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ABSTRACT

A method is proposed for the design of M-D finite
precision FIR digital filters. The method operates by
predistorting the frequency response prior to
quantization. Such a predistortion is designed to
counteract the degradation caused by the finite
wordlength. The error measure used here is a convex
function of the filter coefficients. Such a property
enables us to replace the time consuming optimization
techniques using direct search with the very fast
techniques utilizing the first and second derivatives.
Design examples are given for both the 1-D and the 2-D
case. The 1-D results are compared to a recently

published method (1].

I. INTRODUCTION

Designing filters with finite precision coeff-
icients is desired to reduce the distortion caused by
constraining the wordlength to a finite size [2). The
design process requires the finding of a discrete set
of filter coefficients that minimizes some error
measure. Compared to the continuous case, minimization
on a discrete set of coefficients is a very time
consuming process (3]. The problem becomes exceedingly
difficult when extended to the M-D case. Little work
has been done involving the design of finite precision
2-D FIR filters [41; 1let alone higher dimensional
filters. Here, a method is proposed for the design of
finite precision M-D FIR filters. The method operates
by predistorting the infinite precision frequency
response prior to quantization. Such a process is
designed to counteract the deqradation introduced by
the finite wordlenth. The approximation is used to
construct a convex error measure with the aim of
isolating design complexity from the number of
quantization levels. Such an approach, although not

optimum, is found to be fast and efficient. The method

can, also, be efficiently used for designing 1-D
finite precision FIR digital filters.

II. THE PROPOSED METHOD
The coefficients of the infinite precision design

(h(ns,.,nm)) are assumed to be normalized to the

interval [-1,+1]. The approximation is carried out for

the uniform quantization nonlinearity (Q(x)). The
nonlinearity is approximated with the following
function :
=y - A o2
Q(x) ~T{x) = x Pra sin( N X) (1)
x € [-1,+11]

where A is the quantization step (Figure 1) :

and L is the number of bits (sign bit included).

To implement the proposed approach, a new set of

infinite coefficients (h'(n1,.,nM)} are

computed to replace the original coefficients. The

precision

replacement aims at making the distance function (to
be constructed later).
H(ws,.,0M,Q(h')) less than that between H(wsi,.,wm, h)

between H(wi,.,wm,h) and
and H(w1,.,wm,Q(h)). From now on, the gquantization

nonlinearity (Q(x)) will be replaced by its

approximate I'(x).

Let ﬁ(nx,.,nu) be the quantized filter coeffi-
cients, and h,(n1,.,nM) be its approximation obtained

using C'(x). Thus :
ﬁa(n1,.,nu)=r(h(n1,.,nu)) - —%—-Sin(c-h(nn,.,nul)
(2)

where ¢ = 2rn/A,and M is the number of dimensions. With

no loss of generality only the even symmetric case is
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considered here. The frequency response corresponding
to the approximate quantized filter coefficients is :

H(wi,.,oM,h (ns,.nM))

= §..¢ (h(n1,.,nu))-—(l:—sin(c-h(m,.,nu)))-
N1 nN™M M
Tcos (wi-ni)
i=1
M
= L..L h(n1,.,nM)  Tjcos(wi-ni) -
n1 nM L=1
M
—é—z..z sin(c-h(ni,.,ns)) [jcos(wi-ni)
nNi nNM =1
1

H(w1,.,wM,h) + ———(-:—'Hr(uu,.,wu,h)

(3)

quantized response consists of two
the
constant 1l/c.

As expected the
the
distortion term H,

infinite precision term H, and

scaled by the
Computing the mean square value of the distortion term

terms,

we have :
™M M ™
‘zszfﬂ N, - —cZ T..% cos{2c-h(ns,.,nM)) 7"
=2 ni nM
where N, is the length of the filter in the i'th

dimension.

To construct the error measure let us consider
the
corresponding to the coefficient set (ﬂ;(nz,.,nu)
(h'(ns,.,nM)) 3.
distortion term in (3) will change, at the same time

approximate quantized predistorted response

By choosing h' different from h the

the infinite precision component will deviate from the
this deviation
The set

is chosen such that the reduction in the mean

original infinite precision design;
will be referred to as the deviation error.
{h'}
square value of the distortion component is greater
than the

deviation component.

increase in the mean sqguare value of the
This is expected to lead to a
The distortion error

decrease in the whole error.

Ey(h') is equal to :

MM p
—cznh - ‘2?12"2 cos( 2c-h'(nt,.,nM))
i=1 ni nM

The deviation error EA(h‘) is equal to :

™ ¥..¥ (h'(nl,.,nM) - h(nz,.,nmM))2
Nt na
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The adopted error measure is taken to be the sum of
both error components, that is :

" ¥..x [ (h'(ns,.,nM) - h(ns,.,nm))% -

ni nNM
oz C0s(2ch'(ne, ., mm))] +
M M
=N (5)
=1

By taking the first and second derivative one can

easily show that the error measure is a convex

function of its arguments.

One important consideration when optimizing (5) is
Although,
false notion that it can be neglected in the design,

the constant term. this term may give the
its presence in a time domain error measure reflects
itself as a frequency domain error concentrated near
the origin of the frequency axis. One way to deal with

this is to offset the coefficients obtained by
minimizing (5) with a constant 3 prior to
quantization. 3 can be computed by minimizing the

following error measure:

21T 27T
min f. [( Hy(ws,.,om) - E..E [h!(ns,.nm) - B1-

nt+ nM
M

o o

ncos(wt-nt))zdwn.dwu
v=4 ‘6)

where the square brackets represents the gquantiz-
ation nonlinearity. It is obvious that using direct

search to find (3 can not be considered as a

computational burden. 3 is observed to be a small

constant near the origin.

III. EXAMPLES

To demonstrate the ability of the technique in
designing finite precision filters two examples are
provided for the 1-D and the 2-D case.

1- 1-D lowpass filter.

Here, the method is compared to another method for
designing 1-D finite precision filters. The technique
[1]. A low
pass filter having the following desired characteris-

is based on error spectrum shaping (ESS)

tlecs 1a to be deslgned :



Hylw) = [l jo| < .4n

0 else

The

McClellan algorithm is shown below :

infinite precision design obtained using the

Table 1. 1-D LP filter, infinite precision design.

<Sp dB S, dm

4n .61 65 .0005 -132.1

the quantized response :

Table 2. 1-D LP filter, finite precision design.

L Rounding ESS Prop. method
S, dm & Sy dB S Sy dB &
16 |.0011 -79.7] .0035 -97.7( .00065 -92.4

2. 2-D lowpass filter.

The desired characteristics are :

Hylwt, M) = 1
0

|wi], jwz| £ 4=

else where

The infinite precision design is shown in the tabit
below :

Table 3. 2-D LP filter, infinite precision design.

length &, dp dB

P 63

11x11 .5876 -26.0

and the finite precision design is :

Tabel 4. 2-D LP filter, finite precision design.

L Rounding Proposed method
S, dm S Sp ds S,
4 .5307 -14.8 .013 -16.5
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IV CONCLUSIONS

A method is proposed for the design of finite
precision M-D FIR digital filters. The method
functions by predistorting the infinite precision

frequency design in order to alleviate the distortion
by The
is approximated with a mathematically

introduced quantization. quantization
nonlinearity
manageable function. Such an approximation enable us
to construct a time domain error measure that is
With

such a property it is possible to replace the time

a convex function of the filter coefficients.

consuming optimization techniques based on Integer
Programming with the much faster techniques based on
It ought to be
the

the first and second derivatives.
that the

nonlinearity can be improved to an arbitrary degree.

noticed accuracy in approximating
Nevertheless, such an increase can be at the expense
of adding more complexity, and the danger of losing
some of the desirable properties such as convexity.
Although the method does not produce optimum results,

it is capable of yielding a satisfactory design.
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APPENDIX
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The filter quantized filter coefficients of example £
1 obtained using the proposed method are: ";::k\
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Figure 2.c Proposed method.

2453



