Problem 6.9

Because of spherical symmetry, $\vec{E}=E_{r} \vec{a}_{r}$ and thus $V=V(r)$.
Therefore, La Place's equation in spherical coordinates:
$\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0$
Is simplified to $\quad \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d V}{d r}\right)=0$

Solving for $V \quad \Rightarrow \quad \frac{d}{d r}\left(r^{2} \frac{d V}{d r}\right)=0 \quad \Rightarrow \quad\left(r^{2} \frac{d V}{d r}\right)=c_{1} \quad \Rightarrow \quad \frac{d V}{d r}=c_{1} r^{-2}$
$V(r)=-c_{1} r^{-1}+c_{2} \quad$ for $\quad 0.1 \leq r \leq 2$
Applying the boundary conditions, namely $V(0.1)=0$ and $V(2)=100$, we can evaluate the arbitrary constants c_{1} and c_{2}.
$V(0.1)=-10 c_{1}+c_{2}=0 \quad \Rightarrow \quad c_{2}=10 c_{1}$
$\therefore V(r)=-c_{1} r^{-1}+10 c_{1}=c_{1}\left(10-r^{-1}\right)$
$V(2)=c_{1}\left(10-2^{-1}\right)=100 \quad \Rightarrow \quad c_{1}=\frac{100}{9.5}=10.526$
$\therefore V(r)=10.526\left(10-r^{-1}\right) \quad$ for $\quad 0.1 \leq r \leq 2$
$\vec{E}=-\nabla V \quad \Rightarrow \quad \vec{E}=-\left[\frac{\partial V}{\partial r} \vec{a}_{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \vec{a}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \vec{a}_{\phi}\right]=-\frac{d V}{d r} \vec{a}_{r}$
$\therefore \vec{E}=-\frac{10.526}{r^{2}} \vec{a}_{r} \quad$ for $\quad 0.1 \leq r \leq 2$
(notice that the electric field is directed from the higher potential towards the lower potential)

$$
\vec{D}=\varepsilon_{0} \vec{E}=-\frac{10.526 \varepsilon_{0}}{r^{2}} \vec{a}_{r}=-\frac{9.316 \times 10^{-11}}{r^{2}} \vec{a}_{r} \quad \text { for } \quad 0.1 \leq r \leq 2
$$

Problem 6.11

Because of cylindrical symmetry, $\vec{E}=E_{\rho} \vec{a}_{\rho}$ and thus $V=V(\rho)$.
Therefore, La Place's equation in cylindrical coordinates:
$\nabla^{2} V=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$
Is simplified to $\quad \frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d V}{d \rho}\right)=0$

Solving for $V \Rightarrow \frac{d}{d \rho}\left(\rho \frac{d V}{d \rho}\right)=0 \Rightarrow \rho \frac{d V}{d \rho}=c_{1} \quad \Rightarrow \quad \frac{d V}{d \rho}=c_{1} \rho^{-1}$
$V(\rho)=c_{1} \ln \rho+c_{2} \quad$ for $\quad 0.02 \leq \rho \leq 0.06$
Applying the boundary conditions, namely $V(0.02)=60$ and $V(0.06)=-20$, we can evaluate the arbitrary constants c_{1} and c_{2}.
$V(0.02)=c_{1} \ln 0.02+c_{2}=60 \quad \Rightarrow \quad-3.9120 c_{1}+c_{2}=60$
$V(0.06)=c_{1} \ln 0.06+c_{2}=-20 \quad \Rightarrow \quad-2.8134 c_{1}+c_{2}=-20$
Solving (1) and (2) $\Rightarrow c_{1}=-72.82 \quad \& \quad c_{2}=-224.88$
$V(\rho)=-72.82 \ln \rho-224.88 \quad$ for $\quad 0.02 \leq \rho \leq 0.06$
$\vec{E}=-\nabla V \quad \Rightarrow \quad \vec{E}=-\left[\nabla V=\frac{\partial V}{\partial \rho} \vec{a}_{\rho}+\frac{1}{\rho} \frac{\partial V}{\partial \phi} \vec{a}_{\phi}+\frac{\partial V}{\partial z} \vec{a}_{z}\right]=-\frac{d V}{d \rho} \vec{a}_{\rho}$
$\therefore \vec{E}=\frac{72.82}{\rho} \vec{a}_{\rho} \quad$ for $\quad 0.02 \leq \rho \leq 0.06$
(clearly \vec{E} points from the high to the low potential)
$V(0.04)=-72.82 \ln 0.04-224.88=9.454 V$
$\left.\vec{E}\right|_{\rho=0.04}=\frac{72.82}{0.04} \vec{a}_{\rho}=1820.5 \vec{a}_{\rho} \mathrm{V} / \mathrm{m}$
$\left.\vec{D}\right|_{\rho=0.04}=1820.5 \varepsilon_{0} \vec{a}_{\rho}=1.611 \times 10^{-8} \vec{a}_{\rho} C / \mathrm{m}^{2}$

Problem 6.18

$E=\frac{V_{o}}{d}$
(In the region between the plates \vec{E} is uniform and has the same value in both air and the dielectric)
Since $w_{e}=\frac{1}{2} \varepsilon E^{2}$

The electrostatic energy density in air is $\quad w_{e 1}=\frac{1}{2} \varepsilon_{0}\left(\frac{V_{o}}{d}\right)^{2} \quad$ (uniform energy density)

The electrostatic energy density in the dielectric air is $\quad w_{e 2}=\frac{1}{2} \varepsilon_{0} \varepsilon_{r}\left(\frac{V_{o}}{d}\right)^{2} \quad$ (uniform energy density)

The stored electrostatic is given by $\quad W_{e}=\int_{V} w_{e} d v=w_{e 1} V_{1}+w_{e 2} V_{2}$
(Integration becomes multiplication because we are integrating uniform quantities).
$W_{e}=\int_{V} w_{e} d v=w_{e 1} V_{1}+w_{e 2} V_{2} \quad \Rightarrow \quad W_{e}=\frac{1}{2} \varepsilon_{0}\left(\frac{V_{o}}{d}\right)^{2}(L-x) a d+\frac{1}{2} \varepsilon_{0} \varepsilon_{r}\left(\frac{V_{o}}{d}\right)^{2} x a d$
$W_{e}=\frac{1}{2} \varepsilon_{0}\left(\frac{V_{o}}{d}\right)^{2} a d\left[L+\varepsilon_{r} x-x\right]$
The magnitude of the restoring force F is given by:
$F=\left|\frac{d W_{e}}{d x}\right|=\frac{1}{2} \varepsilon_{0}\left(\frac{V_{o}}{d}\right)^{2} a d\left(\varepsilon_{r}-1\right)$
$F=\frac{\varepsilon_{0}\left(\varepsilon_{r}-1\right) a V_{o}^{2}}{2 d}$
$C=\frac{2 \pi \varepsilon L}{\ln \frac{b}{a}}$
$C=\frac{2 \pi \times\left(3.5 \varepsilon_{0}\right) \times 1000}{\ln \frac{2 \times 10^{-3}}{1 \times 10^{-3}}}=\frac{7000 \pi \varepsilon_{0}}{\ln 2}=2.81 \times 10^{-7} \mathrm{~F}$
Which is the capacitance of 1 km length of cable.
Thus, the capacitance per km of the cable equals $2.81 \times 10^{-7} \mathrm{~F} / \mathrm{km}$

Problem 6.22
a) $C=\frac{4 \pi \varepsilon}{\frac{1}{a}-\frac{1}{b}} \quad \Rightarrow \quad C=\frac{4 \pi\left(2.25 \varepsilon_{0}\right)}{\frac{1}{0.05}-\frac{1}{0.1}}=\frac{9 \pi \varepsilon_{0}}{10}=2.5023 \times 10^{-11} \mathrm{~F}$
b) $Q=C V_{o} \quad \Rightarrow \quad Q=\left(2.5023 \times 10^{-11}\right) \times 80=2.002 \times 10^{-9} \mathrm{C}$

The surface charge density is uniform $\Rightarrow \rho_{s}=\frac{Q}{S}=\frac{Q}{4 \pi a^{2}}=\frac{2.002 \times 10^{-9}}{4 \pi(0.05)^{2}}=6.37 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2}$

