

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

COLLEGE OF ENVIROMNENTAL DESIGN DEPARTMENT OF CITY & REGIONAL PLANNING

Term Paper Presentation on

GIS-Based Applications In Petroleum Exploration

Prepared By:

Abdallah Abdelkarim Hassan Abdelkarim

Dec.25, 2012

OUTLINES

OVERVIEW

GIS FOR OIL INDUSTRY

CASE STUDY I

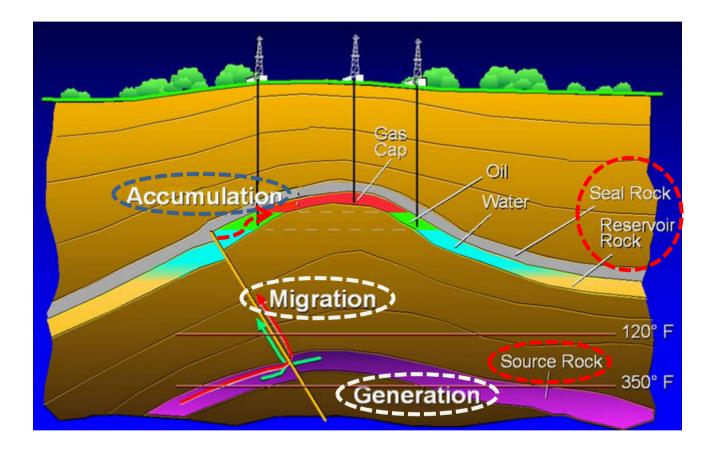
CASE STUDY II

CONCLUSION

REFERENCES

OVERVIEW

- GIS is a organized set of hardware, software, geographic information, and user to efficiently obtain, store, manipulate update, analyze and display geographic reference data.
- GIS is employed in petroleum industry in many aspects to improve the way of acquiring, processing, management, and delivering all information related to exploration, development and production.
- > Evaluation of petroleum potentiality.


GIS FOR OIL INDUSTRY - example

- ✓ SAUDI ARAMCO: More than 10 yrs in developing GIS enterprise for exploration surveys, evaluate contractors performance, analyze field geophysical data.
- ✓ Petroleum Development Oman project (PDO): GIS for Mapping and Integration of well data and analyses of trap configuration For the productive fields.
- ✓ OMV Petrom Romania: using GIS applications for exploration and production to avoid data redundancy, allowing easy and multi-access ways to data, and developing the overall exploration and production work flow.
- ✓ Hurricanes in the Gulf of Mexico: GIS spatially represented the predictable hurricane passageways, evaluate risk factors to make petroleum companies awake for the future hurricanes.

- GIS best practice; GIS for Petroleum, ESRI 2007
- Kevin McLay et al., 2003

WE HAVE TO KNOW !

Petroleum system = Elements + Processes

(Petroleumsupport.com)

CASE STUDY I GIS-based modeling of secondary hydrocarbon migration pathways; northern Songliao Basin, northeast of China

>What's Hydrocarbon secondary migration?

Movement of Hydrocarbon (oil or gas) within carrier bed to proper entrapment site (trap)

> modeling of migration pathways is important to locate the traps

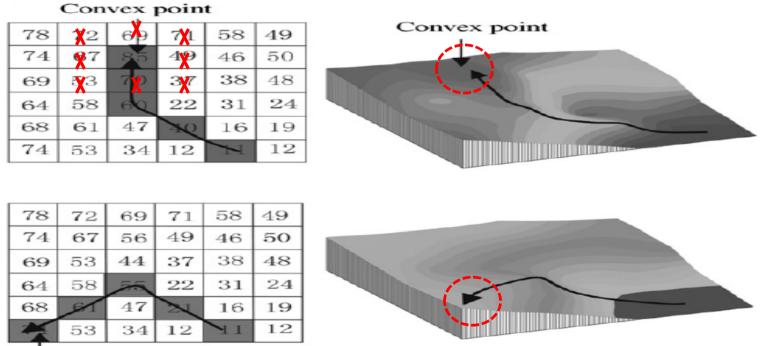
(Richard C. Selly, 1998)

DEM algorithms

- A GIS-based application model
- Used widely in hydrological modeling to analyze the directions of water flow
- This principle can be applied reversely in hydrocarbon migration modeling

- Assume 3 x 3 search window
- Point source is a point in the carrier bed from which hydrocarbon begins to take definite route(s)
- Point source was put in the center of search window

	0	1	2	3	4	5						
0	78	72	69	71	58	49	78	72	69	71	58	49
1	74	67	56	49	46	50	74	67	56	49	$ 46\rangle$	50
2	62	53	44	37	38	48	69	53	44	37	38	48
3	64	58	-55	22	31	24	64.	58	55	22	31	24
4	68	61	47	R	16	19	68	61	47	21	16	19
5	74	53	34	12	71	12	74	53	34	12	11	12


hydrocarbon migration

water flow

(after Xuefeng Liu et al., 2008)

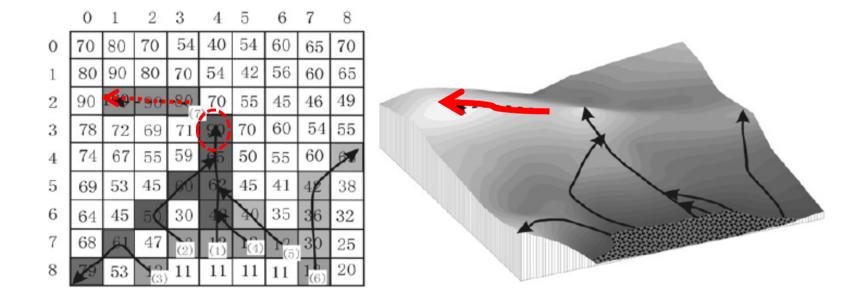
migration Scenarios

Termination point (convex point) means Possible trap

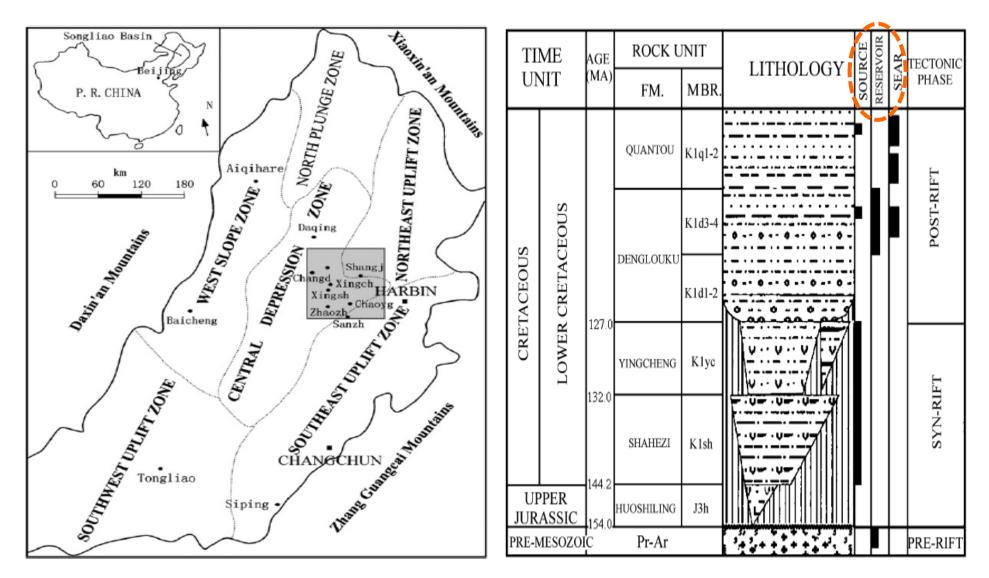
Boundary point

Boundary point (migration expands out of algorithm)

migration Scenarios

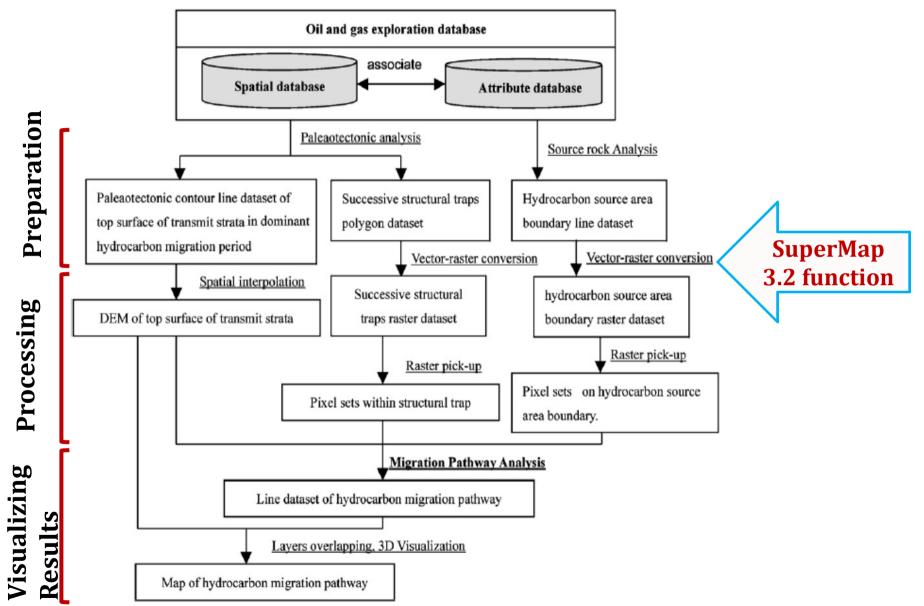

Divergence point

Convergence point

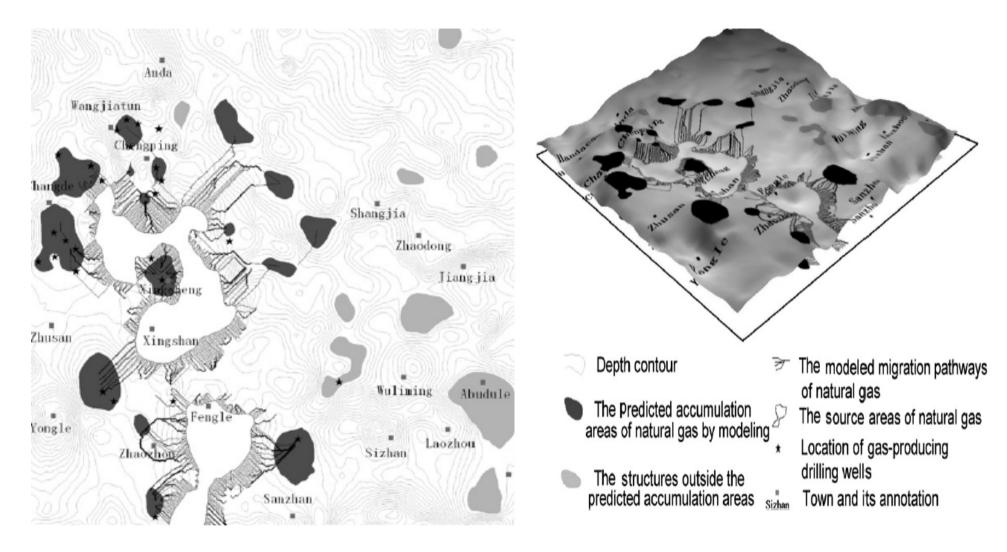

	0	1	2	3	4	5		0	1	2	3	4	5
0	78	72	69	1	58	49	0	78	72	69	90	58	49
1	74	67	56	49	66	50	1	74	67	The second	49	66	50
2	69	61	44	61	38	48	2	69	54	61	54	38	48
3	64	58	55	22	31	24	3	64	50	58	22	3.7	24
4	68	54	47	24	16	19	4	68	54	47	18	16	`ŀ1
5	60	53	34	12	*1	12	5	60	53	34	21	-11	10

Real life (complex model)

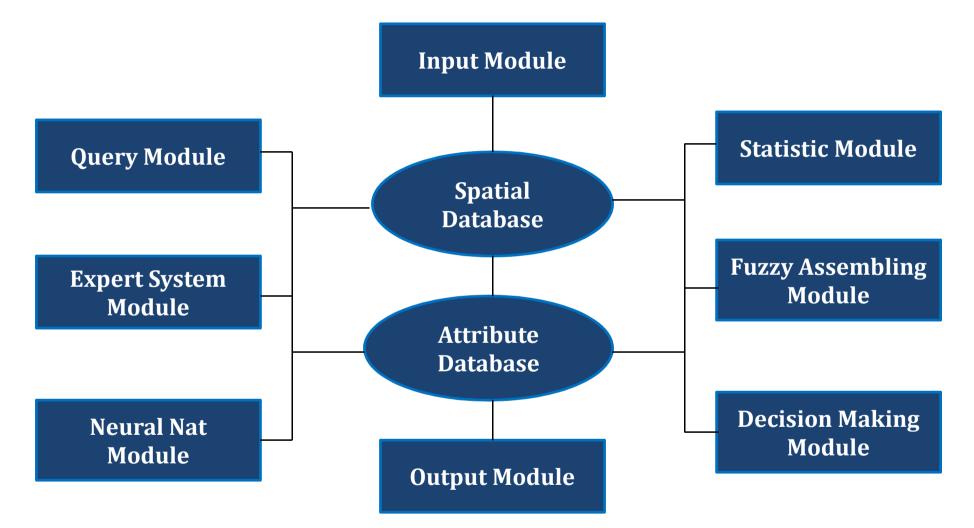
- > Sometimes we can get a remigration point
- > The amount of accumulated petroleum is greater than trap capacity



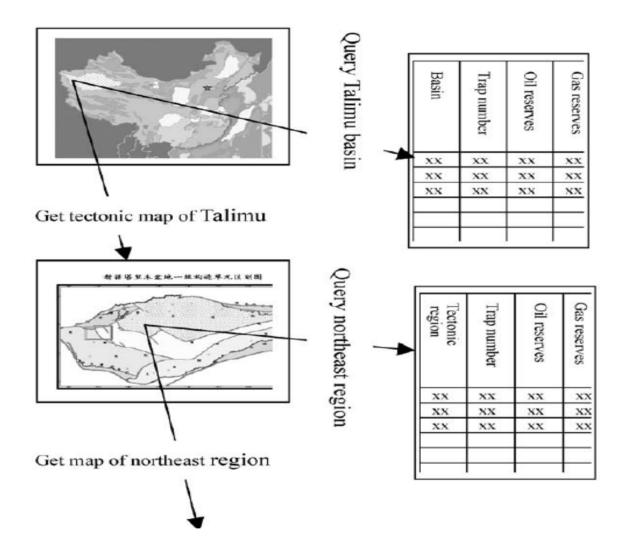
Songliao Basin, NE China


(After Xuefeng Liu et al., 2008)

SuperMap 3.2


(After Xuefeng Liu et al., 2008)

SuperMap 3.2 visualize function


(after Xuefeng Liu et al., 2008)

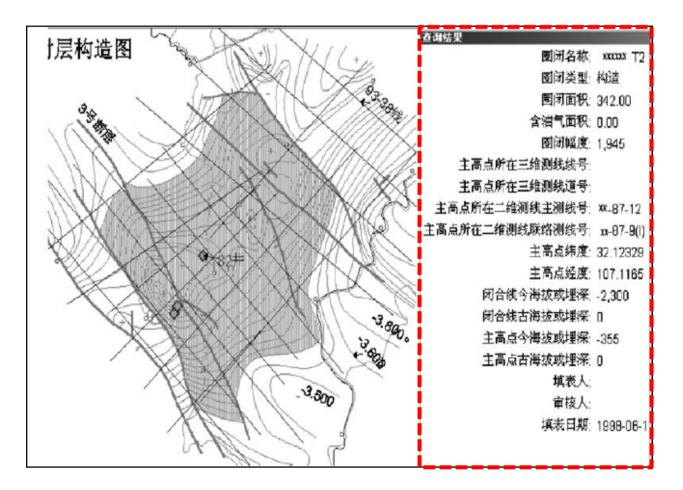
CASE STUDY 2: The establishment of a trap information system based on GIS

Basic framework of the GIS-based trap system

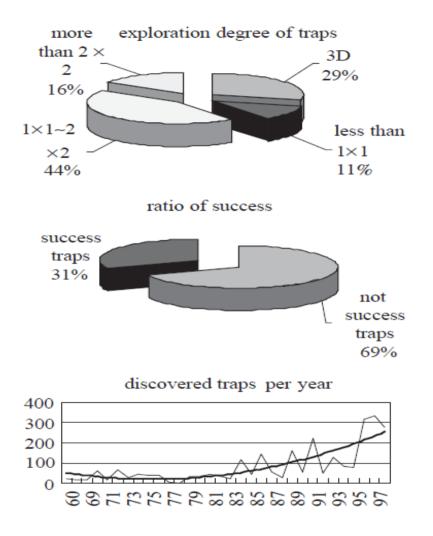
SINOPEC (W. Chuan & P. Suping, 2003)

some function of user map interface

(W. Chuan & P. Suping, 2003)


Results of trap query

≻User can search attribute data


> Shape of trap

>location of trap

➢examine some related images such as faults, seismic lines, and wells.

(W. Chuan & P. Suping, 2003)

Statistical diagrams of trap information

(W. Chuan & P. Suping, 2003)

CONCLUSION

- ➢GIS approved as an effective technique in tracking the secondary migration pathways.
- ➢GIS modeling was applied on known traps, so results corresponded with geological data.
- Beside altitude and geometry data, migration modeling need significant data as burial depth, capillary pressure, permeability and faults distribution (if found).
- GIS ability of storing, updating, manipulating, analyzing and displaying had been invest to establish a functional trap information system.

REFERENCES

- England W. A, Mackenzie A, S, Mann, D.M., Quigley, T.M., 1987. The movement and entrapment of petroleum fluids in the subsurface. Journal of Geological Society of London 144 (2), 327–347.
- ESRI 2007, GIS Best Practices notes; GIS for Petroleum.
- Hindle, A.D., 1997. Petroleum migration pathways and charge concentration: a three--dimensional model, Bulletin of American Association of Petroleum Geologists 81(9), 1451–1481.
- Kirk A. Barrell, 2000; Geographic information system in petroleum exploration, GIS the exploration and exploitation tool.
- Li, S., Zeng, Z.Y., Zhang, Y.S., 2002. Application of digital terrain analysis technology for distributed hydrological modeling. Advance in Earth Sciences 18 (5), 769–775 (in Chinese).
- Ren, Y.G., Zhu, D.F., Wan, C.B., Feng, Z.H., Li, J.K., Wang, C., 2004. Natural gas accumulation rule of Xujiaweizi depression in Songliao basin and future exploration target. Petroleum Geology & Oilfield Development in Daqing 23 (5), 26–29 (in Chinese).
- Selley, R.C., 1998. Elements of Petroleum Geology, second ed. Academic Press Inc., San Diego, USA, 470pp.
- Wang Chuana, Peng Suping, 2003, The establishment of a trap information system based on GIS; Short Note, Computers & Geosciences 29 (2003) 937–940.
- Xuefeng Liu, Guangfa Zhong, Jingyuan Yin, Youbin He, Xianhua Li, 2008 GIS-based modeling of secondary hydrocarbon migration pathways and its application in the northern Songliao Basin, northeast China, Computers & Geosciences 34 (2008) 1115– 1126.