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ABSTRACT

In this
designing M-D linear-phase FIR digital filters with
The method is
based on the WKS sampling theorem (a more general

paper a new method is proposed for

arbitrary magnitude specifications.

form of Shannon sampling theorem). The main feature
of the method is its ability to dissociate, to a
great extent, complexity from the order and dimensi-
onality of the filter.

provided; the results are compared to those of the

Some design examples are

optimum Minmax approximation.

I. INTRODUCTION

All of the currently available optimization-based
techniques for FIR filter design face serious probl-
f1l.

complexity grows very fast with the increase in the

ems when extended to the M-D case Design
filter order and/or dimensionality. Techniques were
proposed to alleviate this problem [2]. However,
this gain was achieved at the expense of either
sacrificing freedom in choosing the desired charact-
eristics or degrading the approximation quality. The
main reason for this increase in design complexity
is that all the proposed optimization techniques
operate directly on the filter coefficients. As a
result design complexity becomes strongly dependent
on the order and dimensionality of the filter. To
this
manipulates the filter response by controlling a

weaken dependence, the proposed scheme
set of variables other than the filter coetficients.
The interrelations between the controlling variables
and the coefficients is achieved through a set of

well-defined rules.

Here, a method based on the Whittaker, Kotelni-
kov,Shannon (WKS) Sampling Theorem [3] is proposed
for designing FIR digital filters. As will be seen
if the method

later is appropriately confiqured
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design complexity can be isolated to a large extent
from the order and dimensioanlity of the filter.
Although complexity is greatly reduced, approximat-
ion quality remains acceptable compared to that of
the optimum Minmax approximation.

The paper is organized as follow. In section II
the WKS approach is developed. In section III the
the control parameters are stated, section IV gives
some design examples, with conclusions given in
éectlon V.

I1I. THE WKS APPROACH

1t is well known that Shannon's sampling theorem
[4] is used to construct bandlimited functions from
their samples, provided that the samples are taken
sufficiently close. The construction is carried out
by introducing at the specified frequency samples
pulse-like interpolating function (Drichlet kernels)
scaled to the value of the specifications at these
samples. Since FIR filters are characterized by a
time-limited pulse response, and a real magnitude
frequency response, the Shannon sampling theorem can
be adapted (through the use of duality between the
time domain and the frequency domain) to design
FIR digital Indeed, the
frequency sampling method [5] already proposed for
FIR filter
Shannon's theorem. Due to the nature of the Drichlet

kernel and the fact that the majority of characteri-

lineax-phase filters.

design bears great resemblance to

stics are not time-limited, Shannon's theorem is not
expected to yield very close approximation. still,
the approximation quality can be improved without
introducing any inconvenient modifications to the

basic body of the sampling theorem.

A new version of the sampling theorem, called the
WKS theorem is used in the design. In essence, the

WKS theorem is the same as Shannon's theorem with
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the exception that the Drichlet kernel is replaced

with other kinds of kernels (Figure 1) with more

desirable convergence properties. According to the

WKS theorem a frequency response H(w) can be
reconstructed from the samples of the desired
characteristics (Hy(w)) by using the following
interpolating formula :
H(w) = Lim F Hylo,) 8w - )
Rt Y-S (1)

where &(w) is the interpolating kernel. It should be
noticed that the time domain representation of &(w)
A list of
kernels and the corresponding window function can be
[61.
theorem is the ease and the straightforwardness by
For this

is the well-known window function W(n).

found in One important property of the WKS
which it can be extended to the M-D case.
case the response is constructed the same way as in

the 1-D case with the only exception that the

building blocks are multidimensional kernels
constructed by cross multiplying M 1-D kernels. The
interpolating formula used to construct an M-D

response is :

M
H(we, . oM)=F, .5 Hy(way,, . oM )] Silwi-wig)

ky k“ L=t

(2)

The Pulse Response

In this section a realizable pulse response based
on (2) is derived. Emphasis is placed on the 3-D

even symmetric case :

Applying the M-D Inverse Discrete Fourier

Transform to get the pulse response, we have :

h(ms,.,mM) F i (H(w1,.,0M))

M
= F71( r..x Hd(“"ki'"“mku)'n Fi{wv - w‘kt) )
k1 kM i=1

M
LoD Hgloty o ,om N TP 8 (0l - wig))
kt kM i=1

M
i Dowipm
=1

MW (m (.. Hy(wty,,. oM, ) e
i=1 k1 kM
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The 3-D Case

For the 3-D case (3) reduces to :

h(n,m,q)=W(n)W(m)W(Q)LEL L Hy(ws, 02,03, )"
1§ k

(cos (w1, ntwz jmtws, )+jsin(we; ntwz jmiws,q))
To obtain a real symmetric frequency response, the
pulse response is constrained to :
h(n,m,q) =h(-n,m,q) = h(n,-m,q) = h(n,m,-q)

The resulting pulse response is :

h{n,m,q)=W(n)W(MW(Q)L T L Hy(w1; ,wz;,wa )"
ij k
cos(wtln)cos(wzjm)cos(wakq)
Obviously, the 2-D response is a special case of the

above.

The Real Building Blocks (RBH)

If the pulse response is constrained to be real,
the building block the

frequency response is no longer a simple kernel.

constructing magnitude
Instead, it becomes a set of kernels situated at the
corners of a hypercube. For the M-D even symmetric
case the RBB consists of 2™ kernels; with a time
domain representation expressed as :

M
T W (mi) - cos(wi, "mi)
i=1

and corresponding frequency domain representation :

1 1

L . D8w + (-1) 01, . oM + (-1)Momp
11=0 LM=0
where M
E(w1,.,0M) = 1 Ei(wi)
=1

These blocks have to be scaled by a factor of 277,

where r is the number of wi;'s equal to zero.

III. Control Parameters

In order to use (3) in the design, the following
must first be specified :
1. The dimensionality of the filter, 2. The desired
characteristics, 3. both
stopband (&_) and passband (&,), and 4. Either the
transition width (TW) or the filter order.

Maximum deviation in



The parameters to be manipulated :
1. The type of the
controlling it (if any), 2. The number of RBB used
The location of the

kernel and the parameters
to construct the response, 3.
kernels in the M-D frequency space ().

Kernels can be allocated in any order as long as
the symmetry that produces real pulse response is
preserved. In order to control the degree of
coupling between the optimization variables and the
order and dimensionality of the filter a structured
scheme for allocating the kernel (a grid) has to be
adopted. In the following two coordinate systems are
provided to allocate the kernels. The coordinates

are given for the 3-D case.

a. Rectangular coordinates :
The location of a kernel in the wiwzws space (€ )
can be written as :

_—)

> >
Qu’k = ot w2+ w w3

where o. is a unit vector in the i'th direction.

b. Spherical coordinates.

The location can be written as :

Quk=ri(sin(6j)cos(yk)31 + s5in(8j)sin(ry) *z

+ cos(ej)aa )

the 2-D case is easily obtained by placing 8;=n/2.
Other coordinates can, also, be used to allocate the

kernels, see [71].

Iv. EXAMPLES

Circular 2-D L.P.F.

The following ideal characteristics are to be

approximated :

1 0 < v w1? + w2? ¢ .4n

Hylos,w2) =
0 else where

The following 2-D polar grid is used to allocated

the kernels:

YRR
R, “t

2

s :
R, JJws + sin(

Q= Ar - (cos/(

i
where 3y

R, = INT(2r/cos™(21%-1)/21%)

The separation between the concentric circles Iis
taken equal to that between successive kernels on
each circle. The filter has an order of 11lx1ll. The
Chebychev kernel (o=2) is used in the realization :

B(w) = cos(N-cos™*(B"cos(—5-)))

B = cosh(—%—-cosh"(C)) , = 10%

The results obtained using the proposed method are
shown in Figure 2 for Ar=,2m. The Transition Width
(TW) is equal to .213m, and the maximum error (&) is
,0406, The result of the optimum Minmax approximati-
on [1] is shown in Figure 3, TW=.2m, and &=.0569 .

Rectangular 3-D L.P.F.

The following characteristics are approximated using
the proposed method :

1 0 <o}, |w2],|ws|S .47

0 else where

Hy(w1,02,03) =

a rectangular ¢grid with uniform separations (Aw) is
used, Chebychev kernels (o=2) are used as a building
block. Results are shown in Figure 4. The filter
order is 11x11x1l, and Aw=,2857 .

V.  CONCLUSIONS

A fast, simple, and efficient method based on the
WKS sampling theorem is proposed for the design of
M-D arbitrary magnitude, linear-phase, FIR digital
filters. The structure of the method allows the use
of apriori information in the design. Such a feature
nakes it possible to control the degree of interrel-
ation between complexity, order, and dimensionality
of the filter to the degree of complete isolation.
As can be seen in Example 1 a reasonable choice’ of
the kernels location (with no use.of optimization)
can produce acceptable results
It must be mentioned that

more work is still required in order to further

(compared to the

Minmax approximation).

investigate and fully exploit the proposed method.
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Flgure 2 : A circular L.P.F designed using the

proposed method.
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Figure 4 :

Figure 3 : A Circular L.P.F designed using Minmax
approximation.
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A 3-D rectangular L.P.F designed using
the proposed method.



