KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF ELECTRICAL ENGINEERING Electronic Circuits I - EE203

Experiment # 5 Bipolar Junction Transistor Characteristics

OBJECTIVE

The purpose of this experiment is to

- Measure and Graph the collector characteristis curves for a BJT.
- Use the Characteristics curves to determine the β_{DC} of the transistor at a given point.
- Study data sheet of BJT

- Transistor 2N3904
- Resistors $33K\Omega$, 100Ω

Figure 1 2N3904 Pin configuration

PRELAB

Refer to the specifications for the 2N3904 and find the following information:

- a. transistor type
- b. maximum power it can dissipate at $25^{\circ}C$
- c. maximum collector current rating
- d. maximum collector to emitter voltage rating
- e. operating temperature range
- f. minimum and maximum h_{FE}
- g. the emitter to base breakdown voltage
- h. h_{FE} @ $I_C = 10 \text{ mA}$

SUMMARY OF THEORY

A Bipolar junction transistor (BJT) is a three terminal device capable of amplifying an *ac* signal (see Figure 1). The three terminals are called base (B), emitter(E), collector(C), and come in two flavours NPN (On a NPN transistor arrow is not pointed IN (See Figure 1)) and PNP. The middle letter indicate the type of material used for the base, while outer letters indicate the emitter and collector

material. The sandwiched materials produce two pn junctions. These two junctions form two diodes-the emitter-base diode and base-collector diode.

BJTs are current amplifiers. A small base current is amplified to a larger current in the collector-emitter circuit. Consider first the NPN transistor shown at the top. If the base is at higher (≈ 0.6 volt) potential than the emitter then a current i_B will flow into the base. The current into the collector is β times larger than the base current. The quantity β (usually called h_{FE} in transistor data sheets) is a characteristic of the individual transistor and is typically in the range from 100-500 for the types of transistors we will be using. The transistor can be thought of as a current amplifier device -- the current at the output (collector or emitter) is β times large than the current at the input (base). Another useful characteristic is the dc alpha.

For a transistor to amplify, power is required from dc sources. The dc voltages required for proper opertaion are referred to as bias voltages. The purpose of bias is to establish and maintain the requied operating conditions despite variations between transistors or changes in the circuit parameters. For normal operation, the baseemitter junction is forward-biased and base-collector junction reverse-biased. Since the base emitter junction is forward-biased, it has characteristics of a forward-biased diode.

PSPICE

A. BJT $I_C - V_{CE}$ characteristic curves

Use Schematics to connect the circuit shown in Figure 2. Select Analysis \rightarrow Setup \rightarrow DC Sweep. Select V_{CE} from 0 to 8V. The Sweep type is linear. Set Nested Sweep for I_B from 0.1mA to 0.5mA. Mark X in the Enable Nested Sweep. Generate three curves for $I_B = 0.1 \text{ mA}$, 0.3mA and 0.5mA.

Determine α and β from the curves for the following values of I_B and V_{CE} :I_B = 0.1mA, 0.3mA and 0.5mA at V_{CE} = 1V and V_{CE} = 2.5V.Compare with experimental result.

B. <u>DC Current Gain β versus collector current I_C and I_B</u>

Use the same circuit shown in Figure 2. Set $V_{CE} = 5V$. Select *Analysis* \rightarrow *Setup* \rightarrow *DC Sweep*. Sweep for I_B from 100µA to 1mA in *DECADES* with 20 points per decade. Run the simulation. Plot the trace IC(Q1)/IB(Q1) versus IB. Also plot IC(Q1)/IB(Q1) versus IC.

Find, from second plot, the maximum DC current gain. Find the corresponding I_B and I_C . Determine α at calculated I_C .

C. β versus Temperature

Circuit for this analysis is shown in Figure 2. Consider $V_{CE} = 5V$. You can generate β versus I_C curves at different temperatures. This is a typical curve found in most data sheets for BJTs.

Select Analysis \rightarrow Setup \rightarrow DC Sweep. Sweep for I_B from 100µA to 1mA in DECADES with 20 points per decade. Click on the Nested Sweep button and set values -25, 25,125 Celsius. Mark 'X' in the Enable Nested Sweep box. Run the simulation. Generate a plot of β versus I_C.

At what I_C the β is maximum?

Note: If you find difficulty in identifying the curves, you should run each case separately and verify the identity of each curve. Put label on the plot to identify each curve.

ATTACH ALL NECESSARY PRINT OUT OF YOUR PROBE WITH COMMENTS.

DATA SHEET FOR TRANSISTOR

A partial data sheet for the 2N3903 and 2N3904 *npn* transistors is shown in Figure 4. Notice that the maximum collector-emitter voltage (V_{CEO}) is 40V. The CEO subscript indicates that the voltage is measured from collector (C) to emitter(E) with the base open (O). In the text we use $V_{CE(max)}$ for clarity. Also notice that the maximum collector current is 200mA. The collector-emitter saturation voltage, $V_{CE(sat)}$ is 0.2 V maximum for $I_{C(sat)}$ =10 mA and increases with the current.

The β_{DC} (DC current gain) is specified for several values of I_C and it is worth discussing.

About β_{DC}

The β_{DC} is an important bipolar transistor parameter that we need to examine. β_{DC} varies with both collector current and temperature. Keeping the junction temperature constant and increase in I_C causes β_{DC} to increase to a maximum. A further increase in I_C beyond this point causes β_{DC} to decrease. If I_C is held constant and the temperature is varied, β_{DC} changes directly with the temperature. If the temperature goes up, β_{DC} goes up and vice versa.

2N3904				
SMALL SIGNAL TRANSISTORS (NPN)				
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS				
Ratings at 25°C ambient temperature unless otherwise specified				
	SYMBOL	VALUE		UNIT
Collector-Base Voltage	Vсво	60		v
Collector-Emitter Voltage	VCEO	40		v
Emitter-Base Voltage	VEBO	6.0		V
Collector Current	lc	200		mA
Power Dissipation at $T_A = 25^{\circ}C$ at $T_C = 25^{\circ}C$	Ptot	625 1.5		mW W
Thermal Resistance Junction to Ambient Air	Reja	250 ⁽¹⁾		°C/W
Junction Temperature	Tj	150		°C
Storage Temperature Range	Ts	– 65 to +150		°C
NOTES: (1) Valid provided that leads are kept at ambient temperature.				
Collector-Base Breakdown Voltage at Ic = 10 μA, IE = 0	V(BR)CBO	60	_	v
Collector-Emitter Breakdown Voltage at Ic = 1 mA, IB = 0	V(BR)CEO	40	_	v
Emitter-Base Breakdown Voltage at I _E = 10 μA, Ic = 0	V(BR)EBO	6	_	v
Collector Saturation Voltage at $I_{C} = 10$ mA, $I_{B} = 1$ mA at $I_{C} = 50$ mA, $I_{B} = 5$ mA	VCEsat VCEsat		0.2 0.3	V V
Base Saturation Voltage at $I_{C} = 10$ mA, $I_{B} = 1$ mA at $I_{C} = 50$ mA, $I_{B} = 5$ mA	VBEsat VBEsat		0.85 0.95	v v
Collector-Emitter Cutoff Current VEB = 3 V, VCE = 30 V	ICEV	-	50	nA
Emitter-Base Cutoff Current VEB = 3 V, VCE = 30 V	IEBV	-	50	nA
DC Current Gain at $V_{CE} = 1$ V, Ic = 0.1 mA at $V_{CE} = 1$ V, Ic = 1 mA at $V_{CE} = 1$ V, Ic = 10 mA at $V_{CE} = 1$ V, Ic = 50 mA at $V_{CE} = 1$ V, Ic = 100 mA	hFE hFE hFE hFE hFE	40 70 100 60 30	_ 300 _	

Figure 4 Partial transistor data sheet

Figure below shows the variation of β_{DC} with I_C and junction temperature (T_j) for a typical transistor.

A transistor data sheet usually specifies β_{DC} (h_{FE}) at specific I_C values. Even at fixed values of I_C and temperature, β_{DC} varies from device to device for a given transistor due to inconsistencies in the manufacturing process that are unavoidable. The β_{DC} specified at a certain values of I_C is usually the minimum value, $\beta_{DC(min)}$, although the maximum and typical values are also sometimes specified.

Maximum Transistor Ratings

A transistor like any other electronic device has limitations on its operation. These limitations are stated in the form of maximum ratings and are normally specified on the manufacturer's data sheet as shown in Figure 4. Typical maximum ratings are given for collector-to-base voltage, collector-to-emitter voltage, collector current and power dissipation. The product of V_{CE} and I_C must not exceed the maximum power dissipation ($P_{tot(max)}$). Both V_{CE} and I_C cannot be maximum at the same time. $P_{tot(max)}$ is usually specified at 25^oC. For Higher temperature, $P_{tot(max)}$ is less. Data sheets often give derating factors for determining $P_{tot(max)}$ at any temperature above 25^oC. For example, a derating factor of 2mW/^oC indicates that the maximum power dissipation is reduced 2 mW for each centigrade degree increase in temperature

DEMO: Transistor curve Tracer

Your instructor will introduce you to the different functions of the transistor curve tracer for testing transistor's characteristics. Instructors display both I_C - V_{BE} and I_C - V_{CE} .