Electrical Engineering Department
 PROBLEM SESSION \# 2

Problem 1.a) Find the surface integral of $\boldsymbol{F}=5 \boldsymbol{a}_{\boldsymbol{y}}$ over S, where S is a cubical surface 3 units of length of the side with a corner at the origin. One of the faces of the cube lies in the first quadrant of the $x-y$ plane. (b) Repeat (a) for $\boldsymbol{F}=x^{2} y^{2} \boldsymbol{a}_{x}$.

Problem 2.a) Evaluate the surface integral of $\boldsymbol{F}=\frac{a_{r}}{r^{2}}$ over the spherical surface of radius 4 centered at the origin. (b) Repeat part (a) for $\boldsymbol{F}=\frac{\sin ^{2} \phi}{r^{2}} a_{r}+\cos \phi a_{\theta}$. (c) Repeat part (a) for $\boldsymbol{F}=\boldsymbol{a}_{\boldsymbol{x}}$.

Problem 3. Consider the conical surface S shown in figure 1.
The cone has height h and base radius a. Evaluate the closed surface integral of the following vector fields: (a) $\boldsymbol{F}=r \boldsymbol{a}_{r}$. (b) $\boldsymbol{F}=r \boldsymbol{a}_{\theta}$. (c) $\boldsymbol{F}=\cos \phi \boldsymbol{a}_{\phi}+r \boldsymbol{a}_{\theta}$.

Problem 4. Consider the closed cylindrical surface of height h and base radius a as shown in figure 2. Evaluate the closed surface integral of \boldsymbol{F} over this surface if:
(a) $\boldsymbol{F}=\rho^{2} \boldsymbol{a}_{\rho}+\rho \sin \phi \boldsymbol{a}_{\phi}+\rho^{2} \sin \phi \boldsymbol{a}_{z}$. (b) $\boldsymbol{F}=x \boldsymbol{a}_{x}+z \boldsymbol{a}_{z}$.

Figure 1: The surface for problem 3

Figure 2: The surface for problem 4

