
 35

Experiment #5

Using BIOS Services and DOS functions
Part 1: Text-based Graphics

5.0 Objectives:

The objective of this experiment is to introduce BIOS and DOS interrupt service routines

to be utilized in assembly language programs.

In this experiment, you will use BIOS and DOS services to write programs that can do

the following:

• Read a character/string from the keyboard

• Output a character/string to the display monitor

• Clear the display screen

• and display cursor at a desired location on the screen

5.1 Introduction:

The Basic Input Output System (BIOS) is a set of x86 subroutines stored in Read-Only

Memory (ROM) that can be used by any operating system (DOS, Windows, Linux, etc)

for low-level input/output to various devices. Some of the services provided by BIOS are

also provided by DOS. In fact, a large number of DOS services make use of BIOS

services. There are different types of interrupts available which are divided into several

categories as shown below:

Interrupt Types Description

0h - 1Fh BIOS Interrupts

20h - 3Fh DOS Interrupts

40h - 7Fh reserved

80h - F0h ROM BASIC

F1h - FFh not used

BIOS and DOS interrupt routines provide a number of services that can be used to write

programs. These services include formatting disks, creating disk files, reading from or

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 36

writing to files, reading from keyboard, writing to display monitor, etc. The software

interrupt instruction INT is used for calling these services.

5.1.1 Text Mode Programming

Positions on the screen are referenced using (row, column) coordinates. The upper left

corner has coordinates (0,0). For an 80 x 25 display, the rows are 0-24 and the columns

are 0-79.

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 37

5.1.2 Commonly used DOS functions
DOS contains many functions that can be accessed by other application programs. These

functions are invoked using the assembly language instruction INT XX, where XX is

replaced by the number of the appropriate interrupt. Most of the available functions are

invoked through the INT 21H instruction.

Character input with echo (INT 21H, Function 01H):

Reads a character from the standard input device (usually the keyboard) and echoes it to

the standard output device (usually the display screen), or waits until a character is

available.

Description: (INT 21H, Function 01H) Example

Invoked with: AH = 01H

Returns: AL = character input (ASCII code)

and displays the character on the screen

MOV AH, 01H

INT 21H

MOV [SI],AL ; store char. in memory

Character input without echo (INT 21H, Function 07H):

Reads a character from the standard input device (usually the keyboard) without echoing

it to the standard output device, or waits until a character is available. This function can

be used when you don’t want the input characters to appear on the display, for example,

in the case of password entry.

Description: (INT 21H, Function 07H) Example

Invoked with: AH = 07H

Returns: AL = character input (ASCII code)

MOV AH, 07H

INT 21H

MOV [SI],AL ; store char. in memory

Display Character (INT 21H, Function 02H):

Displays a character at the standard output device (usually the display screen).

Description: (INT 21H, Function 02H) Example

Invoked with: AH = 02H

DL = ASCII code for the char. to be displayed

Returns: Nothing

MOV DL,’A’ ; display character ‘A’

MOV AH, 02H

INT 21H

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 38

Display Character String (INT 21H, Function 09H):

Displays a string of characters at the display screen. The string must be terminated with

the character ‘$’, which is not displayed.

Description: (INT 21H, Function 09H) Example

Invoked with: AH = 09H

DS : DX = segment : offset of string

Returns: Nothing

MSG DB “Welcome”,’$’ ; string

MOV DX, OFFSET MSG

MOV AH, 09H

INT 21H

Exit program and return control to DOS (INT 21H, Function 4CH):

Terminates current process and returns control either to the parent process or DOS.

Description: (INT 21H, Function 4CH) Example

Invoked with: AH = 4CH

AL = 00H

Returns: Nothing

MOV AX, 4C00H

INT 21H

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 39

5.1.3 BIOS Video I/O Services
The BIOS function requests in this category are used to control text and graphics on the

PC’s display screen. The function request is chosen by setting the AH register to the

appropriate value and issuing interrupt 10H.

Set Video Mode (INT 10H, Function 00H):

Selects the video mode and clears the screen automatically.

Description: (INT 10H, Function 00H) Example

Invoked with: AH = 00H

AL = mode number to indicate the desired

video mode

Returns: Nothing

MOV AH, 00

MOV AL, 03H ; text video mode

INT 10H

Set Cursor Position (INT 10H, Function 02H):

Sets the position of the display cursor by specifying the character coordinates.

Description: (INT 10H, Function 02H) Example

Invoked with: AH = 2

BH = video page number (usually 0)

 DH = row (0-24)

 DL = column (0-79 for 80x25 display)

 Returns: Nothing

MOV AH, 02

MOV BH, 0

MOV DH, 12 ; row 12

MOV DL, 40 ; column 40

INT 10H

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 40

5.2 Pre-lab:
1. The following program allows a user to enter characters from the keyboard using the

character input function (AH=01) of INT 21h. This program also stores the characters entered
into a buffer. Run the program after assembling and linking.

TITLE "Program to enter characters from keyboard"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

char_buf DB 20 DUP(?) ; define a buffer of 20 bytes

.CODE ; this is the code segment

MOV AX,@DATA ; get the address of the data segment
MOV DS, AX ; and store it in register DS

LEA SI, char_buf ; load the address offset of buffer to store the name
MOV AH, 01 ; DOS interrupt for character input from keyboard

AGAIN: INT 21H ; call the DOS interrupt

MOV [SI], AL ; store character in buffer
INC SI ; point to next location in buffer
CMP AL, 0DH ; check if Carriage Return <CR> key was hit
JNE AGAIN ; if not <CR>, then continue input from keyboard

MOV AX, 4C00H ; Exit to DOS function
INT 21H

END ; end of the program

Procedure (to be followed for all programs):

e. Edit the above program using an editor. Type “edit program1.asm” at the DOS
prompt. Save your file and exit the editor. Make sure your file name has an extension
of “.asm”.

f. Assemble the program created in (a). Type “tasm program1” at the DOS prompt. If
errors are reported on the screen, then note down the line number and error type from
the listing on the screen. To fix the errors go back to step (a) to edit the source file. If
no errors are reported, then go to step (c).

g. Link the object file created in (b). Type “tlink program1” at the DOS prompt. This
creates an executable file “program1.exe”.

h. Type “program1” at the DOS prompt to run your program.

Note: You have to create your source file in the same directory where the TAMS.exe and
TLINK.exe programs are stored.

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 41

2. Modify the above program such that the characters entered from the keyboard are not echoed
back on the screen (i.e., they are not displayed when keys are pressed). [Hint: use function
AH=07 with INT 21h]. After that, add the following lines of code between “JNE AGAIN”
and MOV AX, 4C00H to display the characters stored in the buffer on the screen.

LEA DI, char_buf ; load the address offset of buffer to store the name
MOV DL, [DI] ; move character to be displayed in DL
MOV AH, 02 ; DOS interrupt for character output

BACK: INT 21H ; call the DOS interrupt
INC DI ; point to next location in buffer
CMP [DI], 0DH ; check for 0Dh - ASCII value for ENTER key
JNE BACK ; if not ENTER key, then continue output to screen

3. The following program clears the screen and positions the cursor at a specified location on
the screen using INT 10H functions. The program also displays a message string on the
screen using function 09h of INT 21H. Run the program after assembling and linking.

TITLE "Program to enter characters from keyboard"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

LF EQU 10 ; Line Feed character (0A in Hex)
CR EQU 13 ; Carriage Return character (0D in Hex)

msg1 DB "EE 390 Lab, EE Department, KFUPM ", LF, CR, "$"
msg2 DB "Press any key to exit", LF, CR, "$"

.CODE

MAIN PROC

MOV AX,@DATA ; get the address of the data segment
MOV DS, AX ; and store it in register DS

CALL CLEARSCREEN ; clear the screen

MOV DH, 10 ; row 10
MOV DL, 13 ; column 13
CALL SETCURSOR ; set cursor position

LEA DX, msg1 ; load the address offset of message to be displayed
MOV AH, 09h ; use DOS interrupt service for string display
INT 21H ; call the DOS interrupt

 MOV DH, 20 ; row 20
MOV DL, 13 ; column 13
CALL SETCURSOR ; set cursor position

LEA DX, msg2 ; load the address offset of message to be displayed
MOV AH, 09h ; use DOS interrupt service for string display
INT 21H ; call the DOS interrupt

MOV AX, 4C00H ; exit to DOS

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 42

INT 21H

MAIN ENDP

CLEARSCREEN PROC

 MOV AH, 00 ; set video mode
 MOV AL, 03 ; for text 80 x 25
 INT 10H ; call the DOS interrupt

RET ; return to main procedure

CLEARSCREEN ENDP

SETCURSOR PROC

MOV AH, 2 ; use DOS interrupt service for positioning screen
MOV BH, 0 ; video page (usually 0)
INT 10H ; call the DOS interrupt
RET ; return to main procedure

SETCURSOR ENDP

END MAIN

Notes:

1. The above program uses three procedures – MAIN, SETCURSOR, and CLEARSCREEN.
The SETCURSOR and CLEARSCREEN procedures are called from the MAIN procedure
using the CALL instruction.

2. The SETCURSOR procedure sets the cursor at a specified location on the screen whereas the
CLEARSCREEN procedure uses the SET MODE function 00H of INT 10H to set the video
mode to 80 x 25 text which automatically clears the screen.

3. You can display a string of characters on the screen, without using a loop, by using
MOV AH, 09 with INT 21h. But the string must end with ‘$’ character. You must
also load the effective address of the string in register DX.

4. To display a string on a new line, you need to put CR after your string and LF and '$'
at the end. CR stands for Carriage Return (or Enter key) and LF stands for Line Feed.
You can also put 0Dh or 13 instead of CR (or cr), and 0Ah or 10 instead of LF (or lf).

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 43

5.3 Lab Work:
The following program clears the screen and positions the cursor in the middle of the screen. Two
memory locations ‘row’ and ‘col’ are used to keep track of the cursor position.

TITLE "Program to move the cursor on the screen"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

row DB 12 ; define initial row number
col DB 39 ; define initial column number

.CODE

MAIN PROC

MOV AX,@DATA ; get the address of the data segment
MOV DS, AX ; and store it in register DS

CALL CLEARSCREEN ; clear the screen

CALL SETCURSOR ; set the cursor position

MOV AX, 4C00H ; exit to DOS
INT 21H

MAIN ENDP

CLEARSCREEN PROC

 MOV AH, 00 ; set video mode
 MOV AL, 03 ; for text 80 x 25
 INT 10H ; call the DOS interrupt

RET ; return to main procedure

CLEARSCREEN ENDP

SETCURSOR PROC

MOV DH, row ; load row number
MOV DL, col ; load column number
MOV AH, 2 ; use DOS interrupt service for positioning screen
MOV BH, 0 ; video page (usually 0)
INT 10H ; call the DOS interrupt
RET ; return to main procedure

SETCURSOR ENDP

END MAIN

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 44

Note that the SETCURSOR procedure shown above gets its row and column positions directly
from the memory variables ‘row’ and ‘col’.

Modify the MAIN procedure in the above program to read an arrow key value from the
keyboard using the DOS single character input function INT 21h, AH=7 which waits for
a character and does not echo the character to the screen. Depending on which arrow key
is pressed, the program must move the cursor accordingly, as indicated below:

Key pressed ASCII value read from

keyboard
Movement

↑ (Up) 48h Move up (decrement row)
→ (Right) 4Dh Move right (increment col)
↓ (Down) 50h Move down (increment row)
← (Left) 4Bh Move left (decrement col)

The following can be defined in the data segment:

LEFT EQU 4Bh
RIGHT EQU 4Dh
UP EQU 48h
DOWN EQU 50h

The following table shows some 80 x 25 screen positions.

Position Decimal Value Hexadecimal
Upper left corner (0,0) (0,0)
Lower left corner (0,24) (0,18)
Upper right corner (79,0) (4F,0)
Lower right corner (79,24) (4F,18)
Center screen (39,12) (27,C)

The program must wrap the cursor correctly around to the next boundary, for e.g., if the
cursor moves off the right edge it should appear at the left edge and vice-versa. Similarly,
if the cursor moves off the bottom edge it should appear at the top edge and vice-versa.

The program must continuously check for a key press (using the ASCII values given
above) inside a loop, and move the cursor to a new position only when an arrow key is
pressed. The program must exit the loop and return to DOS when the ENTER key (ASCII
value 0Dh) is pressed.

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

