## King Jahd University of Petroleum and Minerals Electrical Engineering Department

## PROBLEM SESSION # 2

**Problem 1.a**) Find the surface integral of  $F = 5 a_y$  over S, where S is a cubical surface 3 units of length of the side with a corner at the origin. One of the faces of the cube lies in the first quadrant of the x-y plane. (b) Repeat (a) for  $F = x^2 y^2 a_x$ .

**Problem 2.a)** Evaluate the surface integral of  $F = \frac{a_r}{r^2}$  over the spherical surface of

radius 4 centered at the origin. (b) Repeat part (a) for  $\mathbf{F} = \frac{\sin^2 \phi}{r^2} a_r + \cos \phi a_\theta$ . (c) Repeat part (a) for  $\mathbf{F} = \mathbf{a}_x$ .

**Problem 3.** Consider the conical surface *S* shown in figure 1.

The cone has height h and base radius a. Evaluate the closed surface integral of the following vector fields: (a)  $\mathbf{F} = r \, \mathbf{a}_r$ . (b)  $\mathbf{F} = r \, \mathbf{a}_\theta$ . (c)  $\mathbf{F} = \cos \phi \mathbf{a}_\phi + r \, \mathbf{a}_\theta$ .

**Problem 4.** Consider the closed cylindrical surface of height h and base radius a as shown in figure 2. Evaluate the closed surface integral of F over this surface if:

(a) 
$$\mathbf{F} = \rho^2 \mathbf{a}_{\rho} + \rho \sin \phi \mathbf{a}_{\phi} + \rho^2 \sin \phi \mathbf{a}_{z}$$
. (b)  $\mathbf{F} = x \mathbf{a}_{x} + z \mathbf{a}_{z}$ .

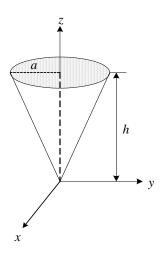



Figure 1: The surface for problem 3

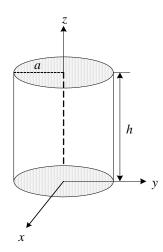



Figure 2: The surface for problem 4