Teapot Dome Naval Petroleum Reserve No. 3

Source: Rock Mountain Oilfield Test Center

- Geographic Information Systems (GIS) is widely used in the petroleum industry and is applied across planning, production, refining and distribution.
- GIS provides an environment to analyze oil well production data used to determine which reservoir, well depth, and geographic sections produce the most oil.

- In 1993 the Rocky Mountain Oilfield Testing Center (RMOTC) was established as a partnership between:
 - U.S. Government's Department of Energy (DOE)
 - The petroleum industry
 - Academia

KFUPM

- For the purpose of studying and field testing new technologies for drilling, production, enhanced recovery, and production cost reduction.
- There are currently 300 producing wells in 9 reservoirs (RMOTC n.d.).

General Location

KFUPM

Base Map

NPR-3 BASE MAP

Areal Photograph

Source: (USGS n.d.)

- The objective of this study is to reduce a statistically significant dataset into graphical and tabular representations to investigate oil well production of the Teapot Dome reservoir in the Naval Petroleum Reserve No. 3.
- This study seeks to answer the questions of:
 - What is the overall oil production by geographic section?
 - Do deeper wells produce more oil than shallow wells?
 - Which formation is producing more oil?

Research Methodology

- A detailed study was conducted comparing the production of individual wells categorized by:
 - Geographical section
 - Well depth
 - Reservoir
 - Through statistical methods in order to formulate a conclusion.
- The methodology used to achieve this objective is broken down into the following phases:
 - Phase I: Literature Review
 - Phase II: Data Collection and Preparation
 - Phase III: Data Analysis

Related Literature

Land Acquisition

- Oil Field Development
 - Roads & Utilities
 - Pipelines
 - Distribution Systems & Processing Facilities
- Safety & Security
 - Wind direction maps
 - Escape routes

Related Literature (Cont.)

Source: (Cova 1996)

Related Literature (Cont.)

- Well Location & Reservoir Management
 - GIS provides a matchless environment to analyze well production data for the purpose of locating wells and spacing for reservoir management.

The objective of this study is to reduce a statistically significant dataset into graphical and tabular representations to investigate oil well production of the Teapot Dome reservoir in the Naval Petroleum Reserve No. 3.

This study seeks to answer the questions of:

- What is the overall oil production by geographic section?
- Do deeper wells produce more oil than shallow wells?
- Which formation is producing more oil?

Data Collection & Analysis

- Data collected from the Rock Mountain Oilfield Testing Center (RMOTC)
- 2 Primary Data Sets Used
 - Well Production monthly production
 - Well Attributes
 - Coordinates Wyoming East Central State Plane, NAD 1927
- Data Description
 - -91 Years between 1914 and 2005
 - 4 datasets combined into one 210,438 observations
 - 1,317 individual wells

Data Collection & Analysis

- 19 Geographic Sections
- 14 Rock Formations
- Shallowest Well = 180 feet
- Deepest Well = 6,864 feet
- ◆ Well Number 1-S-10
 - -Year 1914
 - 456 feet deep
 - 171 barrels of oil

Data Collection & Analysis

Data Collection & Analysis – Depth

- Shallowest well = 180 feet
- Deepest well = 6,484 feet
- Median depth = 1,004 feet
- ♦ 663 Observations Categorized Shallow
- ♦ 655 Observations Categorized Deep

KFUPM

Data Collection & Analysis – Depth

Data Collection & Analysis – Section

19 Sections

- Most Dense Well Populations
 - Sections 3 & 10
 - 37% population
- Least Dense Well Population
 - Section 22
 - -1 Well or 0.08% population

Data Collection & Analysis – Section

Geographic Sections

KFUPM

Data Collection & Analysis – Formation

14 Formations

Most Dense Well Populations
Shannon = 50%

Least Dense Well Population
Crow Mountain = 0.15%

Quantitative Results - Depth

Total Oilfield Production 21,755,927 barrels

Shallow Wells Produced 7,760,700 barrels

Deep Wells Produced 13,995,227 barrels

Depth	Mean	Median	Sum
Deen	04.007	4 200	40.005.007
Deep Shallow	21,307	4,209 7 150	7 760 700
Challow	11,720	Total	21,755,927

KFUPM

Quantitative Results - Section

Highest Producers

- Section 3 = 14% (3,038,013 bbls)
- Section 10 = 21% (4,635,639 bbls)
- Section 20 = 11% (2,419,294 bbls)

Lowest Producers

- Section 22 = 0.02% (4,444 bbls)
- Section 23 = 0.18% (39,378 bbls)
- Section 26 = 0.06% (12,457 bbls)

Quantitative Results - Formation

Highest Producers

- 2nd Wall Creek 40.3% (8,770,858 bbls)
- Shannon 39.5% (8,583,263 bbls)
- Lowest Producers
 - Madison 0%
 - Microhole 0%
 - Crow Mountain 0% (10 bbls)

Quantitative Results - Formation

KFUPM

Conclusions

- Deep wells produce more oil double the volume of shallow wells.
- Section 10 produced more oil 21% of oilfield production.
- Although both the Shannon and 2nd Wall Creek formations produce within 1% of each other the 2nd Wall Creek has slightly more production by 188,595 bbls.

Acknowledgements

<u>Data Source</u>: U.S. Department of Energy – Rock Mountain Oilfield Testing Center

