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ABSTRACT

This paper suggests a method for enhancing the
performance of the Laplacian of Gaussian (LoG) edge
detector using local information from the neighborhood
of the potential edge contours. This information is
employed to separate valid edges from false ones in a
reliable, efficient, low complexity manner. Statistical
analysis, simulation, as well as, comparison with other
techniques are provided.

I. INTRODUCTION

In a recent paper surveying the state of the art of
edge detection techniques [1] it was noticed that the
increased sophistication of edge detectors is not produ-
cing a commensurate improvement in performance. Based on
that it was concluded that hammering the problem at the
signal level will prove largely fruitless. In a previous
work the authors [2] demonstrated that edge detection at
the signal level is still a promising area of research
with real possibilities for reducing complexity and
enhancing performance.The proposed detector combines the
popular LoG detector [3] with a decision rule on the

local structure of the signal to discriminate between
false and valid edges. Although several methods were
proposed to filter out noise from the output of the LoG
detector [4,5,6,7),the proposed scheme was shown to
combine reliability with computational efficiency. 1In
this paper the work in {2] is generalized to combine
information from both local energy (magnitude of the
signal convolved with the Gradient of Gaussian (GoG)
[8,9] and local structure to enhance the performance.

This paper is organized as follows: In section II the
results in [2] are briefly restated for convenience.
Section III presents the proposed approach, and section
IV outlines the statistical analysis of the detector.
The results are presented in section V, and conclusions
are placed in section VI.

II. PREVIOUS WORK

In the LoG technique the edges (E(x)) are located as the
zero crossings (2C) of the signal (I(x)) convolved with
the Laplacian of G(x,c)

G(x,c):exp(—x2/2n02), E(x):(x:VzG(x,c)*I(x)=0)

The goal is to construct a procedure to discriminate
between a 2C generated by a valid edge (I1(x)= Au(x)+
n(x)), and a 2ZC generated by noise only (I2(x)=n(x)).

The edge is assumed to be an ideal step jump (u{x)) with
a magnitude (A). The noise is assumed to be a stationary
Additive White Gaussian Noise (AWGN) with zero mean and
variance on’ . Let Li(x) and Di(x) be

Li(x)=Ii(x) *¥°G(x), Di(x)=Ti(x)*YG(x)
For the 1-D case, we have

V’e(x) *u(x) =-V&(x), VG (x)*u{x)=C(x)
0-7803-1254-6/93$03.00 © 1993 IEEE

Figures la,b show the signal and noise components of Di
and Li receptively.

The performance of the detector is analyzed by
deriving the misdetection probability (1-Pecs), and the
false detection probability (1-Pcn) . Pcs is the
probability of a valid ZC decided as an edge, and Pen is
the probability that a false ZC is rejected. The probab-
ility of error (Pe) is

Pe = P1(l-Pcs) + Po(1l-Pen)

where P1,P0 are the probabilities that a valid and a
false ZC occur respectively. There are several factors
on which P1 and Po depend;among them: the signal richn-
ess in edges, the characteristics of the noise, and the
scale of the LoG (¢). However, since P1 and Po are not a
priori known, they are assumed to be equal (P1=P0=0.5).

1- ZC-based Scheme

The validity of a 2C (Zi) can be tested by computing
di=dist (Zi,Zi-1), and di=dist(Zi+1,21i); then the follow-
ing rule will be used to accept or reject Zi.

Zi is Valid

Zi is False

if [ (dizth)and(dizth)]
else

where th is a selected threshold. For the 2-D case di
and 4l are computed along both sides of the normal to
the edge contours. Using the intervals between the ZC of
Li for discrimination has the advantage of reducing the
need for adaptation to enhance the chance of detecting
weak edges. The autocorrelation of the noise at the LoG
input (Ri(t)) and output (Ro(T)) are

Ri(T) = on’8(T),

2, 2
2,1 R

Ro(t)= (on’ /o W3-130" 60"z +7t 1™ /27

8(T) is the Kronecker-delta function.

the noise at the input and output are:

012 = onz, ¢02= 3V—g—[vn2/03]

To compute the performance probabilities of this
scheme,we need to compute the following Conditional
Probability Distribution Functions (PDF’s). The first is
Pno(t) which is the conditional probability that the
first 2C after time t occurs between t+T and t+T+dT
given a ZC at time t when the input to the LOG is I2.
The second is Pso(T) which is the same except that it is
computed when the input to the LoG is I1. For a smooth
zero mean Gaussian noise Pno is approximated as

The variances of

" _ 2 , 2
Pro (T) = p"(T) (1-p(T) )+p(T)p (T)

2" (0) [1-p(m)?1>/?
where p(T) is the normalized autocorrelation function,
and p’, p* are the first and second derivative of p with
respect to T. Assuming independence of the intervals
between successive ZC’s of the output noise, the probab-
ility of validating a false ZC is
th
(1 - JPno('r)d't )2
0
The approximate PDF of intervals between the 2ZC’s is
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Ao/d‘n2

Pso(T) = . p’(T) WoT
os(—;—)+
ZVQ onQ(r)—cos(wor) l+p(T)
2,2
., WoT ] (Ac/on’ ) woT
wosm(—2—) exp { Tp(-?)— cos(T))
where wo=2m/To, To=4¢/V2, and Ao=VZexp(-1/2)A/c. This
distribution is accurate for relatively high SNR, and it

tends to Pno as SNR goes to zero. For a moderate SNR we
shall assume that d+ and d- are strongly dependent:
therefore, Pcs can be approximated as:
th
1 - I Pso(T)dT
0

Pcs =

2. The GoG-based scheme
Here, Pcs and Pen are computed for the following rule

if |[pitx)| = th 21 is valid

else 21 is false
We need to compute the following conditional PDF‘s:
Pso(a)=P(a<Di(x)%a+da/Li(x)=0) when the input is Ii,and
Pno which is the same, but the input is I2. Ro at the
output of the GoG and its variance are

2 2
Ro{T)= [omz/o]]\/%[a‘z-'rz]e_-t f2om ¢oz=[o~n2/cl\/—21

Since the noise is Gaussian and the GoG is a linear
operator, the output noise is, also, Gaussian. Assuming
a relatively high SNR and a small ¢, the dislocation in
the position of the edge can be disregarded and Pso, and
Pno are approximated as

2 2
- (2 (200") -2’/ (200%)
Pso(a)= ., Pno(a)
ooV (2m) aov(2m)
Pcn, Pcs can be computed as
th th
Pcn= IPno(a)da, Pcs:l—J‘Pso(&)da
-th -th
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IITI. THE PROPOSED APPROACH

To enhance the fidelity of a 2ZC in representing the
physical edges of a signal, the scale of the operato¥ is
kept small for accuracy, sensitivity, and resolution.
additional information is extracted from the output
signal in the form of indicators tying the ZC's-to the
underlying physical edges. In [2] two simple indlcat?rs
(the energy at the ZC,and the local structure around it)
were individually examined, compared, and utilized for

false 2C removal. The work showed the significant
advantages a first passage time indicator has over a
energy indicator.

It is well known that the amount of information used
in filtering the noise sets an upper limit on the
achievable performance. On the other hand, the method by
which this information is utilized determines the achie-
vable percentage of such a limit with complexity blowing
up to infinity as the limit is approached. We believe
that the combined information from both indicators offe-
rs a net increase in the amount of information that can
be utilized by the detector. This does increase the
limit on the potential of the achievable performance.
Moreover, the higher ceiling on the potential performa-
nce makes it possible to improve the achievable
performance while maintaining the same level of detector
complexity [10]. The conclusion that combining both
indicators offers a net increase of information availa-
ble to the edge detector is based on the observation
that in the presence of a physical edge both indicators
are correlated in the sense that they tend to give a
positive identification of the physical edge. They,
also, tend to exhibit strong independence in the absence
of a physical edge, which is deduced from the PDF of the
ZC’'s which is only dependent on the autocorrelation
function of the output signal and is not affected by the
power of noise. On the other hand, the PDF of the GoG
is mainly dependent on the power of the input noise and
is totally unaffected by the autocorrelation of the
output noise. Although efficient techniques exist to

fuse the information from both indicators [11, 12], the
following simple rule is utilized
if [((dizthi)and(dlzth1)] 2i is Valid

and |Di(x)| z thz

else Zi is False

IV. ANALYSIS

The probability that the above two-indicator decision
rule makes an error is

Pe = P1[Ps01 + Ps10 + Psoc] + Po[Pnl1)

where the s subscript indicates that Psij is derived
when an edge is present while an n subscript indicates
noise only. The digits ij indicate the combined outcome
from the ZC-based and the GoG-based rules respectively.
To derive the above quantities, the joint PDF of the
intervals between the ZC’s of the LoG and the signal
from the GoG is needed. Such a problem is called the
Marked Zero Crossing problem [13],and has the following
formulation: Suppose that y(t) is a continuously differ-
entiable process, and let T: be the first ZC of y(t).
Consider an n-variate continuously differnetiable vector
process X(t)=(xX1(t),...., xn(t)) and assume that y and x
are defined on the same probability space. Derive the
first passage time T1 and the values of the vector proc-
ess x at T1 (f(t,a)). In our case y(t)=Li(t), and x has
one variable x=(Di(t)). Since Li and Di are generated by

linearly transforming the same Gaussian input, they are
jointly Gaussian [14,15]. The joint PDF is
=2
1 - -
Px.y = , cexpl 1 . 1 (x-x)
2noxoyV(1-p°) 2(1-p") ox’
(x-X) (y=¥) v’
- 2p 2 ]
OxXCy oy
2 2,3
where oy“= 3V(m/2) (en" /0 ), 03(2= Vi(m/2) (0‘:\2/0‘),
- [G(t) I=11 - [—VG({) =11
X = y =
0 1=12 0 I=T2
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and
2
(Y(2/3m) (0 /on)G (t) VG (L) I =11

0 I=1I2
The marked 2C distribution for this case is:
£(r, )BT y; D) |y (1) |1 (0,a)

where J(y;t) is an indicator function which is taken as
one if the sample path of y does not cross zero prior to
T, and is equal to zero other wise. E[:] is the expected
value. Since the indicator function is difficult to
evaluate we will resort to an approximation to compute
the above PDF. Let us write the above distribution in
the following form

f(t,a) = fT(‘t)-fx(T”Tzr(a)
This can be approximated as
Pzso(T) *Pcso(a) I =1
f(t,a) =
Pzno (T) *Péne(a) I =12

where Z indicates a pdf for the intervals between the
2C’'s, and G indicates a pdf for the output signal from
the GoG at a ZC. Figure 2 shows the minimum achievable
Pe’s obtained by optimally setting the threshold/s for
the 2C-based, GoG-based, and the combined rules.

Figure 2: Minimum Probability of error.
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V. RESULTS
The proposed scheme has been tested for the
following 1-D discrete signal: S{n)=u(n-25)+N(n). The
size of the discrete LoG operator is 13 samples, and its

scale is o=1. The GoG threshold is set to 10% from the
maximum. At least two samples before and after a ZC have
to be free of zero crossings for that 2C to be consider-
ed valid. The experiment was repeated several times for
different signal to noise ratios. Figures 3a,3b show
respectively the average number of false components, and
the percentage detection of the correct one for the LoG
alone, the GoG-based, ZC-based, and combined schemes.

Figure 3a: Average # of False detections
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Figure 3b: Percentage Correct Detection.
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test image Figure 4a is chosen to include rough and
smooth regions, and edges of widely varying contrasts.
The size of the image is 256x256 pixels, and the size of
the operator is Sx5 with ¢=1. Figure 4b shows the edge
contours from the LoG operator alone. As can be seen the
output is highly contaminated with noise. Figures 4c,d
show the edge contours that are filtered using the
proposed method with a window of 3x3 and that of 5x5
with edges satisfying |GOG|<.002-max|GoG‘ eliminated
respectively. At least one pixel above and below the
contours should be free of zeros to decide the validity
of the contour. As can be seen many false edges were
removed, and very faint edges were detected. In Figure 4e
false ZC's were removed based on the magnitude of the
corresponding GoG. The threshold is set to th=.05-'max
|D(i,3) | . It can be seen that even a small threshold can
lead to the loss of significant low intensity edges.In
Figure 4f the edges are detected using a rather involved
technique [16] that minimizes an energy cost functional
(E) using the steepest descent technique

E:”(f(x)»g(x) )2dx+uII[Vf(x) |2axe ',yIds
D D-C C

Lue

where g is the image,f is the smoothed image,D is the
domain,and C is the set of edges separating the domains.

S

Figure 4b: Edges, LoG only.
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VI. CONCLUSIONS

In this work the LoG noise removal mechanism that is
suggested in (2] is generalized to utilize information
from both the local structure and energy of the potent-
ial edge contours. Our approach to the design highly
relies on the fact that increasing the amount of
information that is used to filter out noise improves
the potential to enhance reliability while maintaining
the detector complexity at an acceptable level. Although
a simple decision rule was used to utilize the
information from the indicators, we are aware that
converting a potential to an achievable performance is
dependent on the way this information is utilized (the
information fusion technique) .Therefore, future work will
concentrate on improving the decision making process. We
strongly believe that an information theoretic approach
to the problem of edge detection does offer a promising
framework in which the design can take into considerati-
on both performance and complexity.
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