Experiment (7)

MAGNETIC INDUCTION

OBJECTIVE

To verify Faraday's law of induction. The induced voltage in the secondary circuit is measured as a function of the amplitude and frequency of the current in the primary circuit. The variation of the induced voltage with the number of turns and the cross-sectional area of the secondary circuit is also studied.

EQUIPMENT REQUIRED

- 1. Frequency counter.
- 2. Function generator.
- 3. Digital multimeter.
- 4. Analog multimeter.
- 5. Voltage transformers 125/220 (two).
- 6. Field coil 485 turns/meter, 750 mm long.
- 7. Induction coil, 300 turns, 41 mm diameter.
- 8. Induction coil, 300 turns, 33 mm diameter.
- 9. Induction coil, 300 turns, 26 mm diameter.
- 10. Induction coil, 200 turns, 41 mm diameter.
- 11. Induction coil, 100 turns, 41 mm diameter.

INTRODUCTION

According to Faraday's law of induction, voltage can be induced in a circuit due to current passing through a nearby circuit. In this experiment, a large solenoidal field coil (item 6 in the equipment list) is used to generate a time-varying magnetic field by passing an AC current (I_I) through it. Smaller coils (items 7-11 in the equipment list) are used for induction (see Figure 1).

The AC current I_I passing through the field coil produces a time-varying magnetic field given by:

$$\overline{B} = \mu_o n I_1 \dots (1)$$

where n is the turns density (turns/meter) of the coil. If the current I_l is sinusoidal and given by:

$$I_1 = I_o \cos(\omega t) \dots (2)$$

then, the induced voltage, v, in the induction coil is given by:

$$v = \mu_a n \pi a^2 N \omega I_a \sin(\omega t) \qquad (3)$$

where a and N are the radius and the number of turns of the induction coil, respectively.

PROCEDURE

RART A: Induced voltage vs. current

- 1. Connect the function generator to the field coil and to the frequency counter.
- 2. Adjust the frequency to 10.7 kHz.
- 3. Measure the amplitude of I_I , using the analog multimeter.
- 4. Insert the 300-turn, 41 *mm* diameter coil into the field coil. Insure that the coil is well into the field coil. Measure the induced voltage in the coil using the digital multimeter.

5. Repeat for a range of I_1 from 0 to 30mA.

PART B: Induced voltage vs. number of turns

- 1. Fix the current I_1 to 30mA and the frequency to $10.7 \ kHz$. Measure the induced voltage across the 300-tum, 41 mm diameter coil.
- 2. Repeat step (1) for the 200-turn, 41 mm diameter and the 100-turn, 41 mm diameter coils.
- 3. Repeat step (1) for a 400-turn, 41 *mm* diameter coil (not provided but a combination can be used).
- 4. Repeat step (1) for a 500-turn, 41 mm diameter coil.

PART C: Induced voltage vs. coil diameter

- 1. Fix the current I_1 to 30mA and the frequency to 10.7kHz. Measure the induced voltage across the 300-tum, 41 mm diameter coil.
- 2. Repeat step (1) for the 300-tum coils of diameters 33 mm and 26 mm.

PART D: Induced voltage vs. frequency

- 1. Fix the current I_1 to 30mA and the frequency to 1 kHz. Measure the induced voltage across the 300-turn, 41 mm diameter coil.
- 2. Repeat step (1) for a frequency range from 1 to 12 kHz (make sure that the current is maintained at 30mA each time you change the frequency).

QUESTIONS FOR DISCUSSION

- 1. Plot the experimental and the theoretical relations between the induced voltage and current, number of turns, coil diameter and frequency.
- 2. From your experimental curves, find the induced voltage for the case: N=350, a=15 mm, $I_1=10mA$ and f=10 kHz.
- 3. Use equation (3) to find a theoretical value of the induced voltage for the case in question (2). Compare with your answer of question (2). This is a good measure of the accuracy of your experimental results.

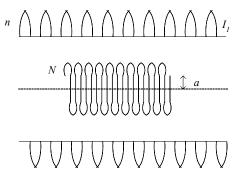


Figure 1: Field and induction coils