$B=\mu H=\mu n I=\mu \frac{N}{d} I$
$\psi=B S=\mu \frac{N}{d} I S \quad \Rightarrow \quad L=\frac{\Lambda}{I}=\frac{N \psi}{I}=\mu \frac{N^{2}}{d} S$
Where N, d and S are the number of turns, length, and cross-sectional area of the solenoid, respectively.

$$
L=\mu \frac{N^{2}}{d} S=\mu_{0} \frac{\left(10^{3}\right)^{2}}{0.4}\left[(0.05)^{2} \times \pi\right]=1.9635 \times 10^{4} \mu_{0}=24.67 \mathrm{mH}
$$

The core material is assumed to be air, because the problem does not mention the material filling the core.

Problem 8.34

For a toroid whose mean radius ρ_{o} is much larger than the dimensions of the core, we have:

$$
\begin{aligned}
& H=\frac{N I}{l}=\frac{N I}{2 \pi \rho_{o}} \Rightarrow B=\mu H=\mu \frac{N I}{2 \pi \rho_{o}} \quad \text { (uniform magnetic field in the core of the toroid) } \\
& \psi=B S=\mu \frac{N I}{2 \pi \rho_{o}} S \quad \Rightarrow \quad L=\frac{\Lambda}{I}=\frac{N \mu \frac{N I}{2 \pi \rho_{o}} S}{I}=\frac{\mu N^{2} S}{2 \pi \rho_{o}} \\
& L=\frac{\mu N^{2} S}{2 \pi \rho_{o}} \quad \Rightarrow \quad 2.5=\frac{200 \mu_{o} N^{2}\left(12 \times 10^{-4}\right)}{2 \pi \times 0.5} \Rightarrow 2.5=9.6 \times 10^{-8} N^{2} \\
& N^{2}=\frac{2.5}{9.6 \times 10^{-8}}=2.604 \times 10^{7} \\
& \therefore N=\sqrt{2.604 \times 10^{7}} \approx 5103 \mathrm{turns}
\end{aligned}
$$

$\vec{H}=\frac{N I}{2 \pi \rho} \vec{a}_{\phi} \quad \Rightarrow \quad \vec{B}=\frac{\mu N I}{2 \pi \rho} \vec{a}_{\phi}$
$\psi=\int_{S} \vec{B} \cdot \overrightarrow{d s} \quad \Rightarrow \quad \psi=\int_{S} \vec{B} .\left(d \rho d z \vec{a}_{\phi}\right) \quad \Rightarrow \quad \psi=\int_{z=0}^{a} \int_{\rho=\rho_{o}-\frac{a}{2}}^{\rho_{0}+\frac{a}{2}} \frac{\mu N I}{2 \pi \rho} d \rho d z$
$\psi=\frac{\mu N I a}{2 \pi} \ln \frac{\rho_{o}+\frac{a}{2}}{\rho_{o}-\frac{a}{2}}=\frac{\mu N I a}{2 \pi} \ln \frac{2 \rho_{o}+a}{2 \rho_{o}-a}$
$L=\frac{\Lambda}{I}=\frac{N \psi}{I}=\frac{\mu N^{2} a}{2 \pi} \ln \frac{2 \rho_{o}+a}{2 \rho_{o}-a}$
Assuming an air core, $\mu=\mu_{0}$
$L=\frac{\mu_{0} N^{2} a}{2 \pi} \ln \frac{2 \rho_{o}+a}{2 \rho_{o}-a}$

Problem 8.41

The magnetic field in the insulated medium (between the inner and outer conductor) is given by:
$\vec{H}=\frac{I}{2 \pi \rho} \vec{a}_{\phi} \quad\left(\right.$ can easily be derived from Ampere's law $\left.\oint_{l} \vec{H} \cdot \overrightarrow{d l}=I\right)$.
$w_{m}=\frac{1}{2} \mu H^{2}=\frac{1}{2} \mu\left(\frac{I}{2 \pi \rho}\right)^{2}=\frac{\mu I^{2}}{8 \pi^{2} \rho^{2}} \quad$ (which is clearly nonuniform).
$W_{m}=\int_{V} w_{m} d v=\int_{z=0}^{l} \int_{\phi=0}^{2 \pi} \int_{\rho=a}^{b}\left(\frac{\mu I^{2}}{8 \pi^{2} \rho^{2}}\right) \rho d \rho d \phi d z$
$W_{m}=\frac{\mu I^{2} l}{4 \pi} \ln \frac{b}{a}$
$W_{m}=\frac{4 \mu_{0}\left(25 \times 10^{-3}\right)^{2} \times 3}{4 \pi} \ln \frac{1.8}{1.2}=\frac{\mu_{0} \times 625 \times 10^{-6} \times 3}{\pi} \times 0.40547=3.041 \times 10^{-10} \mathrm{~J}$

