Experiment 5 Series & Parallel Circuits Voltage Divider & Current Divider Rules

Introduction

Figure 2: Parallel circuit

For a series circuit shown in Figure 1, the voltages across resistors R_1 , R_2 and R_3 can be written as,

$$V_{1} = \frac{R_{1}}{R_{1} + R_{2} + R_{3}} V_{s}$$

$$V_{2} = \frac{R_{2}}{R_{1} + R_{2} + R_{3}} V_{s}$$

$$V_{3} = \frac{R_{3}}{R_{1} + R_{2} + R_{3}} V_{s}$$
(1)

This is the voltage divider rule (VDR).

For a parallel circuit given in Fig. 5.2, the branch currents can be written in terms of the total current as,

$$I_{1} = \frac{R_{2}}{R_{1} + R_{2}} I_{s}$$

$$I_{2} = \frac{R_{1}}{R_{1} + R_{2}} I_{s}$$
(2)

This is termed as the current divider rule (CDR).

Objectives

- 1. To study the voltage current relationships of series and parallel circuits
- 2. To verify the voltage current divider and voltage divider rules.

Materials

One dc power supply One multimeter Assorted resistors

Figure 3: Series-parallel circuit I

Figure 4: Series-parallel circuit II

$R_2 = 100W$, $R_3 = 150W$, $R_4 = 220W$, $R_6 = 330W$

Procedure

Simulation

- 1. Build the circuit given in Figure 3 on *Multisim Electronics Workbench*.
- 2. Connect voltmeters, ammeters (or multimeters) at appropriate positions to measure voltages and currents shown in Table 1.
- 3. Disconnect the voltage source. Connect a mutimeter and measure the total resistance and record the value in Table 1. (Remember resistance is always measured without any source connected to the circuit)
- 4. Repeat steps 2 and 3 for the circuit given in Figure 4 and record the values in Table 2.

Hardwired Experiment

- 5. Build the circuit of Figure 3 with the hardwired components. Take the voltage current measurements and R_{eq} and record in Table 1. Considering the Workbench results as the base compute the percentage errors.
- 6. Build the circuit of Figure 4 with the hardwired components. Take the voltage current measurements and R_{eq} and record in Table 2. Considering the Workbench results as the base compute the percentage errors.

	Is	I_2	I ₃	I_4	I ₅	I ₆	V_2	V ₃	V_4	V_5	V_6	R _{eq}
Workbench												
Hardwired												
% Error												

Table 1: Simulation and experimental results for Figure 3

Table 2: Simulation and experimental results for Figure 4

	Is	I ₂	I ₃	I ₄	I ₅	I ₆	V ₂	V ₃	V_4	V ₅	V_6	R _{eq}
Workbench												
Hardwired												
% Error												

Questions

Refer to Figure 3 and the results obtained in Table 1 and answer the following questions:

- 1. Are R_4 and R_6 in parallel or in series? Why? Refer to voltage current measurements for your answer to justify.
- 2. Are R_3 and R_4 in parallel or in series? Why? Justify
- 3. Are Vs and R_3 in parallel or in series? Why? Justify
- 4. Are Vs and R_6 in series or in parallel? Why? Justify.
- 5. Are Vs and $R_{eq}\!.$ in parallel or in series? Why? Justify

- 6. Is VDR applicable for applicable R_3 and R_4 ? Why? Justify your answer on the basis of theory given in the introduction.
- 7. Is CDR applicable for R_4 and R_6 ? Why? Justify your answer on the basis of theory given in the introduction.
- 8. Is the parallel combination of R_4 and R_6 in series or in parallel with R_2 ? Why? Justify.

Refer to Figure 4 and the results obtained in Table 2 and answer the following questions:

- 9. Are R_4 and R_6 in parallel or in series? Why? Refer to voltage current measurements for your answer to justify.
- 10. Are R₃ and R₄ in parallel or in series? Why? Justify
- 11. Are Vs and R₃ in parallel or in series? Why? Justify
- 12. Are Vs and R₆ in series or in parallel? Why? Justify.
- 13. Are Vs and R_{eq}. in parallel or in series? Why? Justify
- 14. Is VDR applicable for applicable R_3 and R_4 ? Why? Justify your answer on the basis of theory given in the introduction.

- 15. Is CDR applicable for R_4 and R_6 ? Why? Justify your answer on the basis of theory given in the introduction.
- 16. Is the parallel combination of R_4 and R_6 in series or in parallel with R_2 ? Why? Justify.

Any other observations or comments