Problem 12.1

a) $u^{\prime}=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}}=\frac{3 \times 10^{8}}{\sqrt{1 \times 4}}=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$a=3 \mathrm{~cm}$ and $b=2 \mathrm{~cm}$
$f_{c}=\frac{u^{\prime}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \Rightarrow f_{c}=\frac{1.5 \times 10^{8}}{2} \sqrt{\left(\frac{1}{0.03}\right)^{2}+\left(\frac{1}{0.02}\right)^{2}}=4.507 \times 10^{9}=4.507 \mathrm{GHz}$
b) $\beta^{\prime}=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c} \sqrt{\mu_{r} \varepsilon_{r}}=\frac{2 \pi \times 20 \times 10^{9}}{3 \times 10^{8}} \sqrt{1 \times 4}=837.758 \mathrm{rad} / \mathrm{m}$

$$
\beta=\beta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad \Rightarrow \quad \beta=837.758 \sqrt{1-\left(\frac{4.507 \times 10^{9}}{20 \times 10^{9}}\right)^{2}}
$$

$\beta=837.758 \times 0.9743=816.21 \mathrm{rad} / \mathrm{m}$
c) $u=u^{\prime} \prime \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad \Rightarrow \quad u=\frac{1.5 \times 10^{8}}{0.9743}=1.5396 \times 10^{8} \mathrm{~m} / \mathrm{s}$
[or $u=\frac{\omega}{\beta}=\frac{2 \pi \times 20 \times 10^{9}}{816.21}=1.5396 \times 10^{8} \mathrm{~m} / \mathrm{s}$]

Problem 12.5

Since the tunnel is air-filled, then $u^{\prime}=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& f_{c}=\frac{u}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \Rightarrow \\
& f_{c}=\frac{3 \times 10^{8}}{2} \sqrt{\left(\frac{m}{8}\right)^{2}+\left(\frac{n}{16}\right)^{2}}=\frac{3 \times 10^{8}}{2 \times 16} \sqrt{4 m^{2}+n^{2}}=9.375 \times 10^{6} \sqrt{4 m^{2}+n^{2}}
\end{aligned}
$$

The lowest possible value of f_{c} is clearly when $m=0$ and $n=1$ (they cannot be both zero).

$$
\left.\therefore f_{c}\right|_{\text {minimum }}=9.375 \times 10^{6} \sqrt{0+1^{2}}=9.375 \times 10^{6} \mathrm{~Hz}
$$

a) Thus the tunnel will not pass a 1.5 MHz AM broadcast signal, because its frequency is below the lowest cutoff frequency of the waveguide.
b) The tunnel will pass a 120 MHz FM broadcast signal, because its frequency is higher the lowest cutoff frequency of the waveguide.

Problem 12.6

Since the waveguide is air-filled, then $u^{\prime}=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Cutoff for TE_{03} equal 12 GHz
$f_{c}=\frac{u^{\prime}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \quad \Rightarrow \quad 12 \times 10^{9}=\frac{3 \times 10^{8}}{2} \sqrt{\left(\frac{0}{a}\right)^{2}+\left(\frac{3}{b}\right)^{2}}$
$\sqrt{\left(\frac{3}{b}\right)^{2}}=80 \quad \Rightarrow \quad \frac{3}{b}=80 \quad \Rightarrow \quad b=\frac{3}{80}=3.750 \mathrm{~cm}$

Cutoff for TM_{11} equal 12 GHz

$$
\begin{aligned}
& f_{c}=\frac{u^{\prime}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \quad \Rightarrow \quad 12 \times 10^{9}=\frac{3 \times 10^{8}}{2} \sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{3.750 \times 10^{-2}}\right)^{2}} \\
& \sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{3.750 \times 10^{-2}}\right)^{2}}=80 \quad \Rightarrow \quad\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{3.750 \times 10^{-2}}\right)^{2}=6400 \\
& \left(\frac{1}{a}\right)^{2}+711.111=6400 \quad \Rightarrow \quad\left(\frac{1}{a}\right)^{2}=5688.89 \quad \Rightarrow \quad a=1.326 \mathrm{~cm}
\end{aligned}
$$

Since $a<b$, the dominant mode is $T E_{01}$ (if $a>b$, the dominant mode would be $T E_{10}$).
To calculate the cutoff frequency of the dominant mode:
$f_{c}=\frac{u^{\prime}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \Rightarrow f_{c}=\frac{3 \times 10^{8}}{2} \sqrt{\left(\frac{0}{1.326 \times 10^{-2}}\right)^{2}+\left(\frac{1}{3.750 \times 10^{-2}}\right)^{2}}$
$f_{c}=\frac{3 \times 10^{8}}{2 \times 3.750 \times 10^{-2}}=4 \times 10^{9}=4 \mathrm{GHz}$
Thus, at 8 GHz , the dominant mode will propagate in the waveguide because the operating frequency (8 GHz) is higher than the cutoff frequency (4 GHz) of the dominant mode.

Problem 12.8

$\beta=10 \mathrm{rad} / \mathrm{m} \quad$ and $\quad \beta^{\prime}=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}=\frac{2 \pi \times 5 \times 10^{9}}{3 \times 10^{8}}=104.72 \mathrm{rad} / \mathrm{m}$
$\beta=\beta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad \Rightarrow \quad 10=104.72 \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad \Rightarrow \quad 0.09549=\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}$
$1-\left(\frac{f_{c}}{f}\right)^{2}=9.119 \times 10^{-3} \Rightarrow \frac{f_{c}}{f}=0.9954 \Rightarrow$
$f_{c}=0.9954 f=0.9954 \times 5 \times 10^{9}=4.9772 \times 10^{9} \mathrm{~Hz}=4.9772 \mathrm{GHz}$
b) The mode is $T M_{21} \Rightarrow \mathrm{~m}=2$ and $\mathrm{n}=1$.

Since it is a TM mode $\Rightarrow H_{z}=0$
For TM modes:
$E_{x s}=-\frac{\gamma}{h^{2}}\left(\frac{m}{a}\right) E_{o} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) e^{-\gamma z}$
where $\quad h^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}=\left(\frac{2 \pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}$
Since the waveguide is lossless, $\gamma=j \beta=j 10$.
Also $E_{o}=1$.
$E_{x s}=-\frac{j 10}{\left(\frac{2 \pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}}\left(\frac{2}{a}\right) \cos \left(\frac{2 \pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) e^{-j 10 z}$
$E_{x s}=\frac{20}{a} \frac{1}{\left(\frac{2 \pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}} \cos \left(\frac{2 \pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) e^{-j 10 z} e^{-j 90^{\circ}}$
Notice that in this case there are infinite possible choices for a and b. In other words, they are not unique. Therefore, they will be kept in symbolic form.

Finally we get:
$E_{x}=\frac{20}{a} \frac{1}{\left(\frac{2 \pi}{a}\right)^{2}+\left(\frac{\pi}{b}\right)^{2}} \cos \left(\frac{2 \pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) \cos \left(\pi 10^{10} t-10 z-90^{\circ}\right) \quad \mathrm{V} / \mathrm{m}$

Problem 12.9

This problem has an error, because it is impossible to have $E_{x}=-10 \sin \left(\frac{2 \pi x}{a}\right) \sin (\omega t-150 z)$. This means that the normal component of \vec{E} is zero at the air-conductor boundaries located at $x=0$ and $x=a$. Let us change the problem and assume that:
$E_{y}=-10 \sin \left(\frac{2 \pi x}{a}\right) \sin (\omega t-150 z)$
a) Clearly $m=2$ and $n=0$. Therefore, the mode must be $T E_{20}$.
(it cannot be $T M$, because for $T M$ modes, both m and n are not zero).
b) $f_{c}=\frac{u^{\prime}}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}} \quad \Rightarrow \quad f_{c}=\frac{3 \times 10^{8}}{2} \sqrt{\left(\frac{2}{0.012}\right)^{2}+\left(\frac{0}{0.012}\right)^{2}}=2.5 \times 10^{10} \mathrm{~Hz}=25 \mathrm{GHz}$
$\lambda_{c}=\frac{u^{\prime}}{f_{c}}=\frac{3 \times 10^{8}}{25 \times 10^{9}}=1.2 \times 10^{-2} \mathrm{~m}=1.2 \mathrm{~cm}$
c) $\beta=150 \mathrm{rad} / \mathrm{m}$
$\beta^{\prime}=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}=\frac{2 \pi f}{3 \times 10^{8}}=2.0944 \times 10^{-8} f$
$\beta=\beta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad \Rightarrow \quad 150=2.0944 \times 10^{-8} f \sqrt{1-\left(\frac{25 \times 10^{9}}{f}\right)^{2}} \quad \Rightarrow$
$7.162 \times 10^{9}=\sqrt{f^{2}-\left(25 \times 10^{9}\right)^{2}} \quad \Rightarrow \quad 5.1294 \times 10^{19}=f^{2}-6.25 \times 10^{20}$
$f^{2}=6.25 \times 10^{20}+5.1294 \times 10^{19} \Rightarrow f=2.6006 \times 10^{10}=26.01 \mathrm{GHz}$
d) $\gamma=\alpha+j \beta=0+j 150=j 150$

Since the mode is TE, then:
$\eta_{T E}=\frac{\eta}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}=\frac{377}{\sqrt{1-\left(\frac{25}{26.01}\right)^{2}}}=1366.13 \Omega$

Problem 12.13

a) $E_{y}=5 \sin \left(\frac{2 \pi x}{a}\right) \cos \left(\frac{\pi y}{b}\right) \sin (\omega t-12 z) \quad \mathrm{V} / \mathrm{m}$ $m=2$ and $n=1$.

The mode could be either TE or TM, but since we were told it is TE, then the operating mode is $T E_{21}$.
b) $\beta=12 \mathrm{rad} / \mathrm{m} \quad$ and $\quad \beta^{\prime}=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}=\frac{2 \pi \times 6 \times 10^{9}}{3 \times 10^{8}}=125.664 \mathrm{rad} / \mathrm{m}$
$\beta=\beta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad \Rightarrow \quad 12=125.664 \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \quad \Rightarrow \quad 0.09549=\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}$
$1-\left(\frac{f_{c}}{f}\right)^{2}=9.119 \times 10^{-3} \Rightarrow \frac{f_{c}}{f}=0.9954 \Rightarrow$
$f_{c}=0.9954 f=0.9954 \times 6 \times 10^{9}=5.973 \times 10^{9} \mathrm{~Hz}=5.973 \mathrm{GHz}$
c) $\eta_{T E}=\frac{\eta^{\prime}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}=\frac{377}{\sqrt{1-\left(\frac{5.973}{6}\right)^{2}}}=3978.41 \Omega$
d) $H_{x}=-\eta_{T E} E_{y}$
$H_{x}=-3978.41 \times 5 \sin \left(\frac{2 \pi x}{a}\right) \cos \left(\frac{\pi y}{b}\right) \sin (\omega t-12 z)$
$H_{x}=-1.9892 \times 10^{4} \sin \left(\frac{2 \pi x}{a}\right) \cos \left(\frac{\pi y}{b}\right) \sin (\omega t-12 z) \mathrm{A} / \mathrm{m}$

