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ABSTRACT

Here, the B@&MY that is suggested in the £first
part of this paper [1] 1is used to construct a
complete path planner for an agent of arbitrary
shape that is operating in a totally unknown,
multidimensional, stationary environment. The
planner does not require any a prilorl knowledge
about the environment to guarantee that a path to
the target will be found. Any a priori information
about the environment, regardless of its degree of
fragmentation or sparsity, can be integrated into
the planning process to accelerate convergence and
enhance the guality of the path. Details for
constructing the planner along with experiments to
demonstrate its capablilities are supplied.

1. INTRODUCTION

To the best of the author's knowledge, the
potential field approach is the first ever to be
used for describing a motion planning procedure
[21. The approach is rich in techniques for
utilizing a potential fleld to guide an agent
along a safe path to its target (for an extensive
survey of potential-based techniques that cover
methods up till 1994 see masoud [3].) Of partic-
ular interest are methods that use the stream
lines of a potential surfaces that is a solution
to a certain Boundary Value Problem (BVP) [4-14].
These methods can be easily expressed using a
PDE-ODE system format; hence they are very suitab-
le for constructing SIMPD machines. Despite their
effectiveness and the wide variety of planning
situations which they can handle, these techniques
remained reliant on the availability of an a
priori known, full model of the environment to
successfully steer an agent to its target. This
has led many to, mistakenly, believe that the
above deficiency is inherent in the structure of
these methods. This work demonstrates that utiliz-
ing these methods in the context of the BGM that
is suggested in the first part of this paper
easily and effectively remedy this shortcoming. It
is shown that placing a Hybrid PDE-ODE planner
within the confines of a Hybrid Discrete-
Continuous time system eliminate the need of
having to a priori know the model of the environ-
ment. Instead, a self-referential model of the
environment evolves as the agent interact with its
surrounding. The model progressively develops so
that it capture necessary and sufficient informa-
tion about the environment for the agent to reach
the goal. While the available planning techniques
that utilize learning for action selection do
guarantee convergence, they do not guarantee
success from the first attempt the agent makes to
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reach 1ts target. It is most likely that the agent
has to learn from previous fallures. However, the
suggested planner does guarantee convergence from
the first attempt (First Attempt Completeness
(FAC).) Subsequent attempts only results in the
planner improving its performance.

This paper is organized as follows, section 2
outlines the construction of a PDE-ODE planner
(SIMPD machine), section 3 presents simulations,
and conclusions are placed in sectlon 4.

2. THE PLANNER

This section outlines several concepts and tools
needed for constructing the planner. The agent is
described by the simple differential system

X=u.,. (1)
Unfortunately, the above system implies the
unrealistic assumption that the agent can execute
any action instruction (u) that the planner
supply. While it is more realistic (and much more
complicated) to consider an agent governed by the
differential system

x = £(x,u) , (2)

where constraints are placed on the action
instructions to make them realizable, the above
system Is still useful with mechanical agents
moving at a low speed.

2.1 Differential Constraints

For the types of agents described above, a
scalar potential field (a surface, V) is suffici-
ent to emulate the actions of a dense, micro-agent
group (this is not always the case for a general
agent [12-14]).) Here, two differential surface
features may be used for constructing the point
vectors needed for describing the actions of the
individual micro-agents. Either the slope of V is
used to construct the mlcro-control action

u(x)= -VV(x), (3)

or the slope of the curvature of the surface is
used:

u(x) = -V(V°V(x)) . (4)

To construct a self-behavior (G-type behavior)
that would enable the micro-agent group to
constructively interact; therefore, generate an
action structure which the operator can success-
fully use to reach the target, the micro-control
at every point in state space is constrained with
respect to the other micro-controls that are in
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its immediate infinitesimal neighborhood. The
micro-agents are related to each other using

Vou(x) =0, (5)

where V- is the divergence operator. This choice
guarantee the continuity of motion so that no
micro-agent can take the "wrong" action of block-
ing motion before the operator reach the target.
Therefore, the governing relation that is used to
condition the differential properties of V so that
it can emulate a dense, interacting, micro-agent
group is the Laplacian operator

V?V(x) = 0,
or the Bilaplacian operator: (6)
v*v(x) = 0.

2.2 State Constraints :

As was mentioned in the first part of this
paper, factoring the environment into the action
selection process is carried out using boundary
conditions. Whenever, the evolving state of the
operator is at a location in the environment
(state space) that affects its internal environ-
ment in a certain manner, it respond by constrain-
ing u at that location to the proper action. This
is indirectly accomplished by applying the proper
Bourdary Conditions (BC) on the potential manifold
at the particular location in state space. In this
work, the only kind of situations which the
operator may encounter are hazardous situations
that are to be avoided. In the following several
BC's that suit the Laplacian and Bilaplacian
operator are briefly stated.

2.2.1 The Dirichlet BC"s :

The Boundary Value Problem (BVP) for this case is
solve Fvix) =0, (1)
subject to Vix) =1 |x=I" , and W(T) =0,

where I' is the boundary of the forbidden regions,
and T is the target point. Unfortunately, this
approach is known to suffer from a quickly
vanishing gradient field, even for relatively
simple workspaces (Figure-1l.)
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Figure-1: Dirichlet.

2.2.2 The Modified Dirichlet BC’s :

To alleviate the vanishing field problem, the
following modification is suggested :

Fv(x) =0, (8)

solve

subject to V(x) = 1| and V(x) =0 |

x=Ip’
where I'p = {x: |x - T] > p,p>0}. As can be seen,
the magnitude of the gradient field significantly
improved (Figure-2.)

x=I 7
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Figure-2: Modified Dirichlet.

2.2. 3 The Homogeneous Neumann BC’s:

This BVP exhibits remarkable robustness in work-
spaces with complex geometry :

solve VV(x) =0, (9)
av(x)

subject to = =0 |x=l'"

and V(T) = 0|, , and V(w)=1,

where n is a unit vector normal to I', and xa is
the starting point. This approach is effective for
point-to-point motion planning. The interest here
is in region-to-point planners (Figure-3). Also
the paths generated by this technique get
dangerously close to the obstacles.

Figure-3: Homogen'eous Neumann.

2.2.4 The Nonhomogeneous Neumann BC’s:

To remedy the above problem, the following
setting is suggested:
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solve Vvix) =0 , (10)

av(x)

subject to = C[x=r, and V(x) = 0‘x=["p'

where C is a positive constant. In addition to
being a region-to-point planner, and providing the
path with a good safety margin away from the
obstacles (Fiqure-4), the path has a lower
curvature than the above approaches. This is the
result of placing no constraints on the direction
of the field along the tangent of the obstacles.
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Figure-4: Nonhomogeneous Neumann.

2.2.5 The Biharmonic BC’s :

Although the computations here are more expens-
ive, this approach is the most robust in terms of
field generation. The generated path is also the
lowest in curvature (Figure-5). The BVP is :

jointly solve v*v = 0, and

(VV) (V)" =X V- A(x,y) JI+GIT (A (x,¥) )43 (A(x,)) ],
subject to
and Ooxx = P-npx, oyy = P'npy, oxy =0,

where A is a displacement vector, ¥x is the curl
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operator, X, P and G are positive constants, I is
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Figure-5: Biharmonic.

Alger =0, 9xA[__ =0, (11)

normal to I'p,
component, and

2

o = 2 V(:,z)} - fV(:!z}‘ oy = 3*V(x,y)
ox ay axay

2. 3. Incorporating Evolutionary Behavior:

The PDE-ODE planners above are reliant on an
accurate, a priori known model of the environment
in order for them to properly function. This makes
these techniques susceptible to the same kind of
problems that the traditional AI methods suffer
from. In the following a procedure is suggested to
remove this dependence.

npy is the same but for the y

Let the agent be operating in a workspace (Q)
that is a subset of an N-D space constituting its
environment ( +) Let the hazardous regions in
that environment be called 0 (O=R -2), l;‘ be the
unknown boundary of that region (I'=d0, I'eR , M<N),
and I" be the subset of I' which the agent is initi-
ally avare of (¢ €T €T'.) Let the region occupied
by the agent at time t be R(x,t) which is a priori
known and 1s initially inside Q. Let y(x,t) be the
boundary of that region (y(x,t)=dR(x,t).) Let Rs
be the sensed region surrounding R,

Re(x,t) = {x: [x7(x,t)[=¢, x & R(x,t)},
and ye(x,t)= dRs(x,t), (12)

where £ is the range of t"}('ae sensors, £<<1 (local
sensing.) Also let q (geR ) be the K-D natural
coordinates of the agent, gs the starting point,
gf the final target point, where for both ga and
gf, R(x,ts) and R(x,tf) € Q.

The following algorithm satisfy equation-2 in [1]
vhich is needed for successful navigation:

1- Select one, of the PDE-ODE planners in 2.2.

2- convert T from the workspace coordinates in to
the natural coordinates of the agent I'm (this
step is not needed if I' =¢.)

3- set i=0 .

4~ Solve the BVP subject to the proper BC's on
I'n, af, and ge if applicable.

5- Apply the proper vector differential operator
to generate the dynamical system

4 = wlq,qr,n) , (13)

-&va{q,qr,r'é) for the Laplacian.
and uw = R
-UV*Vi (q,qf ,Mn) for the BiLaplacian.

6~ As long as Q=0, generate a path for the agent
in its natural coordinates using

t
a(t) =g + [ui(qgq,n)dt . (14)
to
7= 1f g(t) = gf, halt,

8- If at any instant ti, Q changes states from 0»1
(i.e. the sensors has detected the presence of
a hazardous region that was not previously
known to the agent (Is),

Mls =ReNT = ¢, and I's & 'n), (15)

a. Halt motion (i.e. set g(t) = q(ti).)
b. Add the point in the natural coordinates of
the agent to the known-obstacle contours,

'n =Tn U g(ti). (16)
9-i=1+1,

10- Go to step 4.
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3. RESULTS

Because of limitation on space, simulation 1is
only carried out for the PDE-ODE planner in 2.2.2.

The hierarchical, symbolic, geometric approach
to reasoning and planning is a long standing,
deeply ingrained tradition. Probably the most
influential statement in support of such an
appreach is that of Galileo Galilei's "Philosophy
in written in this great book, by which I mean the
universe which stands always open to our view, but
it can not be understood unless one first learn
how to comprehend the language and interpret the
symbols in which it is written, and its symbols
are triangles, circles, and other geometric
figures, without which it is not humanly possible
to comprehend even one word of it; without those
one wonders in a dark labyrinth" (1623). The
following example demonstrates that an agent can
effectively navigate a dark labyrinth without the
use of geometrical, symbolic, hierarchical reason-
ing. Figure-6 shows a point agent attempting to
reach a target in a maze; the maze is initially
urknown. The agent is restricted to using only
local sensing. Figure-6.1.1 shows the agent's
trajectory. As can be seen, despite the total lack
of knowledge about its environment, and the local
nature of its sensors, the agent manage to reach
its target. In the process of reaching its target

the agent had to adjust its belief (ui) 45 times
(Figure-6.1.(2-5).) Figure-6.2.1 show the traject-
ory of the agent the second attempt it makes to
reach its target. Using the experience acquired
from its first attempt the agent managed to
eliminate the unnecessary detours from its path.
Figure-6.2.(2-5) shows the agent's belief at
different stages of evolution during the second
attempt. The agent performed 12 adjustments to its
belief field. Figure-6.3 shows the third attempt
the agent makes to reach its target. As can be
seen a smooth, steady, optimum path to the target
was achieved without the agent having to make any
adjustment to the last belief it acquired from the
second attempt. One important result this example
reveals is that as far as reasoning and planning
are concerned, geometry (or in a more general
sense FORM) is not an "a priori" phenomenon that
has to precede reasoning. It is, instead, a
postriori phenomenon that results from the
activates of a more fundamental processes. The
example also supports the argument that represent-
ations have the soft nature of patterns not the
hard ones of rigidly defined icons. As can be seen
the final belief of the agent missed part of the
environment. Never-the-less the agent managed to
construct a well-behaved, optimal path to the
target. This result supports the argument made in
the first part of this paper, that the value of a
representation does not lie in how well it
represents its environment, but rather in how well
it serves the purpose of the agent.

The second example demonstrates the self-
referential nature of planning. A fixed-base, 2-D
robotics arm manipulator (Figure-7) is required to
flex in a confined environment (move £from the
initial configuration (©1360°,625120°) to the
final configuration (©4=90",82=0").) Figure-7.1
show the trajectory of the agent and Figure-7.(2-
5) show the belief of the agent which had to be
adjusted 17 times. As can be seen with no a priori
knowledge, the agent managed to reach its target.

36
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Figure-6.1.1: Point robot, 1'st attempt.

36|

Kl

26
1 T Start
16|
1ng
s}
. . , , : . ; 4
1 6 i 16 21 26 n 36
Figure-6.2.1: Point robot, 2nd attempt.
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Fiugre-6.3 : Point Robot, 3rd attempt.

The self-referential nature of the planner made it
possible to evolve a representation that is
matched to the agent. While the resulting pattern
may be perceived by an external observer as
meaningless irreqularity in the wvector field
substrate, to the agent, these irregularities are
a meaningful representation of the environment. In
Figure-8 the completeness of the planer is
demonstrated. Completeness reguires the planner to
find a solution if one exist. If no solution exist
the planer should halt operation and provide an
indicator that a solution does not exist. Here,
the planner provide such an indication by
degenerating the action field in all the region
which the target can't be reached from. In Figure-
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Figure-7.1: Arm manipulator, 1st attempt.

8 the target is placed in a region where it can
not be reached from the initial starting point of
the agent. Not knowing that the target can't be
reached, the agent proceed to the goal adjusting
its belief each time an obstacle is encountered.
Once the agent reaches the belief that the target
is inaccessible, it halts operation and degenerate
the field in the region where the target can't be
reached from. The agent had to perform 18
adjustments to its belief before making the
decision that no path to the target exist.

Figure-8.1: Unattainable goal, Point robot.

4. CONCLUSIONS

In this work a complete path planner is suggest-
ed for an agent with generic geometry that is
operating in an unknown, M-D environment. The work
demonstrates the importance of the guldelines
suggested by brooks [15] for the construction of
intelligent structures that can successfully be
imbedded in physical reality. It also uses a
multi-disciplinary approach for realizing such a
structure. The work contradicts the popular belief
that planning in a high-dimensional environment
requires global sensing. It is shown here that the
range of the sensors by no means affects the
ability of the planner to converge to the goal and
that the range is only a factor that controls the
rate of convergence. One important property of the
planner that was not discussed in this work is the
ability of the suggested single-agent planner to
be integrated in a multi-agent planning environ-
ment [16,17]. This is crucial since any practical
application requires the plannexr to share its

workspace with other agents. An antisocial, single
agent planner will definitely fail in a multi-
agent environment causing conflicts with others
and deadlock situations that could paralyze part
if not all of the group.

Although the model of the agent that is used
here is simplistic, on going work is tackling more
realistic models. In [12-14] a PDE-ODE planner is
constructed for a realistic robotics arm
manipulator. The author is optimistic that the
framework suggested in this two-part paper is a
first step in a promising approach to intelligent
behavior generation in general and motion planing
in particular.

REFERENCES

[1] Masoud A.,"Evolutionary Action Maps for Navi-
gating a Robot in an Unknown, Multidimension-
al, Stationary Environment, Part I: The
Navigator's Structure",

[2] Hull C.,"The Goal-Gradient Hypothesis Appll-
led to Some "Field-Force" Problems in the
Behavior of Young Children",The Psychological
Review, Vol. 45, No. 4,July 1938, pp.271-299.

[3] Masoud A.,"Techniques in Potential-based Path
Planning" Ph.D. Thesis, Elec. & Comp. Eng.
Dept., Queen's Univ., Kingston, Ontario,
Canada, March 1995.

[4] Satoh K.,"Collision Avoidance in Multidimens-
ional Space  using Laplace Potential",
Preprint of 5th Annual Conf. of Rob. Society
of Japan, 1987, pp. 155-156, (in Japanese).

[5] Connolly C., Weiss R., Burns J.,"Path Plann-
ing using Laplace's Equation", 1990 IEEE Int.
Conf. on Rob.& Aut., May 13-18, Cincinnati,
Ohio, pp. 2102- 2106.

[6] Keymeulen D., Decuyper J.,"The Fluid Dynamics
Applied to Mobile Robot Motion: The Stream
Field Method", Proceedings of the IEEE Int.
Conf. on Rob. & Aut., San Diego California,
May 8-13, 1994, pp. 378-385 .

[71 Connolly C., Grupen R.,"Harmonic Control",
Proc. of the 1992 IEEE Int. Symp. on Intel.
Cont., 11-13 August 1992, Glasgow-Scotland
UK, pp. 503-506.

[8] Tarassenko L., Blake A., "Analog Computation
of Collision-free Paths",1991 IEEE Int. Conf.
on Rob. & Aut., April 9-11, Sacramento,
California, pp. 540-545.

[9] Schmidt G., Azarm K.,"Mobile Robot Navigation
in a Dynamic World Using Unsteady Diffusion
Equation Strategy”, the IEEE/RSJ Int. Conf.
on Intell. Rob. & Sys., Raleigh-NC, 7-10 July
1992, pp. 642- 647.

[{10] Masoud A., "A Boundary Value Problem Formula
tion of Pursuit-Evasion in a Stationary
Environment: A Potential Field Approach", the
1995 IEEE Int. Conf. on Rob. & Aut., May 21-
27, Nagoya, Japan, pp. 2734-2739.

[11] Masoud A., Masoud S., et. al., "Robot Naviga-
tion Using a Pressure Generated Mechanical
Stress Field, The Biharmonic Potential Appr-
oach", The 1994 IEEE Int. Conf. on Rob. &
Aut., May 8-13, San Diego, California, pp.
124-129.

[12] Masoud A., et. al.,"Constraining the Motion
of a Robot Manipulator Using the Vector Pote-—
ntial Approach", 1993 IEEE Regional Conf. on
RAerospace Control Systems, Westlake Village,

2094



y L1F
::_:: t:“_W e ‘_.: F _ :C\h\\m 3 - =W ,f E: F ..\t.\wh
Hiidiiiitisnsse— » : U.bnﬁ, i o= < ...,.,._.thﬂﬂ: 111400
Ry [+ 0] — L it eree— ™ AR AL LHiitiee——
fipisgesiisei—y " © bt ..i.t..znunc} Nt Jiateee—1 AN [tz
Hdltdeddidsre™ et s bR P E L AN 1I8ssreres
VT 4787877 srme = —————eR AL el - T10 8 2eeme—
1414030000 see— - A 11408 s8eere— T 1482isseee— |
Y he] MWy LS e —— Jprtodre=
“u\\w“\\\\\\illi. e — A L iy | T St Ao p— S ee—
Bt — [T] e 1870727 rmme— [1}] DA Tl F1iesererem—
pi——| & = =gallri=l & =ElilaNirsa—=
e = ey LS @ mmay b vy 15 iy H o e
L ey e N ez 220 e | w— i Junlhﬂ e
u— e i
4 . D [} ll..S\\_.. o A.ﬂ.r..r” & v.\“nss\\........!..t..l O anchntt mff; Zonat _..\u\\
o - T et NN e | = = ) NN S ————————
. iD [T AN S e R = N ey
ey 4 AT A
1 (] ety T e B ity T—r e ——————
o e 2] | Vs m B P e e — v/ ) § Dl ey A
b bn b p p 2 EF LS AN e VYY) .ft..l.l...\“ .I;JHHH.....]....:I:I.-. b Pl \__&.)....I\.\\.,\\ aﬂfl.r(r:)..lll
Ryt iy AR R neem—— i o= A’Ll}u»f?ll&i“s e | pes W et aril, m’ﬂuuuu:frit.l
=zzzossiaasiast ””nuuufn.'tr{ll Y] ™ ey ] AN ——— 2 el S AR NS ———
— e e 4 . e ST PP AR g —rtl AR
poRar A AR ”ﬂu;/uuuu;;{i'.r I~ N~ e XSl AN —— [ — ] vt v A A A=t e
v S e [ Y vl AR AN R m—— ———p 1 4 RNy
p—— o R S 1 P ] s i . 1 e A n S—
..ls\\\\\\\:m: ST 1 =W ~=2224 AN ® Ml =20l =
YY) N @ e et Na— TN FEE S St
Pt A = o = TN AN R ) o7 ] IR S —
e Y HhiniaaaeT e 3 ] A = = sy MNn=
— lsz.lllll.l'.I!\ b . —
\““..m“ :”fﬂ.rfl =3 ()] o mmeard 22 1L :ﬂ”/z‘.ll BN oo .-\\\ AN
e . o — l.s\\\\\\\:t__a TN -— o t_: ! Yo
=z | i T W “ ¥
Fitil L i ﬁ E 1N
i : e
L A H A a
.ﬂ — _wo £ T E = e _”u
- ; .
] \ = L
s S
g )= . il _: ) -
A T Ay e UIIIIIIIZ " o S e
= -~ LLI720008008827 =\ _-.\\ - 3 i
lirrzeizz | o i e T s R N zﬁw ="
=\l = ISR nmn Y —— — Py = = a
AN = o S AR ”z ,A W= N L,EEE WiEZE], B iz AT IE 2
=R a3 3 AAMINNIESS]L B JEWWINEZAS 1, ¢ [E SSSSSIZ 2 ls
AT ey A b Ty S AN, //ra e et - [7] - — TR w “\\\\\\\\ﬁl...r L_.-(I Al
TSI T Zhos Q0 Dy e = = = = W T B e A N
Y —
= TS = - e .'l}unt\.. ..a :\\ i g = ez N 3
0 - - T Fenes
=0 I 2 w— i l}ll..z. Pl [l S e o e
] ) ahs18 @ o 1A i .) ” { Lol | oy (] - e
e \n_”.rl - ”f ““ ..........ﬂ u“ (/ ___\\\\\\ oYl — O —n1fee
=\ N I ) e Ny R T @ e R
e vl e = —y
.:/_,“ ahvile m —ZI=1% m e
S e S PR Ty AN e e
“a = N o R v L:,.u & ”.w - ¥ )y ot 2
T FELRRE n.:“.. o ::wﬂ ~ ’ & . v
BT e 4 are . N i o ] et
=R rrt LT ; S :5- 1) o =4 m..\x_:..._:“__:M:..__h.:._“tmmn L | i
o7 ...;\\ 4\\:....___ it ?_ .:tl ___::: ‘C.“ “ . e Inx___ \H\\: e i ______“ Lo nb =y lir a
sl Hil : rrie— y iilid i © -] : O SR Al 13 =l e
AR Lt L o 6 \\\\\\\\\\\\\\\\ll L — e = _ S L L iy [ ¥
Tt 't (o LSS \\\N\\\\\ 4|\.\-.. e . o o o £ £ P i ) ¥l
TR USSRl —"—y) ‘/.,..rllli‘nc.\!,\‘i i my - “ l...““ J”u.. @ l.:./__“
A A ALt It W e ot —
e = N ——— [1}] — AT
AN NS — Pt L A A— = |
Fo) o e = AR A e —— \__ 55551;/1/ - \
S RN = = DA A S ] 8 = ...\\b; T D lit;!.sxt n
ctam e m b d F \ ::ra;fz/;/‘./z i et 2 11 a::::f;f;;/».fl o Yl 1 o — -
ey 1 IEEEET e vy o == , vy Rl AI.\:‘:_. ﬂ 1 Ny J\Q:_
AT | & i WiY] i ! IRy !
S AU AL UL L —3 5 o E
5 = X8 W o = i =
g a m a2 8 H ] - E m ﬁ ] ] ] 2 =
S 117 of - I
AL - Al NI : A
l;z,,::—— ___A._ i t:.&\l o J;ffﬁ t....t_t_\ 24 N\}l w (80 B SN / ] e
- —— Ty - s ——
N =l o WWhidessz=) P i e SR
ALY Hithiteie—1a o LTy 138 ALY T
Tt Hiiirisee— et .I,,uuuuzﬂn S f.\n,aaf,_,.,,h...y”:.{l = I,M. T, L AT
AN Hiitiisseo— - e Yoes vy sz 3 o 5 A — ﬁ. ﬁ h\:\ =
—~maniil HHTT12 72 sesame— iy v} ::V. A ) iy O - 33 oty | (ol -1
=W = T = NS 2 S ENIEZ RS
TR ARAR ALY IR E b ————— p— Ve — — L8 NIy 1 [onmer ] [t
n.ll?;zz//;szuﬁw. _:“tns\\\\xtlll — Ij:!nzun””u”ﬂ. ﬁ__““““u_“\ll n“ hrl - o ] |
ssasARRARL FHEE 4 dr s ermaee—— N ————AR AR L N i ar..rlr — LI FEAsmumniy | L C a
s [ f 1 d e rer e e | a AR AL T\\\:\\!.I o N g— O “\ A
msnnn AN | | [ 1174 v e e N— TN | ([T reeem—— 411180 ennngy ] |\
———— o it ———— R, G — [1h] — JIEdrsse e
AR © s 7l = Y —
I|l.|l.|ll......i....tulza Heeree—— — e N | | e “w el H—1 i) \ \“\\\uu \“ ”( =
—— N ] sl SIS © sreomRayy )| |
oy i) i e i\
= 2 @ e 2SR m o £ IS
21 Vs om w2 Vanne \“ ”f - whane o ”H
" I PP — e b 0, R e 4
e N e PO ceesmmmtyieeryyy 1 1 [ 1O et | ”n.r. & o :— it ~r z: ,:_bdu JHNS
B et L 1 L RA RS swm— {1 o B L A ARy vy | ) | bl 7.3 e TR tilzz W9 = . _\ w_
e 1 T N VA A e v By A LA | EER S m— . I T ! _zx.lxttxr o T, 2N i M:._tr
Bt L e T S 1) ) 5 et AN NSNS 22 )0 e wa A e L 4834 a0e=
A R [ ——— Y Y T £ 4 4 s B T RGO R R RSyl { R ot St O RNzl i a1l e s
||\§\\.C~\\}_______.“ LA RS R v — w mmmme e PELEFFER R LD Lt st [(»] e T IR AT eI e ] e A L e £
P % e |- et AP L PP LI 1A N =] 1 — Il S_J ey Tl | L LA e St 3 1 lfl...fliii\\\\\\\\\\lrl
et b p AP PP ISP _“::a/;ff{.il.r 1 et p PRSP RN VS vy Yyl LRSS ——— [44] — I;..\:_ Lo
et 2L PP EE ] TELIAA A A e @ Y YT TN L S — [14] S V) _w___\sxx_________ LA — — _* AN e e
l\\\\\\\\\\wuhh #——_a‘atf/#lt!rl LN AR R L — — — fl\\_‘“ 1 “ PREETY LR T — u _._ l\_:. wtllffll.r.{ll.{l.rfl!lj.-f
e NN T ._ AL LA A s e il\\:_______..________; AL Y e 35 pmmesu s L N R R R T IR R R RN el BN iu}.lli\\:— -:;zzzz/f,/.,urr;;...r{i.
—t P LELLINRNY ERRREE R TS0 e = e r PP ET LR RS C— e ) IEei _. ::”4”...1 (o)) mmp s P u:”::’”””ﬂ”t.”ﬂﬂ”ﬂﬂ»f
=i s = A Hiinns o k\tl.:q: _ { 2: ”:.r o \\\EQN:: : :.3: ._._3::____.:.#
iy 2 il LA I o (AL Il W] w i
¥ ! =% : bl e — e T ) e
Sreckiivecss . . HL R § o 2 R
¢ 8 8 8§ ®§ T g w° $° 84 8 & & =2 =8 & @ B _8.

Thatal

Belief field, t18.

Figure-7.5

Belief field, t12.

2095

Figure-6.2.5

Belief field, t45.

Figure-6.1.5
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Belief field, t18.
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