GEOGRAPHIC INFORMATION SYSTEM (GIS): Overview, Benefits, Applications

CRP-514
Report Presentation

Presented By: Khalid O. Bagais 200329670

15 May, 2012

What is Geographic Information System(GIS)?

It is a computer tool used for gathering information, analyzing information and storing information of a particular Geographical area.

For Example: To gather information about number of houses in a particular city.

→ Functioning of GIS

- **Capture**
- **Store**
- **Query**
- **→** Analyze
- **─** Display
- Output
- Basically it stores data in two forms.
 - 1. Geographic coordinate form.
 - 2. Attribute form

Overview

- One of the first applications of spatial analysis in epidemiology is the 1832.
- The French geographer Charles Picquet represented the 48 districts of the city of Paris by halftone color gradient according to the percentage of deaths by cholera per 1000 inhabitants.
- In 1854, <u>John Snow</u> depicted a <u>cholera</u> outbreak in London using points to represent the locations of some individual cases, possibly the earliest use of the geographic method
- Developed in just the last 30 years or so.
- GIS technology already represents a billion dollar industry worldwide.
- It is growing at perhaps 25% per year and serving about one million persons on a daily basis in more than 100 countries.

Who uses GIS?

- International organizations
 - UN HABITAT, The World Bank, UNEP, FAO, WHO, etc.
- Private industry
 - Transport, Real Estate, Insurance, etc.
- Government
 - Ministries of Environment, Housing, Agriculture, etc.
 - Local Authorities, Cities, Municipalities, etc.
 - Provincial Agencies for Planning, Parks, Transportation, etc.
- Non-profit organizations/NGO's
 - World Resources Institute, ICMA, etc.
- Academic and Research Institutions
 - Smithsonian Institution, CIESIN, etc.

Benefits Of GIS

- Its ability to integrate different databases into one environment.
- The ability to display and manage spatial data in a spatial context.
- Rapid production of specialized map and graphic products.
- Once the spatial data are on place, complex spatial analyses may be performed more rapidly than by hand. (Automated process)

Examples of Applied GIS

Urban Planning, Management & Policy

- Zoning, subdivision planning
- Land acquisition
- Economic development
- Code enforcement
- Housing renovation programs
- Emergency response
- Crime analysis
- Tax assessment

Environmental Sciences

- Monitoring environmental risk
- Modeling stormwater runoff
- Management of watersheds, floodplains, wetlands, forests, aquifers
- Environmental Impact Analysis
- Hazardous or toxic facility siting
- Groundwater modeling and contamination tracking

Political Science

- Redistricting
- Analysis of election results
- Predictive modeling

Civil Engineering/Utility

- Locating underground facilities
- Designing alignment for freeways, transit
- Coordination of infrastructure maintenance

Business

- Demographic Analysis
- Market Penetration/ Share Analysis
- Site Selection

• Education Administration

- Attendance Area Maintenance
- Enrollment Projections
- School Bus Routing

Real Estate

- Neighborhood land prices
- Traffic Impact Analysis
- Determination of Highest and Best Use

Health Care

- Epidemiology
- Needs Analysis
- Service Inventory

Applications

1. GIS for Aceh Natural Hazards

The problem:

• On 26th December 2004 ,the tsunamis which struck the 12 countries killed over 150,000 people.

Aceh which is prone to natural hazards such as volcanic eruptions, Earthquakes,

landslides, droughts etc.

Applications

The solution:

- By using Aceh Natural Hazards Information System (ANHIS) these natural disasters is minimized.
- Many data which is not available to the public is made available with the use of GIS, so that
 the disasters are minimized.
- Here in ANHIS the prototype used is based on Client- Server interactive system .
- The results of ANHIS will clearly display in the map which area is prone to natural hazards.

Applications

The research method

The research method involved in the development of ANHIS is of many steps such as :

- > Determining the System requirements:-It depends up on the end user requirements ,such as government, disaster agencies, organizations ,communities and researchers.
- Determining Software and Hardware requirements: This plays an important role in getting the information faster. Here the database server and web server are install in a computer and the software platform used is open source.

Main Concept Of ANHIS

- Main Concept Of ANHIS:
- ➤ To minimize the damage by giving the information to the decision makers, geologists and engineers with an interactive system where the client server technology is used .
- ANHIS offers many interactive tools to review and investigate the properties of the land.
- > It can me managed easily.
- > It has five main database administrations:
- 1. Base administration region database.
- 2. Geography database
- 3. Geology database.
- 4. Hydrology database
- 5. Ecology database.

Configuration for Hardware and Software

- Hardware platform used is, database server and GeoServer and installed on notebook computer.
- Software platform used is GeoServer and Database server.
- Web application software used is open layer and GeoExt.

Representation of data \$ Results

- In the figure below, multi-hazard map is presented to show earthquake, tsunami and landslide.
- Here the data models used to represent the data are vector and raster.
- The data represented in map is shown in three colors ,Red, Yellow and green from which we can identify the risk in the particular area.
- High risk area with multiple hazards is identified by scores from low to high.
- Here we can find high risk area by user analysis.

Conclusion

- GIS will have increasing impact on our lives.
- Can be used to make either reliable decisions based on good data or unreliable decisions base on bad data or inappropriate methods of analysis.
- The responsibility lies entirely on the user and those who provide its data, develop its software and build its hardware.

THANK YOU