
 27

Experiment #4

Shift and Rotate Instructions

4.0 Objectives:

The objective of this experiment is to write programs demonstrating the applications of

Shift and Rotate instructions.

In this experiment, you will do the following:

• Learn to use Shift and Rotate instructions

• Write programs demonstrating the applications of Shift/Rotate instructions

• Execute programs using Turbo Debug and TASM

4.1 Introduction:

Shift Instructions

The 8086 can perform two types of Shift operations; the logical shift and the arithmetic
shift. There are four shift operations (SHL, SAL, SHR, and SAR).

Mnemonic Meaning Format Allowed operands

SAL Shift Arithmetic Left SAL D, count

SHL Shift Logical Left SHL D, count

SAL Shift Arithmetic Right SAR D, count

SHL Shift Logical Right SHR D, count

Destination(D) Count
Register 1
Register CL
Memory 1
Memory CL

If the source operand is specified as CL instead of 1, then the count in this register
represents the number of bit positions the contents of the operand are to be shifted. This
permits the count to be defined under software control and allows a range of shifts from 1
to 255 bits.

A logical shift fills the newly created bit position with zero:

CF

0

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 28

An arithmetic shift fills the newly created bit position with a copy of the number’s sign

bit.

The SHL (shift left) instruction performs a logical left shift on the destination operand,
filling the lowest bit with 0.

Shifting left 1 bit multiplies a number by 2 and shifting left n bits multiplies the operand
by 2n. For example:

MOV BL, 5
SHL BL, 1

The SHR (shift right) instruction performs a logical right shift on the destination operand.
The highest bit position is filled with a zero.

Shifting right 1 bit divides a number by 2 and shifting right n bits divides the operand by
2n.

For example:

MOV DL, 12
SHR DL, 1

SAL is identical to SHL. SAR (shift arithmetic right) performs a right arithmetic shift on
the destination operand. An arithmetic shift preserves the number's sign.
.

For example:

MOV BL, -40
SAR BL, 1 BL = -20

CF

CF

0

CF

0

CF

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 29

Rotate Instructions
The 8086 can perform two types of rotate operations; the rotate without carry and the
rotate through carry. There are four rotate operations (ROL, ROR, RCL, and RCR).

Mnemonic Meaning Format Allowed operands

ROL Rotate Left ROL D, count

ROR Rotate Right ROR D, count

RCL Rotate Left through carry RCL D, count

RCR Rotate Right through carry RCR D, count

Destination(D) Count
Register 1
Register CL
Memory 1
Memory CL

ROL shifts each bit of a register to the left. The highest bit is copied into both the Carry
flag and into the lowest bit of the register. No bits are lost in the process.

CF

For example:

MOV AL,11100010B
ROL AL,1 ; AL = 11000101B

MOV BL,0A5H
MOV CL, 4
ROL BL, CL ; BL = 5AH

ROR shifts each bit of a register to the right. The lowest bit is copied into both the Carry
flag and into the highest bit of the register. No bits are lost in the process.

CF

For example:

MOV AL, 00001011B
ROR AL, 1 ; AL = 10000101B

MOV BL, 90H
MOV CL, 4
ROR BL, CL ; BL = 09H

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 30

RCL (rotate carry left) shifts each bit to the left. It copies the Carry Flag to the least
significant bit and copies the most significant bit to the Carry flag.

CF

For example:
CLC ; clear carry flag, CF = 0
MOV BL,A4H ; CF = 0, BL = 10100100B
RCL BL,1 ; CF = 1, BL = 01001000B
RCL BL,1 ; CF = 0, BL = 10010001B

RCR (rotate carry right) shifts each bit to the right. It copies the Carry Flag to the most
significant bit and copies the least significant bit to the Carry flag.

CF

For example:

STC ; set carry flag, CF = 1
MOV AH,14H ; CF = 1, AH = 00010100B
RCR AH,1 ; CF = 0, AH = 10001010B

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 31

 4.2 Pre-lab:

Run the following instructions in Turbo Debugger and fill the corresponding column for
each Shift or Rotate instruction.

NOTE: Include the status of flags before and after the execution of shift and rotate
instructions in Table 1.

1. MOV AL, 6BH
 SHR AL,1
 SHL AL,3

2. MOV AX, 0AAAAH
 MOV CL,8
 SHL AX,CL

3. MOV AL, 8CH
 MOV CL,3
 SAR AL,CL

4. MOV DI, 1000H
 MOV [DI], 0AAH
 MOV CL,3
 SHL BYTE PTR [DI],CL

5. MOV AL, 6BH
 ROR AL,1
 ROL AL,3
 b.
6. STC
 MOV AL, 6BH
 RCR AL,3

7. CLC
 MOV DI,2000H
 MOV [DI],0AAH
 MOV CL,1
 RCL BYTE PTR [DI],CL

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 32

TABLE 1

Source Destination Status Flags

Statement Register
/Memor

y

Content
s

Registe
r/Mem

ory

Contents
before

executio
n

Contents
after

executio
n

A
F

P
F

S
F

Z
F

C
F

SHR AL,1

SHL AL,3

SHL AX,CL

SAR AL,CL

 SHL BYTE PTR
[DI],CL

ROR AL,1

ROL AL,3

RCR AL,3

 RCL BYTE PTR
[DI],CL

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 33

4.3 Lab Work:

Multiplication and Division using Shift instructions
We have seen earlier that the SHL instruction can be used to multiply an operand by 2n
and the SHR instruction can be used to divide an operand by 2n.

The MUL and DIV instructions take much longer to execute than the Shift instructions.

Therefore, when multiplying/dividing an operand by a small number it is better to use

Shift instructions than to use the MUL/DIV instructions. For example MUL BL where

BL = 2 takes many more clock cycles than SHL AL, 1.

In Exercise 1, and 2, you will write programs to multiply, and divide respectively, using

shift instructions.

Write each of the programs using the TASM assembler format. Programs 1, 2, and 3 must

be executed using the Turbo Debugger (TD) program. Program 4 must be directly

executable from the DOS prompt.

1. Write a program to multiply AX by 27 using only Shift and Add instructions. You

should not use the MUL instruction.

Recall that shifting left n bits multiplies the operand by 2n.

If the multiplier is not an absolute power of 2,
then express the multiplier as a sum of terms which are absolute powers of 2.

For example, multiply AX by 7. (7 = 4 + 2 + 1 = 22 + 21 + 1)

Answer = AX shifted left by 2 + AX shifted left by 1 + AX.

Note: Only the original value of AX is used in each operation above.

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

 34

2. Write a program to divide AX by 11 using Shift and Subtract instructions. You

should not use the DIV instruction. Assume AX is a multiple of 11.

Recall that shifting right n bits divides the operand by 2n.

If the divisor is not an absolute power of 2,
then express the divisor as a sum of terms which are absolute powers of 2.

For example, divide AX by 5. (5 = 4 + 1 = 22 + 1)

Answer = AX shifted right by 2 - AX.

Note: Only the original value of AX is used in each operation above.

3. Write a program to check if a byte is a Palindrome. [Hint: Use Rotate

instructions]. If the byte is a Palindrome, then move AAh into BL. Otherwise

move 00h in BL.

A Palindrome looks the same when seen from the left or the right.

For example, 11011011 is a Palindrome but 11010011 is not a Palindrome

4. Write a program to display the bits of a register or memory location. Use the INT
21H interrupts to display data on the display monitor.

[Hint: Use logical shift instruction to move data bit into the carry flag]

For example, if AL = 55H, then your program must display:

AL = 0 1 0 1 0 0 1 0 1

EE 390 - Digital Systems Engineering Lab

Copyright © Electrical Engineering Department, KFUPM.

