipulator
is outsideOv (i.e., _qn > 0), the condition for making_G non-
negative reduces to

etn( _q) � �q � 0: (40)

Substituting for�q we have

etn( _q)
�
f (q; _q) +D�1(q)u�ln

�

=
�
en( _q)

t �f (q; _q)+�2(q; _q)�e
t
n( _q)D

�1(q)en( _q)
�
�0:

(41)

SinceD�1(q) is positive definite anden( _q) is a basis vector
(i.e., it cannot be zero), the following choice of�2 guarantees
that _q \ Ov = � for all t

�2(q; _q) �
Sup _q;q je

t
n( _q)f (q; _q)j

Inf _q;q (etn( _q)D
�1(q)etn( _q))

: (42)

C. The Combined Position-Velocity Space

A situation may be contemplated where, in addition to
avoiding the obstacles, the speed of the robot is required not to
exceed a certain value. This requires the BPPC to act in both
the position and velocity spaces

u�ln(q; _q) = �1(q; _q) � en(q) + �2(q; _q) � en( _q): (43)

1) Joint Constraints:Since in the state space representation
a surface specified in the position space is orthogonal to that
specified in the velocity space, we have

�1(q; _q) � �2(q; _q) = 0 (44)

when

q 62 O�d and _q 62 �v

q 2 O�d and _q 62 �v

q 62 O�d and _q 2 �v:

However, when

q 62 O�d and _q 2 �v

the above product is not zero. Such a condition occurs at the
intersection of the two hypercylinders which are the extension
of bothO�d and�v along _q andq respectively (Fig. 4). As a
result ofq and _q being related by

_q =
dq(t)

dt
=
q(t) � q(t � dt)

dt
(45)

andu�ln simultaneously actuating motion in both the velocity
and position spaces, a conflict may arise between the avoidance
specifications in both the velocity and position spaces. In the
following, the relation between the avoidance forces from both
spaces is studied for the one-dimensional case at the intersection
of the two surfaces. Based on this analysis, restrictions on the
N -dimensional case are deduced.

Let� be a contour point on theq axis,en(q+) anden(q�) are
pointing in the positive and negative directions ofq respectively.
Also, let �v+, and�v� be point contours on the positive and
negative parts of the_q axis, respectively. Leten + ( _q+) be a
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Fig. 13. Obstacle present, only PPC is used, (a) trajectory, (b) torque, (c) force.

PPC unit vector on�v+ and pointing in the positive direction of
_q; en+( _q�); en�( _q+), anden�( _q�) are defined in a similar
manner. In the following all possible combinations of the PPC's
in q and _q are examined to determine the situations of conflict:

1) en(q+) anden + ( _q+) (Fig. 5.1)
This situation cannot occur since motion toward� implies
thatq(t) < q(t�dt). This forces_q to be negative. In other
words, the PPC's in_q andq can never be simultaneously
active(�1 � �2 = 0). Such a situation is disregarded as a
do not care situation.

2) en(q+) anden+( _q�) (Fig. 5.2)
This situation is similar to the one above (a do not care
situation).

3) en(q+) anden�( _q+) (Fig. 5.3)
For this case, it is possible forq to be at� and _q to be at
�v� at the same time. Here,en(q+) attempts to driveq in
the positive direction makingq(t) > q(t � dt). In other
words,en(q+) acts to drive _q in the positive direction,
which is in accord with whaten�( _q+) tries to do. There-
fore, no conflict can happen, an admissible situation.

4) en(q+) anden�( _q�) (Fig. 5.4)
In this case, whileen(q+) attempts to drive_q in the posi-
tive direction,en�( _q�) acts to drive_q in the negative di-
rection. This is a conflict situation that cannot be simulta-
neously enforced byen�(q+) anden�( _q�). Using sim-
ilar arguments, it can be shown that:

5) en(q�) anden+( _q+) is a conflict situation;
6) en(q�) anden+( _q�) is an admissible situation;

7) en(q�) anden�( _q+) is a do not care situation; and
8) en(q�) anden�( _q�) is, also, a do not care situation.

For convenience, let us separately list the admissible situations

a.en(q+) and en�( _q+) b.en(q�) and en+( _q�):
(46)

As can be seen, regardless of the direction ofen(q), no con-
flict can arise as long asen( _q) is pointing in a direction that at-
tempts to reduce speed (i.e.,en( _q) pointing toward the origin of
_q). Such a condition can be separately applied to the individual
components of theN -dimensionalen( _q).

Therefore, to guarantee that no conflict will arise, the fol-
lowing conditions have to be enforced for allq 2 �v

_qieni( _q) � 0 i = 1; . . . ; N (47)

where _qi andeni are thei'th component of_q anden( _q), respec-
tively.

Proof of Avoidance:
Proposition-3: For the control law

u�ln = �1(q; _q)en(q) + �2(q; _q)en( _q) (48)

there exist an�1 and an�2 such that for the system in (14)

q 62 O and _q 62 Ov for all t

provided that the conditions in (46) are satisfied.
Proof: Let d be a distance that is defied as

d = 1=2(xten(x))
2

= 1=2x2n (49)

wherext = [qt _qt], andet
n
(x) = [et

n
(q) et

n
( _q)]. The time

derivative ofd is

_d = xn � _xn = (xten(x))( _x
ten(x)): (50)

For avoidance to be successful,_d must be

_d � 0:

Since the state is assumed to be initially outside the avoidance
regions (i.e.,xn(0) > 0), the conditions for successful avoid-
ance reduces to

_xten(x) � 0: (51)

The above expression is equivalent to

_qten(q) + �qen( _q) = en(q)
t

Z t

t0

[f (q; _q) +D�1(q)ul] dt

+ en( _q)
t[f (q; _q) +D�1(q)ul] � 0:

(52)

Substitutingu�ln in (52), we have

et
n
(q)

Z t

t0

[f (q; _q) + �1(q; _q)D
�1(q)en(q)] dt

+ etn( _q)[f (q; _q) + �2(q; _q)D
�1(q)en( _q)]
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Fig. 14. Obstacle present, PPC, and clamping control used: (a) trajectory, (b)
torque, and (c) force.

+

Z t

t0

[�1(q; _q)e
t
n( _q)D

�1(q)en(q)] dt

+
�
�2(q; _q)e

t
n(q)D

�1(q)en( _q)
�
: (53)

The first two terms of the above expression are guaranteed to be
greater than or equal to zero by enforcing conditions (31), (34),
and (42). This reduces the avoidance conditions in the jointq� _q
space to guaranteeing that

Z t

t0

�
�1(q; _q)e

t
n( _q)D

�1(q)en(q)
�
dt

+
�
�2(q; _q)e

t
n(q)D

�1(q)en( _q)
�
� 0: (54)

Before tackling the above expression, the relation between a
unit vector in the position space and the corresponding one in
the velocity space needs to be examined. Assume that the robot
is moving along a trajectory(qn) that corresponds to the unit
vectoren(q) in the position space. The corresponding speed can
be calculated as

_qn =
qn(t)� qn(t� dt)

dt
en(q)

=
q(t)ten(q) � q(t � dt)ten(q)

dt
en(q): (55)

The velocity unit vectoren( _q) is computed as

en( _q) =
_qn
j _qnj

=
(q(t)ten(q))en(q) � (q(t � dt)ten(q))en(q)

jq(t)ten(q) � q(t � dt)ten(q)j

=
q(t)ten(q) � q(t � dt)ten(q)

jq(t)ten(q) � q(t � dt)ten(q)j
� en(q): (56)

In other words,en( _q) = �en(q).
From (46) it can be seen that for the constraints on the avoid-

ance regions to be admissible, bothen(q) anden( _q) must have
the same sign (i.e., at the intersection ofO andOv en(q) =
en( _q)). Therefore, (54) reduces to

Z t

t0

�
�1(q; _q)e

t
n(q)D

�1(q)en(q)
�
dt

+
�
�2(q; _q)e

t
n( _q)D

�1(q)en( _q)
�
: (57)

Since�1 and�2 are restricted to be positive, andD�1 is a posi-
tive definite matrix, the above expression is always greater than
or equal to zero. Therefore,_d is always greater than or equal to
zero and avoidance in the joint position-velocity space is guar-
anteed by simply guaranteeing avoidance in the separate spaces
along with the consistency of the avoidance constraints.�

D. The BLAC in Position Space

The BLAC begins to function once the state is about to touch
� (The PPC will prevent the state from actually touching�.)
The motion of the robot is then restricted to the surface of the
obstacle(�) and driven to a location on� whereug regains the
ability to steer motion to the target along an obstacle-free path.
Finally, command of the robot is transferred toug once that
location is reached. The first step in implementing the above
behavior is to partition� into two parts,�r and�o (PPC is
assumed to be present), so that att = t1

if q(t1) 2 �r then lim
t!1

q(t) ! qr

and if q(t1) 2 �o then lim
t!1

q(t) 2 �o
: (58)

The second step is to clampq to the�o part of�. The final
step is to construct a control field that is tangent to� and has
the ability to drive motion toward�r(u�lt

). To construct such a
field, a polar coordinate system is embedded in�. This system
spans only one degree of freedom of the(N � 1) degrees of
freedom that are available to the unit vector fieldet(q) which is
tangent to�. In this coordinate system a point on� is described
by the vector�

� = [�1 . . . �N�1]
t; � 2 Q (59)

whereQ is the domain on which� is defined (Q 2 RN�1; Q is
an obstacle-free space). The polar coordinates inQ are simple
star-shaped lines that sink in the focal point�r . Any point inQ
(and in turn on�) can be uniquely determined by specifying its
distance from�r (j�j) and a set of angles(�(�)) that are mea-
sured from a reference line inQ. Hereq is a mapping between
Q and� (q: Q! �). This mapping (see Appendix I) is one-to-
one and onto. The focal point of the coordinate system(�r) is
chosen such thatq(�r) 2 �r . Ensuring global convergence of�
to �r (i.e.,q(�) ! q(�r)), ensures that the robot will enter�r,
after whichug drives it toqr .
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Fig. 15. Obstacle present, PPC, clamping, and nonlinear anisotropic damping
controls used: (a) trajectory, (b) torque, and (c) force.

Proposition-4: For a control of the form

u�lt
(�) = ��1(q(�)) �

� � �r

k� � �rk
q(�) 2 � (60)

where�1 is a scalar function, there exists a�1 > 0 such that

Lim
t!1

� ! �r :

Proof: To prove global asymptotic convergence of� to �r ,
it is shown that the time derivative of the following Liapunov
function

�(�) =
1

2
(� � �r)

t(� � �r) (61)

is always negative definite

_�(�) < 0: (62)

To begin proving the above, it must first be noticed that as a
consequence of the passivity property of robotics manipulators
[64], the system forces that determine convergence to a point in
the position space of the manipulator's state space have the form
[63]

fq(q) = lim
_q!0

f (q; _q): (63)

Consequently, the system equation that governs the motion of�

is

_� = fqt(q(�)) +D�1(q(�))u�lt
(�) (64)

wherefqt(q(�); _q) = ett(q(�))fq(q(�)). The time derivative of
the above Liapunov function is

_� = (� � �r)
t _�

= (� � �r)
t(fqt(q(�)) +D�1(q(�))u�lt(�))

= ��1(q(�))
(� � �r)tD�1(q(�))(� � �r)

k� � �rk

+ (� � �r)
tfqt(q(�)): (65)

Let e�(�) be the radial basis vector inQ

e�(�) =
� � �r

k� � �rk
(66)

ande� (�) be the basis vector inQ that is normal toe�. Let fqt
be represented in terms of these two basis vectors

fqt = �1(q(�))e�(�) + �2(q(�))e� (�) (67)

where�1 = fqtte�(�), and�2 = fqtte� (�). Substituting the
above term in_� we get

_� = ��1(q(�))
(� � �r)

tD�1(q(�))(� � �r)

k� � �rk

+ k� � �rke
t
�(�)(�1(q(�))e�(�)

+ �2(q(�))e� (�))

= ��1(q(�))
(� � �r)tD�1(q(�))(� � �r)

k� � �rk

+ �1(q(�)) � k� � �rk: (68)

To guarantee that the above is negative definite, the following
inequality must hold

�1(q(�))
(� � �r)

tD�1(q(�))(� � �r)

k� � �rk

> �1(q(�)) � k� � �rk: (69)

A choice for�1 which guarantees that the above inequality hold
is

�1(q(�)) >
�1(q(�)) � k� � �rk

2

(� � �r)tD�1(q(�))(� � �r)
: (70)

�

E. Computing the Exit Point(q(�r ))

While it may be desirable to partition� into �o [ �r , it is
nevertheless sufficient to compute only one pointq(�r) on �r

in order to construct the BLAC. The following steps are rec-
ommended for computingq(�r) for a general nonconvex region
and a globally, asymptotically-convergent global nonlinear con-
trol field ug (Fig. 6)

1) Choose a pointqs on�.
2) Construct the following differential equation

_q = fq(q): (71)

3) With the boundary steering control disabled(u�l
= 0),

forward traverse the flow lines offq toward the target
using (71). Motion should start fromqs(q(0) = qs) and
end atq", wherejqr � q"j = ", and" ! 0.
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Fig. 16. Obstacle present, PPC, LAC, clamping, nonlinear anisotropic
damping controls used: (a) trajectory, (b) torque, and (c) force.

4) Now, starting fromq", traverse the field lines offq back-
ward toward the obstacle using the equation

_q = �fq(q): (72)

5) The first point that the backward path touches on� is the
desired pointq(�r).

Although it is not necessary for computing the BLAC,�r can
be fully computed by repeating the above procedure for a suffi-
ciently dense set of points (excluding theqs andq" points from
previous trials) that are used as starting points for (71). The re-
maining part of� is taken as�o.

V. THE STEERING CONTROL

In the previous section the BPPC and BLAC are constructed
in the local coordinates of the obstacle. This is carried out under
the assumption that a normal and tangential set of coordinates
already exist. In this section a procedure is suggested for con-
structing these coordinates in a manner that enables their direct
utilization for motion steering in the natural coordinates of the
robot. These coordinates, along with the BPPC and BLAC, are
used for constructing smooth PPC and LAC components that
would gradually decelerate the robot, prevent collision, and de-
flect motion towardq(�r) where it is subsequently steered byug

to qr . These components occupy a finite region(O�) that sur-
roundsO. The suggested procedure constructs two scalar har-
monic potential fields (V1n(q) andV1t(q)) one for each compo-
nent of the steering control. The potential fields are constructed

so that the resulting configuration of the gradient flow-lines on
� matches that of the obstacle's local coordinates (i.e.,

rV1n(q)

jrV1n(q)j
= en(q) q 2 �

and

rV1t(q)

jrV1t(q)j
= et(q)). (73)

It ought to be noticed thatV1t can be used to construct an invert-
ible mapping between� andq 2 � (see Appendix I). The PPC
and LAC are each divided into two components: a vector phase
field component, and a scalar magnitude field component

uln(q; _q) = Mn(q; _q) �Qn(q)

ult(q) = Mt(q) �Qt(q) (74)

whereQn andQt are the basis vector phase fields for the
normal and tangential coordinates respectively,Mn andMt

are the scalar magnitude fields for the normal and tangent
coordinates, respectively.

A. The PPC

To generateQn, the following SBVP is solved [Fig. 7(a)]

r2V1n(q) = 0 (75)

subject to

V1n(q)j� =C; and V1n(q)j�� = 0 C > 0

Qn(q) =
rV1n(q)

krV1n(q)k
:

The magnitude field is generated by solving the SBVP

r2V2n(q) = 0 (76)

subject to

V2n(q)j��d = 1 and V2n(q)k�� = 0

Mn(q; _q) =

�
�1(q; _q) q 2 O�d
�1(q0; _q)V2n(q) q 2 O�; q0 2 ��d

If the PPC is to clamp the robot to�o as well, the following
additional boundary condition is needed:

V2nj�0

o
= �1 (77)

where�0

o is the portion of�0 that corresponds to�o, and�0 is
an equipotential surface ofV1n insideO� chosen equal toC=2.

B. The LAC

The following steps are used to construct the LAC component
[Fig. 7(b)]:

1) Chooseq(�r) inside�r , andq(�n) inside�o.
2) Construct the following lines

�r = fq: _q(t) = �Qn(q); 0 � t � �;q(0) = q(�r)

q(� ) 2 ��g
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Fig. 17. Same as Fig. 16 without nonlinear anisotropic damping control, (a)
trajectory, (b) torque, and (c) force.

�n = fq: _q(t) = �Qn(q);0 � t � �;q(0) = q(�n);

q(� ) 2 ��g: (78)

3) Solve the following BVP

r2V1t(q) = 0 (79)

subject to

V1t(q)j�r = 0; and V1t(q)j�n = C C > 0

@V1t(q)=@n = 0 at �0;�; and ��

Qt(q) =
rV1t(q)

krV1t(q)k
:

4) Compute the magnitude field by solving the following
BVP:

r2V2t(q) = 0 (80)

subject to

V2t(q)=�1(q)j�0 ; V2t(q)=�1(q)j�; and V2t(q)j�� = 0

Mt(q) = V2t(q):

Existence and uniqueness of the solution of the above
BVP were proven in [62]. It ought to be mentioned that
�r and�n are both specified to give the designer more

control over the field. It is enough to specify�r (a south
pole) alone in the above generating BVP in order for a
north pole(�n) to automatically form in the resulting
field. Since the distance from a north pole to a south pole
is the same regardless of the direction from which mo-
tion proceeds, a steering control constructed in this way
will sweep the robot along the shortest path around the
obstacle to�r.

C. Orthogonality ofQn toQt

Here a proof of the orthogonality of the PPC to the LAC is
supplied.

Proposition-5: The phase field that is constructed in V.A
(Qn(q)) is orthogonal to the one constructed in V.B(Qt(q))

rV t
1n(q)rV1t(q) � 0: (81)

Proof: Since both the BVP’s that generateV1n andV1t
have unique solutions, the flow lines that are marked byrV1n
do not intersect each other. The same goes for the flow lines that
are marked byrV1t. Consequently, the equipotential contours
that are associated with any of the gradient-flow are parallel and
do not intersect. With this in mind, it is easy to see that proving
the parallelism of the gradient flow from one potential field to
the family of equipotential contours of the other is equivalent to
proving that the flow lines of the potential flows orthogonally
intersect each other.

Let �n be the flow line ofrV1n (Qn) which is defined in
V.A. Note that by choice of boundary conditions,�n is also an
equipotential line ofV1t. Let �0

" be another flow line ofrV1n
that starts from� a small distance" (" ! 0) away from�n
(Fig. 8). Let�" be an equipotential line ofV1t that also starts
from ". Since�n is simultaneously an equipotential line ofV1t
and a gradient flow line ofV1n; �n is parallel to both�0

" and
�". From the uniqueness of the solutions of both BVP’s, the ini-
tial position " defines one and only one gradient flow line of
V1n and equipotential line ofV1t. Therefore,�0

" and�" must
be identical. By repeatedly applying this argument to consecu-
tive gradient flow and equipotential lines ofV1n andV1t respec-
tively, it can be shown that the gradient flow ofV1n is identical
to the equipotential lines ofV1t. Since equipotential lines inter-
sect their gradient flow lines orthogonally,rV1n lines intersect
rV1t lines orthogonally; hence,

rV t
1nrV1t = 0: (82)

Qn andQt may be viewed as boundary-fitted, general, curvi-
linear coordinates that are used for synthesizing the control in-
side the admissible region of state space (i.e., workspace). Other
methods for building coordinate systems may be found in [77]
and [78].

D. Implementation

It is possible to obtain a closed form solution to the Laplace
Equation for simple or even relatively involved cases [65]. How-
ever, one should take into consideration that the path-planning
stage is an intermediate module in a robotics system. This stage
takes information from the sensors and the system operator (nu-
merical data about the target and obstacle), and feeds processed
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Fig. 18. Both damping and clamping controls removed, (a) trajectory, (b)
torque, and (c) force.

information to the motion actuators. To suit the nature of such a
task, numerical methods have to be used for the solution. There
are different numerical techniques that can be used to solve
PDE’s [66]–[68]. It is important to choose a method that is com-
patible with the type of information describing the workspace.

One technique for solving a given BVP is called the Boundary
Element Method (BEM). This technique approximates the so-
lution to the field by discritizing

V (r) =
1

2�

I
�

�
@V (q)

@n
�G(r;q)� V (q) �

@G(r;q)

@n

�
d�

@V (r)

@qi(r)
=

1

2�

I
�

�
@V (q)

@n
�

@G(r;q)

@qi(r)

� V (q) �
@

@qi(r)

@G(r;q)

@n

�
d� (83)

where� is the closed surface surroundingO�; r is a point inside
O�; q is a point on�, andG(r;q) is the fundamental solution of
the Laplace BVP (Green's function) in the specified dimension.
A list of these functions can be found in [69]. Details on how to
apply this method can be found in [70] and [71]. This technique
has two properties that are instrumental to an efficient imple-
mentation. The first is its ability to reduce the dimensionality
and, in turn, the complexity of the problem by one. The second
has to do with generating the field from its value at the boundary.
This is of a considerable importance since most of the methods
describing the workspace represent it by encoding its boundary

contours. It ought to be noted that all the inputs to (83) are spec-
ified in terms of the local coordinates of the obstacles. However,
the generated output (steering control) is produced in the natural
coordinates of the robot.

VI. NONLINEAR ANISOTROPICDAMPING OF MOTION

A position PPC acts to prevent motion beyond a specified
level of the NC flow contours that are made to coincide with
the contours of the obstacles. A need may arise (see Example-2)
where instead of strictly forcing motion away from certain sec-
tors in the workspace, it is only required that motion be dis-
couraged (damped) from proceeding along the directions (flow-
lines) that lead to these regions (Fig. 9). In the following, a
damping control that can achieve the above task is suggested.

Proposition-6: A control of the form

ud(q; _q) = �M (q)[ _qtQ(q)]Q(q) (84)

can damp motion along the flow-lines ofQ, whereQ(q) is the
basis vector phase field that define the directions along which
motion is impeded, andM (q) is a positive scalar field that con-
trols the degree of damping.

Proof: Let qQ(q) be the component ofq that is in phase
with Q(q)

qQ(q) = qtQ(q): (85)

SinceQ(q) does not vary with time, we have

_qQ(q) = _qtQ(q)

and

�qQ(q) = �qtQ(q): (86)

The system equation, as seen from theQ coordinates, has the
form

�qtQ(q) = Qt(q)f (q; _q) +Qt(q)D�1(q)u

�qQ(q) = fQ(q; _q) +Qt(q)D�1(q)u (87)

wherefQ(q; _q) = Qt(q)f (q; _q). Substitutingud in the above
equation

�qQ(q) = fQ(q; _q) +Qt(q)D�1(q)(�M (q)[ _qtQ(q)]Q(q))

= fQ(q; _q)� (M (q)Qt(q)D�1(q)Q(q)) _qQ(q):

= fQ(q; _q)� �(q) � _qQ(q) (88)

where�(q) = (M (q)Qt(q)D�1(q)Q(q)) is the damping co-
efficient of the system equation along theQ flow lines. Since
D�1(q) is positive definite, andM (q) is a positive function, the
damping coefficient is always positive (i.e., negative damping)
and motion is always impeded along the flow contours ofQ

everywhere in the position space. It is easy to see that motion
along a flow that is orthogonal toQ will not be affected by the
damping control. �

VII. RESULTS

Here, two examples are provided to demonstrate the capabil-
ities of the proposed approach.
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Fig. 19. (a) Robot trajectory, nonconvex obstacle, PPC, LAC, clamping, and
damping controls present. (b) Removal of the damping control results in a shaky
trajectory.

A. Example 1

This example demonstrates the use of the PPC to apply
constraints on the position and speed of a simple second order
system. The navigation control is required to drive a mass(m)
along one degree of freedom the (X-axis) from an initial point
X(0) = 1 to a final pointX(1) = 0 without crossing the
X = 0 axis. The control is also required to prevent the speed
from exceeding or going below a certain specified value. It
is well known that the dynamic equation for this system is a
simple second order linear differential equation

m � �X = u (89)

whereu is the applied force and�X is the acceleration. To drive
the state to its equilibrium position(X = 0; _X = 0), the control
law in the unconstrained state space(ug(X; _X)) is taken as a
simple PD controller

ug(X; _X) = �[b � _X + k �X ] b > 0; k > 0: (90)

Substitutingu = ug + ul, the system equation becomes

�X + 2�!m � _X + !2m �X =
1

m
ul

where

2�!m = b=m and !2m = k=m: (91)

For simplicity,m andk are assumed to be equal to one. For this
case� determines the nature of the response; if0 < � < 1
the system is underdamped; if� = 1 the system is critically
damped; and if� > 1 the system is overdamped.

The local component of the control(ul) has the form

ul(X; _X) = uxl(X; _X) + u
_xl(X; _X)

= Mxn(X; _X)Qn(X) +M
_xn(X; _X)Qn( _X)

(92)

whereuxl constrains the system in the position space whileu
_xl

constrains the system in the velocity space. SinceQn(X) acts
along one degree of freedom and is pointing in the positive di-
rection ofX;

Qn(X) = 1:

Also

Mxn(X; _X) = �1(X; _X)Vn(X) (93)

where

r2Vn(X) = 0

subject to

Vn(0) = 1; and Vn(�x) = 0 �x > 0:

Solving the above BVP, we have

Vn(X) =

�
�1

�x
�X + 1

�
X 2 [0; �x]: (94)

Also, we have

�1(X; _X) =

�
k

�x

�
j _X j k = 1:0: (95)

The resulting control has the form

uxln(X; _X) =

2
4
�
k

�x

�
j _X j �

�
�1

�x
�X + 1

�
X 2 [0; �x]

zero elsewhere:
(96)

The PPC along_X is required to prevent the speed from going
belowvc (vc = �0:2); therefore, sinceQn( _X) is pointing in
the positive direction of_X;

Qn( _X) = 1: (97)

Also,

M
_xn(X; _X) = �2(X; _X)Vn( _X)

Vn( _X) =

�
�1

�
_x

� ( _X � vc) + 1

�
_X 2 [vc + �

_x; vc]

�2(X; _X) = (2� � jvcj+ jXj) �
_x > 0: (98)
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For the unconstrained second order system above, it can be
shown that

jXj � X(0) = 1 for all t: (99)

Therefore,�2 is taken as

�2(X; _X) = (2� � jvcj+ 1): (100)

The velocity control component has the form

u
_xln(X; _X) =2
4 (2� � jvcj+ 1) �

��1

�
_x

� ( _X � vc) + 1

�
_X 2 [vc + �

_x; vc]

zero elsewhere:
(101)

In Fig. 10(a), the response in both time and phase-plane re-
spectively, is plotted forul = 0 with � = 0:3. In Fig. 10(b),
the response is shown when the speed alone is constrained not
to go belowvc = �0:2 at all times. Fig. 10(c) shows the re-
sponse when both the position and speed are constrained not
to go belowX = 0 and _X = �0:2. In Fig. 11(a), only the
position is constrained, the response is plotted for different�x,
and the critically damped response of the free system(� = 1) is
also plotted for comparison. Fig. 11(b) shows the corresponding
forces. As can be seen, reducing�x leads to an increase in the
magnitude of the decelerating force. By observing the time re-
sponse, it can be noticed that the improvement in performance
(in terms of the settling time) is not commensurate with the in-
crease in the magnitude of the force.

B. Example 2

Simulation is done for a polar manipulator with only its
gripper operating in the workspace. The dynamic equation for
such a system is

�
Mr

2 0
0 M

� �
��
�r

�
+

�
2Mr _r _�
�Mr _�2

�
=

�
T

F

�
(102)

whereM is the mass (M = 1 kg), r is the radial distance,� is
the angle measured from theX-axis.ug is a PD controller(T =
kp(���d)+kd � _�;F = kp(r�rd)+kd � _r). kp = :5; kd = 3;
�(0) = 45�; r(0) =

p
8; �d = 0; rd = 2; �(0) = _r(0) = 0;

ug = [T F]t.
Fig. 12(a) shows the path of the robot's gripper in the free

space(ul = 0). Fig. 12(b) and (c) show the corresponding
torque and force (T andF) respectively. In Fig. 13, a rectangular
obstacle occupying the region(0:6 � x � 6; 0:8 � y � 1:2)
is placed in the path of the arm. To prevent collision, a PPC is
placed around the obstacle in a surrounding rectangular region
of minimum width� = 0:1. The strength of the PPC is set to
zero at the outer boundary�� and is set to the maximum value
at the obstacle boundary(�). The PPC was constructed without
theO�d region. This is made possible by making sure that the
average strength of the PPC inO� satisfies (31).

In Fig. 13, the radial force field successfully prevented the
gripper from colliding with the obstacle. However, the motion
bounced back and forth on the obstacle's surface until it finally

settled short of reaching its target. Fig. 14 shows the response
when an additional control is used to confine the gripper to ana
priori specified region around the obstacle that has a boundary
�0 (clamping control). The minimum distance between�� and
�0 is set to�d = 0:1. Such a control reduced the magnitude of
the oscillations and confined the motion to ana priori known
region.

To further reduce the oscillations, a control field is placed be-
tween� and�0 to damp the motion along the normal flow lines
to the obstacle's surface (Fig. 15). This control component al-
lows for a steady path around the obstacle while enabling the
motion to slide unimpeded along the obstacle's surface. Such
an approach does not slow down the system unlike the case in
which path smoothness is achieved by increasing the damping
term of the PD controller. In addition to improving the quality of
the path, the damping control results in a well-behaved torque
and force waveforms that have lower magnitudes and less en-
ergy than those in which damping is not present.

In Fig. 16, an LAC is added between� and�0 with a strength
that is set to zero at�0. The clamping control and the damping
control are present. The LAC yanked the arm from the local
equilibrium zone and drove it around the obstacle so thatug is
able to sweep it to the target. In Fig. 17, anisotropic damping is
removed resulting in a shaky path. Also, the quality of the con-
trol signal has deteriorated, with an increase in the peak mag-
nitude of the control signal as well as the appearance of oscil-
lations. This increases the strain on the robot's actuators. It also
increases energy consumption.

In Fig. 18, the clamping control is also removed. As a re-
sult, the field fromug pushed the arm outside the region of effi-
cacy of the LAC, thereby, trapping the robot in a local minimum.
Fig. 19(a) demonstrates the decoupled nature of the suggested
control and its ability to handle nonconvex regions. The pres-
ence of the small rectangular obstacle did not at all interfere with
the operation of the steering control of the nonconvex obstacle.
This enables the designer to remove it or change its location
without having to worry about the effect that this might have
on the other steering controls in the workspace. In Fig. 19(b),
the anisotropic damping component of the control is removed,
yielding a shaky path.

VIII. C ONCLUSION

In this paper a method is suggested for applying constraints
on the state of a robot manipulator using the artificial vector
potential approach. The path planning problem considered in
this work enables the robot to be driven along a well-behaved
and safe path to a desired destination. Such a task is performed
through a special kind of control called the navigation control
(NC). In effect, this control functions to provide the robot with
a goal-oriented awareness of its environment. The NC is de-
signed so that the effort needed to adjust the control following
a change in the geometry of the environment be proportional
to that change. This design enables the construction of a set
of behavioral primitives that consists of ready-to-use global
fields, each designed to perform ana priori specified task
where change in the environment can be, with reasonable
effort, accounted for.
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Fig. 20. Field lines near the exit point on the surface of the obstacle(�) and its imageQ.

The suggested new approach for NC synthesis is necessary
to avoid the difficulties encountered by the past approaches. In
particular, the local decentralized strategy to navigation, the su-
perior steering capabilities of a VPF, the flexibility of a BVP
formulation, and the response conditioning of the anisotropic
damping control are keys to the success of the proposed NC ap-
proach.

APPENDIX I

Here, a procedure that usesV1t(q) is suggested for mapping a
given� to the correspondingq(�), and vice versa. SinceV1t is a
Harmonic (and in turn analytic) function, the mapping which is
defined by it is conformal (i.e., angle-preserving) except when
its derivative is zero (e.g., atq(�r) [72, p. 565])). This property
is used for specifying an angle(�) for the vector�. First, let�"

be a tiny sphere in� with q(�r) as its center (Fig. 20)

�" = fq: jq� q(�")jg " ! 0; q 2 �: (103)

For a very small", the gradient flow lines ofV1t inside�" have
the same configuration as those of� in Q (assuming a differ-
entiable�). This makes it possible to assign to� the angle at
q 2 �" which is measured from an arbitrarily chosen reference
positionq(�o) 2 �". Given a� (both magnitude(j�j) and angle
(�)), the correspondingq(�) can be computed by first choosing
aq(�s) 2 �" such that

Arg(rV1t(q(�s))) = �(�) (104)

then using the differential equation

_q = rV1t(q) q(0) = q(�s) (105)

to traverse a path(�) on� that has a length equal toj�j. The end
point of�(q(�f )) is the point of interest that corresponds to the
given�. Vice versa, given aq(�f ), the correspondingx can be
computed by traversing a path� using the differential equation

_q = �rV1t(q) q(0) = q(�f ): (106)

This path is made to terminate atq(�s) 2 �". The length of� is
taken asj�j, and theArg(rV1t(q(�s))) is equal to�(�).
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