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ABSTRACT

This paper examines the roots of purposive behavior in an agent
surrounded by a stationary unknown environment. The investigation
focuses on deriving a structure for a behavior generation mechanism
(BGM) that would semantically embed an agent in the context of its
environment. The BGM is made to adhere to the situated, embodied,
intelligent, and emergent requirements that were suggested by Brooks
[14] for the construction of intelligent control architectures. Concepts
from epistemology, artificial life, hybrid systems, and the potential
field approach to planning are used. The suggested BGM utilizes
both experience and synergy as drivers of action selection. The BGM
is intended for use in the specific case of motion planning for a
multidimensional agent of arbitrary shape operating in a
multidimensional, unknown environment. 

1. INTRODUCTION
The demand is increasing for the construction of agents able to tackle
environments that deny an operator  both informational and physical
access. Two examples of the above are: underwater sea exploration
where due to the severe attenuation high frequency electromagnetic
waves experience by water no communication link between the
exploring agent and the operator may be possible. The other involves
planetary exploration where long delays in information transmission
severely hampers the communication process. Obviously, an agent
operating under such conditions cannot rely on guidance from the
operator to avoid hazard or to proceed towards its goal. To
complicate things more, the agent may not have the benefit of
utilizing experience in steering its actions. In such situations failure
to properly act the first time may lead to damaging the agent (a swim
or sink situation). These restrictions do not only rule out
active-guidance where the operator online steers the actions of the
agent, it also include indirect guidance that assume the form of
algorithms implanted into the agent to steer its actions in a manner
that meets the acceptance of the operator who designed these
algorithms (not, necessarily, the demands of the environment.) For an
agent to be fully autonomous it must be able to meaningfully embed
its actions in the context of its environment. Some of the concerns
which this gives rise to are:

1. The compatibility of the environment representation with the
manner by which the agent makes decisions and actuate motion,
2. The informational adequacy of the representation (i.e. does the
representation encode enough information to generate a successful
action, 
3. If needed, the ability to augment the available information to, at
least, the minimum level that is needed to execute the task,
4. The ability to convert the acquired information into successful
actions. 
The agent may be operating in a known or an unknown environment.
To understand the difference between the two cases, it must first be
noticed that a form which an agent uses to represent its environment
is an instrument for encoding the information (I1)  that is available
about that environment. On the other hand, a representation that
assigns an action to every point in the space of possible events is
constructed by encoding the same information contained in the input
representation using a format that suits the agent's actuators of
motion. In a known environment the amount of information that is

needed to construct a successful action-representation (I2) is bounded
by the amount of information in the input representation (I1>I2). For
this case, the controller plays the role of a format changer that
converts part or all of the information contained in the representation
to a form that is compatible with the task of motion actuation. As for
the unknown, or partially-known environment case, the information
encoded in the environment representation is less than that which is
needed to execute the task (11<12). Therefore, format changing alone
is not enough to generate a successful action representation to guide
the motion actuators  of the agent. Here, the agent is required, along
with format changing, to perform the paradoxical task of learning (i.e.
getting to know what it does not know). An area of research that falls
under the above is motion planning for an agent in an unknown
stationary environment. Here, an agent is required to lay a safe path
to a stationary target relying only on the local information that is
sequentially being acquired by its finite range sensors. It must be able
to coherently tie the stream of fragments of sensory data in a manner
that permits the generation of a continuous stream of instructions to
the actuators of motion. The structure of such a stream is required to
successfully embed the agent in its environment. One approach that
has significantly influenced the above area is traditional AI [1-3].
Methods utilizing this approach must have a discrete abstract model
of the environment followed by a search for a feasible action plan.
Unfortunately, model-based approaches can provide, at best, a costly,
precarious performance. The reactive approach to motion planning
[4] bypasses the above difficulties by coupling the sensors directly to
the motion actuators. While this approach is fast, robust, and easy to
implement, it is only able to tackle simple tasks. Attempts to increase
the complexity of the tasks tackled by the reactive approach focused
on utilizing it within the context of high-level, model-based symbolic
reasoning [5]. Petrov and Sirota were, probably, the first to suggest
a provably-correct, sensor-based motion planner that can guide a
robot of arbitrary shape in an unknown environment using highly
localized sensory data. In [6] the planner was developed for the 2-D
environment. Later in [7], the planner was generalized for the 3-D
case.  Lumelsky suggested a similar approach that uses local sensory
data for guiding the motion of a point robot in a 2-D space [8].
Unfortunately, extending the approach to the 3-D case [9] was not
successful. 

To adapt to structural changes in the environment, learning
techniques are suggested. Despite their diversity [10-12] the present
learning techniques are unified in their reliance on experience as the
driver of action selection. As was discussed earlier, the type of
environments which an agent is required to operate in rules out
experience as the only  mechanism for action selection. Despite the
popularity of the traditional AI approach, its fitness to synthesize
autonomous and intelligent behavior is being seriously questioned
[13]. Brooks believe that for a successful grounding in physical
reality, the agent must be situated, embodied, intelligent, and
emergent [14]. An architecture for  mobile agents that satisfies these
requirements, the subsumbtion architecture, was suggested in [15].

This paper  examines the construction of a BGM that would allows
an agent of  arbitrary shape to move to a stationary target in a
workspace that is populated by unknown, stationary forbidden
regions. The BGM is required to adhere to the situated, embodied,
intelligent, and emergent requirements that were suggested by brooks.



It is also required to satisfy the four conditions that are stated at the
beginning of this section. Ideas from several areas are used in the
development, namely: hybrid systems [16,17] which combine both
continuous and discrete phenomena in behavior generation., artificial
Life [18] which emphasizes that information can be generated from
the interaction of a large number of elementary processes, and
potential field method for motion synthesis [19], in particular, ones
that utilize a potential field in the context of a Partial Differential
Equation, Ordinary Differential Equation (PDE-ODE) systems .
Finally, ideas from self, and self-monitoring in an agent are used
[20]. These areas are used to develop three concepts that are of
central importance to constructing the BGM. These concepts are:
parallel-distributed representations which are used instead of discrete
symbolic ones, a potential field expressed in the context of a
PDE-ODE system is a Self-referential, Intelligent, Massive, Parallel,
Distributed (SIMPD) machine, and the concepts of autonomy, self,
and self-monitoring. This paper is organized as follows: section 2
contains problem formulation, the concept of distributed
representations, SIMPD machines, self and autonomy followed by the
structure of the BGM are discussed in section 3. Conclusions are
placed in section 4.

2. PROBLEM FORMULATION

 The BGM assumes the form:           (1)x u
•

=

where u is the control input (u0RN), and x and  are anx
•

N-dimensional position and velocity vectors (X 0RN). O is a set of a
priori unknown regions in RN which the agent is required to avoid,
' is the boundary of O ('=MO), and S is the workspace which the,
agent is permitted to operate in (S=RN - O).  Let ' ` be a subset of '
that is a priori known to the agent (Nf' `f'). Let Q be the state of
a Discrete Event System (DES) [21]. At any time Q must assume a
value from the binary set {0,l}. Such a value depends on the event the
local sensors register regarding the possible future position of the
state X+(t+dt), There are two events, either X+ is in S (X+óO) which
for this case Q assumes the value 0, or X+ is in a forbidden region
(X+0O) where Q is 1. The value of Q is driven from 0 to 1 at time ti

by a combination of the current belief which the agent is using to
direct its actions, the remaining unknown part of  ' ('-' `), and the
location of the target. The, opposite transition in Q from 1 to 0 occurs
at ti`and is caused by the modified belief which the agent uses for
directing its future actions (u). Although Q experience discrete jumps,
the cause of these jumps is continuous. Therefore, the planner must
have a hybrid, continuous-in-time, discrete-in-time  nature. Here
action selection is  carried out by a continuous process. The discrete
phenomenon is manifested as a pattern drawn on the continuous
process. The agent react to the X+0O event at ti by modifying its
belief  so that a transition of Q from 1 to 0 occur at ti `. The belief is
denoted  by the vector field fi(x,T,Q,fi-1) (fi 0RN ). fi maps the hybrid
situation space (x×T×Q×fi-1) into the N-dimensional, continuous,
action space (u), where the index i represents ti, and T is the target
set. For successful action, the agent is required to synthesize a finite
set of successively dependent fi's ({fi :i=l,..,L<4}) so that:

x f x T Q fi i

•

−= ( , , , )1

                  x(0) = x0 0S, f0 = f (x,' `,T), i 0 [1,..,L]

where                           t 0 [t0, ....4)                , 
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and       x(t) 1 O /N œ t.                                 (2)

3. ESSENTIAL CONCEPTS
3.1: Parallel-distributed Models
Implicit in the ability of an agent to plan is its ability to test the

outcome of an intended action prior to executing it. A representation
or a model may be looked upon as the crystal ball which the agent
uses to view the possible future from the present. One approach to
constructing a representation is the discrete symbolic approach. To
construct a discrete symbolic model of an environment, first,
similarity grouping is used to partition the environment into
homogeneous components that are perceived as unities. Each part is
then modeled and assigned an icon or a symbol. These icons are in
turn related to each other using a hierarchical set of rules so that the
behavior of the resulting discrete automaton satisfactorily mimics that
of the environment. One difficulty facing this approach is its inherent
subjectivity which stems from the ambiguous notion of similarity.
Similarity is heavily reliant on the psychology of the agent that is
doing the partitioning, the task which the representation is
constructed for, and the amount of information that is a priori
available. This is a serious obstacle in attaining universality which
allows a wide range of agents to use a representation for a wide class
of tasks. Another difficulty is encountered in inducing the relations
among the symbols from an observed behavioral segment of the
environment. Even if the selected segment of behavior is "rich
enough" to encode all the latent relations governing behavior, the
decoding process can never guarantee that the encoded relations are
properly extracted. While surface relations may be accurately
modeled, the accuracy deteriorates as in-depth relations are sought
after. Since discrete symbolic representations are hierarchical in
nature, they face the additional difficulty of determining the depth of
such behavioral hierarchy. Also in partitioning an environment into
similar components and assigning each component a symbol there is
the implicit assumption that the environment is stable enough to
allow no changes in the structure of the symbols. Any change of such
a sort requires the elaborate relation extraction process to be
performed all over again. Unfortunately, realistic environments are
unlikely to support this requirement. Representing an environment as
a group of discrete heterogeneous entities that are glued together via
a hierarchical set of relations is a long standing tradition in
philosophy and science. There is, however, an opposing, but less
popular, camp to the above point of view stressing that
representations should be indivisible, and homogeneous. Such an
argument can be traced back to the early Greek philosopher
Parmenides [22] whose ideas were vehemently rejected by Plato (a
strong supporter hierarchical symbolic reasoning). Later Zeno (a
student of Parmenides) paused his famous paradoxes [23] to show the
logical contradictions that arise as a result of dividing a physical
process into parts. Distributed representations has already found
supporters among modern mathematicians, system theorists, and
philosophers. Norbert Wiener said "The identity of a body is more
like the identity of a flame than that of a stone; it is the identity of a
structure, not of a piece of matter" [24,25].  In [26] Lefebvre viewed
an entity or a process as a wave that glides on a substrate of parts
where the relation between the two is that of a system drawn on a
system. And in [27] Campbell argues against the hypothesis that
geometrical symbols are used by creatures, to model the environment
that they want to navigate. He postulate the existence of a more subtle
and distributed representation of the environment inside the agent.
Also experiments by psychologists in the manner by which animal
and children navigate their environment seems to support the
distributed representation hypothesis [28]. It is obvious that there is
a strong reason to consider the separation between the identity of an
entity or a process and that of its parts (carrier), and to seriously
question the belief that a representation of a process may be
deconstructed into parts and relations then reconstructed back without
distorting the identity of that process. With this in mind, the
following guidelines are used for constructing a representation:
1- A representation is a pattern that is imprinted on a substrate of
some kind.



2- The substrate is chosen as a set of homogeneous, simple, automata
that densely covers the agent's domain of awareness. This domain
describes the state of the environment and is referred to as state space
(X).
3- The representation is self-referential. A self-referential
representation may be constructed using a dense substrate of
automata that depicts the manner in which an agent act at every point
in state space. Self-referential representations are completely at odd
with objective representations. They are a product of the controversial
stream of philosophy (originated by Socrates), and theory of
knowledge (epistemology) [29-32] which stresses that ontological
(absolute or objective) reality does not exist, and any knowledge that
is acquired by the agent is subjective (self-referential.)
4- In conformity with the view that objective reality is unattainable,
a representation is looked upon as merely a belief. Its value to an
agent is in how useful it is, not how well it represents its outside
reality. Therefore, a pattern that evolve as a result of a self-regulating
construction is at all phases of its evolution a legitimate
representation.

3.2: A Potential Field Expressed in the context of' a
PDE-ODE System is an SIMPD machine.
A machine is a two-port device that consist of an operator port, an
environment port, and a construction that would allow a goal set by
the operator, defined relative to the environment to be reached.
Despite the significant advances that technology underwent since the
first industrial revolution, machines, mainly, remained reliant on the
operator's intellectual labor for instructions on how to deploy the
actuators of motion so that the goal is reached. In essence a machine
is reduced to mere "muscles" of the operator, predictable, and
obedient. It seems that the attempts of CYBERNETICS to attach a
"true brain" to these muscles were forgotten [33]. CYBERNETICS
[24,25], or as Wiener defined it: "communication and control in the
animal and the machine," contradicted the belief that intelligence and
purposive behavior is a monopoly of the human race.
CYBERNETICS is based on the controversial conjectures that a
machine can learn, can produce other machines in its own image, and
can evolve to a degree where it exceeds the capabilities of its own
creator. It is no longer necessary for the operator to generate a
detailed and precise plan to convert the goal into a successful motor
action. The operator has to only provide a general outline of a plan
and the machine will fill in the "gaps"; hence confining the operator's
intervention to the high-level functions of the undergoing process.
Such functions dictate goals and constrain behavior. The machine is
supposed to transform the high-level commands into successful
actions. CYBERNETICS unifies the nature of communication and
control. It gives actions the soft nature of information. To a cybernist
a machine that is interacting with its environment is an agent that is
engaging in information exchange with other agents in its
environment. In turn, a machine consists of interacting subagents, and
is an interactive subagent in a larger machine. A controller which
forces an agent to comply with the will of the operator is seen as an
encoder that translates the requests of the operator to a language the
agent can understand. Therefore, an action is a message, and a
message is an information-bearing signal or simply information.
Accepting the above paves the way for a qualitative understanding of
the ability of a machine to complement the plan of the operator. Let
an information theoretic approach [34,35] be used to examine two
agents that are interacting or, equivalently, exchanging messages.
Assume that the activities of the first organism has Ix equivalence of
information, and that  the second has Iy. Although what is being
contributed by the interacting agents is equal to Ix+Iy (self-
information), the actual information content of the process is
Ix+Ixy+Iy, where Ixy is called mutual information. While the
measure of self information is always positive definite (Ix=-log(Px)

,Iy=-log(Py)), the measure of mutual information (Ixy=
log(Px,y/(Px.Py)) is indefinite (Px and Py are the probability of x and
y respectively, and Px,y is their joint probability). In an environment
where carefully designed modes of interaction are instituted among
the constituting agents, the net outcome from the interaction will far
exceed the sum of the individual contributions

Ix + Ixy + Iy  o Ix + Iy.                      (3)
On the other hand, in "screwed up" environments the total
information maybe much less than the self-information (an interaction
that paralyzes the members makes Px,y/ 0, and Ixy 6-4). It has been
shown experimentally and by simulation that sophisticated
goal-oriented behavior can emerge from the local interaction of a
large number of participants which exhibit a much more simplistic
behavior. This has motivated a new look at the synthesis of behavior
that is fundamentally different from the top-bottom approach.
Artificial Life (AL) [18] approaches behavior as a bottom-up process
that is generated from elementary, distributed, local actions of
individual organisms interacting in an environment. The manner in
which an individual interact with others in its loca1 environment is
called the Geno-type. On the other hand, the overall behavior of the
group (Phenotype, or P-type) evolves in space and time as a result of
the interpretation of the Geno-type in the context of the environment.
The process by which the P-type develop under the direction of the
G-type is called Morphogenesis [36].

To alter its state in some environment an agent (from now on is
referred to as the operator) needs to construct a machine that would
interface its goal to its actions. The machine (or interface) function to
convert the goal into a sequence of actions that are imbedded into the
environment(u0, u1,..,uL). These actions are designed to yield a
corresponding sequence of states (x0,x1,..,xL) so that the final state xL

is the goal state of the operator. The action sequence is called a plan
and it is a member of a field of plans (Action field) that densely
covers state space so that regardless of the starting point (x0), a plan
always exist to propel the agent to its goal. To construct a machine of
the above kind the operator must begin by reproducing itself (this is
explained later in this section) by densely spreading operator-like
micro-agents at every point in state space (Figure-1). The only
difference between the operator-agent and an operator-like
micro-agent is that the state of the Operator evolves in time and space
while the state of the micro-agent is stagnant and immobilized to one
a priori known point in state space. The second part of machine
construction is to induce the proper action structure over the
micro-agent group. It is obvious that a hierarchical, holistic,
centralized approach for inducing structure over the group entails the
existence of a central planning agent/s that is/are not operator-like.
Including such an agent in the machine violates organizational
closure, i.e. the restrictions on intelligent machines receiving no
influx of external intelligence to help them realize their goals. In
other words, the agent is must be able to lift itself from its own
bootstraps. By restricting the forms of the agents constituting the
machine to that of the operator, an AL approach does not require the
intervention of any external intelligence to help in the construction of
the machine. An AL approach, which is decentralized by definition
(i.e. no supervisor is needed), requires a microagent to locally
constrain its behavior (Genotype, or G-type behavior) using the
information derived from the states of the neighboring microagents
(Figure-2). Unlike centralized approaches where each micro-agent
has to exert the "correct" action in order to generate a group structure
that unifies the micro-agents in one goal-oriented unit, an AL
approach only requires the microagents not to exert the "wrong"
action that would prevent the operator from proceeding to its goal.
Obviously, not selecting the wrong action is not enough, on its own,
for each micro-agent to restrict itself to one and only one admissible
action that would constitute a proper building block of the global



structure that is required to turn the group into a functional unit. In
an AL approach, the additional effort (besides that of the G-type
behavior) needed to induce the global structure on the micro-agents
is a result of evolution in space and time under the guidance of the
environment. This interpretation or guidance is what eventually limits
each micro-agent to one and only one action that is also the proper
component in a functioning group structure.

             

Figure-1: An interacting collective of micro-agents.

To construct a machine that operates in an AL mode, the operator
must have the means to:
1- Reproduce itself at every point in state space. 
2- Clone the geno-type behavior in each member of the micro-aqent
group.
3- Factor the environment in the behavior generation process. 
Self-reproduction is accomplished by densely covering state space
with micro-agents described by the dynamical system

                       (4 )x f x ui

•
= ( , )

where xi. is the a priori known location of the i'th micro-agent in state
space x0RN (i.e. xi. is a constant), u is the action (control input) under
the disposal of the micro-agent (u0RM, M # N), and x is the change
that micro-agent i (located at xi.) can induce in the state of the operator
so that it is driven to Xj, where

                     (5)x x dt x xj i i= + ⋅
•
( )

                
Figure-2: Layers of functions in an interactive micro-agent. 

and dt is an infinitesimal time unit. The fact that the state of a
micro-agent is immobilized makes x totally dependent on the
characteristics of the system and the selected action u at point xi .
Therefore a micro-agent can be exactly represented by its action at
each point in state space. Here, creating an action group begins by
covering the state space with a potential field  that has locally (point
wise) extractable vector features homogeneously covering the domain
of the field. The selected vector features are determined by the vector
partial differential operator which operate on the potential field to
induce the vector describing the action of the micro-agent. While
there are no constraints on the dimensionality of the potential field
the dimensionality of the vector operator must be equal to the
dimensionality of the action (control) space so that an onto,
one-to-one correspondence between the induced vector and the

operator's action may be established. By applying the vector
differential operator to the potential field everywhere in state space,
a collective of micro agents is constructed. The second step in
machine construction is to provide each microagent with the ability
to generate a proper G-type behavior. G-type behavior is a
self-behavior where a micro-agent does not attempt to influence the
actions of any of the micro-agents it is interacting with. Instead it
forms a soft informational coupling with them where it only observes
their behavior then uses it to derive a self-action that governs its and
only its behavior in state space. The above may be achieved by
constraining the vector partial differential operator (P) that describes
the actions of a micro-agent using a partial differential operator that
is defined in state space (L). Unlike P, there are no restrictions on the
dimensionality of L. As for the last requirement, the effect of the
environment may be factored into the behavior generation process as
state boundary conditions in which a micro-agent synthesizes the
action that would constrain the behavior of the operator to an a priori
known one that is released upon encountering a certain situation in
the environment. The above three steps for building an intelligent
machine describe a Hybrid PDE-ODE system (Figure-3). Therefore,
a potential field expressed in the context of a PDE-ODE system is a
Self-referential, Intelligent, Massive, Parallel, Distributed (SIMPD)
machine. For more details about the structure in Figure-3 see [19].
Figure-4 demonstrates the ability of an SIMPD machine to generate,
without any external assistance, the necessary in-formation which the
agent needs to reach its goal. It also demonstrates the counter
intuitive fact that order can emerge from disorder, where the random,
senseless actions that are initially assigned to the group evolve into
coherent goal-oriented ones.
        

Figure-4: structure of  a  potential-based path-planning technique. 

3.3 AUTONOMY
To achieve autonomy an agent must be:
1- Aware of its environment,
2- Aware of itself as a distinct entity in the environment,
3- Have the ability to formulate goals,
4- Have the Ability to bridge the gap between the mental world,
where the above three take place, and the physical world where
actions take place,
5- Have the ability to construct a plan.

The above requirements are the basis for constructing cohesive
modules that are capable of self-motivation, self-monitoring,
self-organizing, and self-steering etc. It is obvious that the concept of
the self is of central importance to constructing such modules and a
precise technical definition of the self is needed in order to build an
autonomous agent. Unfortunately, this important concept is plagued
with problems. To begin with, the self is not a uniquely defined



concept. It may refer to two different phenomena [20]:

1 "Self as an organization of the entity where the self is a denotation
of the synthetic individuality and autonomy of an organized system",
2- "Self as a subject that reflects upon its "self". The self in this sense
is conceived as a kind of separate sub-entity that observes ones self."

The first is called the "self" and the second is called the "I" or the
"ego" where the I is the self observer". Some of the I's known
functions are to recognize the self by making the distinction between
the agent and the environment. It also keep a conscious
self-monitoring where it emerges if a dissonance occur and dissipate
if a mastered, coherent plan is active. While the self may be defined
as the body of the agent and any physically measurable processes in
it, the problem of what the I is and "the emergence of its activities in
which the ego not only distinguishes its "self" as the object among
other objects but sees and speaks about its "self" as the originator of
an action is still unresolved" [20]. To complicate things more, the
coupling between the two (i.e. how apprehension turns into reality)
which is known as the mind-body or mind-brain problem is still at a
very undeveloped stage [37,38].

          
Figure-4: Evolution of structure in an SIMPD machine. 

While achieving autonomy seems to be faced with serious challenges,
a useful mild form of autonomy which is called here Pseudo-
autonomy is achievable. Pseudo-autonomy bypasses the problematic
concept of the ego by permitting the initial intervention of an external
agent to set the dimensions of the self (i.e. define what separates the
agent from its environment; it also tells it what means under its
disposal to affect its environment). Despite the lack of a precise
definition of the I, the little available information characterizing its
behavior combined with the concepts of an SIMPD machine and
Parallel-Distributed representations are enough for building a useful
pseudo-autonomous BGM. One of the fundamental assumptions the
BGM is based on regards the physical environment as the inducer of
a subjective (self-referential) form that appears in the mental
environment of the operator. This form is used as a descriptor of the
environment. The environment remains as an unattainable reality that
cannot be objectively characterized. On the other hand, the agent is
assumed to have a dual nature (i.e. it has two interconnected parts:
one that belongs to the objective environment, and the other belongs
to the subjective, mental, environment). Inside and only inside the
subjective environment of the agent the activities pertaining to
behavior generation can take place. The proposed BGM uses an
SIMPD machine to substitute for the mental environment of the
agent. The SIMPD machine transforms the goal, constraints on
motion, and the initial knowledge the agent has about its environment
into a continuous sequence of instructions that the agent uses to
direct its actions so that the reaction of the environment can cause the
desired change in its state. On the other hand, the SIMPD machine
receives two feedbacks from the operator: a continuous one, and a
discrete one. The continuous feedback provides the SIMPD machine
with the current location of the agent in state space. This location is
measured with respect to the goal using a subjectively constructed
coordinate system. As for the discrete-feedback, it is supplied at
random instants in time. Its presence is indicative of a dissonance
situation. Dissonance is a generic term that indicates an irregularity

in the agent’s internal functioning, a mismatch between outcomes and
expectations, or the presence of hazard in the vicinity of the agent.
Once dissonance arise, the agent immediately stops using the action
instructions that are based on the current belief that was already
falsified by the rise of dissonance. At the same time, the dissonance
signal sets the SIMPD machine in a self- organizing mode to generate
a dissonance-free action plan that is based on the new modified
belief. Figure-5 shows the structure of a BGM that behave in the
above manner. 
     

 Figure-5: The suggested BGM

4. CONCLUSIONS: 
In this paper an epistimologically-correct structure for behavior
generation is suggested for the purposive integration of an agent in a
stationary environment. Unlike existing structures where centralized
modules separately handle representation, control, communication,
reasoning, and information processing, the suggested structure
distribute these faculties on a massive number of elementary agents
where each locally and simultaneously perform the acts of
communication, reasoning, and motion actuation. The global
function-patterns that are needed to semantically embed the agent in
its environment emerge as a result of the constructive interaction
among the elementary agents under the guidance of the environment.
Such a manner for generating action provides high robustness, high
flexibility, and true intelligence.   The suggested structure was used
as a basis for developing a variety of intelligent controllers capable
of planning motion for single or multiple agents under different
assumptions and in a variety of situations [39-46]. 
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