
PARALLEL EVOLUTIONARY ALGORITHMS FOR MULTIOBJECTIVE
PLACEMENT PROBLEM

ABSTRACT

Non-deterministic iterative heuristics such as Tabu Search (TS), Simulated Evolution (SimE), Simu-
lated Annealing (SA), and Genetic Algorithms (GA) are being widely adopted to solve a range of hard
optimization problems [1]. This interest is attributed to their generality, ease of implementation, and
their ability to deliver high quality results. However, depending on the size of the problem, such heuris-
tics may have very large runtime requirements. One practical approach to speeding up their execution
is parallelization. This is all the more true for multi-objective cell placement, where the need to opti-
mize conflicting objectives (interconnect wire-length, power dissipation, and timing performance) adds
another level of difficulty [2]. In this paper, we present parallelization of TS and SimE, for multiobjec-
tive VLSI standard cell placement problem. Profile analysis of sequential code is conducted to assist
in selecting and engineering earlier proposed strategies. Fuzzy logic is used to integrate the costs of
multi-objectives. The TS implementation is a based on a synchronous candidate list partitioning model.
The implementation of parallel SimE is based on random distribution of rows to processors [3, 4]. For
comparison purposes, a parallel genetic algorithm (GA) based on the island model [5, 6], and a parallel
SA based on the Asynchronous Multiple-Markov Chain Model [7] were implemented. Results of ex-
periments on ISCAS-85/89 benchmark circuits are presented, with solution quality and speedup used as
metrics for the comparative/relative evaluation of the heuristics.

1. INTRODUCTION

General Non-deterministic Iterative Heuristics such as Tabu Search, Simulated Evolution, Simulated
Annealing, and Genetic Algorithms are getting more widely adopted to obtain near optimal solutions to
numerous hard problems [1]. For small problems, stochastic heuristics have reasonable runtime require-
ments. For instance, a VLSI cell placement problem with few hundred modules, it is possible to find
very good solutions in reasonable time. However, most practical circuits are very large and require sev-
eral hours of computer time to solve [8]. One way to adapt iterative techniques to solve large problems
and traverse larger search spaces in reasonable time is to resort to parallelization [4, 9].

In this paper we are addressing the problem of parallelizing non-deterministic iterative heuristics
to solve the multiobjective VLSI standard cell placement problem by using a cluster of low cost PCs.
The eventual goal being to achieve either lower run-times for same quality solutions, or higher quality
solutions in the same amount of time as the serial approach.

This however is easier said than done: an effective parallelization strategy must consider issues such
as proper partitioning of the problem to facilitate uniform distribution of computationally intensive tasks,



while also enabling a more thorough traversal of the complex search space. It is worth mentioning, that
in certain design problem, sometimes even the smallest savings in time are worth several times the cost,
or conversely, the importance of achieving a specific higher quality becomes essential, irrespective of
time taken or resources used. In the subsequent paragraphs we present a brief review of earlier efforts
towards the parallelization of TS and SimE.

Parallelization of TS: A number of parallelization techniques for TS have been reported in litera-
ture [10]. In the most straightforward and widely adopted approachk tabu search processes are spawned
and run concurrently onk processors where each processor carries out independent search [10, 11].
Malek suggested linking independent searches where each slave runs a copy of a serial TS but with dif-
ferent parameter settings [12]. After a specified time the slave processes are halted and the main process
selects the best solution found and broadcasts to all slave processes to start the entire search again from
this new solution.

Another approach to parallelize search within an iteration is when each process is given a task of
exploring a subset of the neighborhood of current solution. Two approaches are followed:synchronous
andasynchronous. In the synchronous approach the various processes are always working with the same
solution, but exploring different partitions of the current local neighborhood. Amasterprocess orches-
trates the activities of theslaveprocesses [11]. In the asynchronous approach, all processes are peer and
usually are not all working with the same current solution [10]. Both approaches require that the set of
possible moves be partitioned among the available processors so that each processor will be exploring a
distinct sub-region of the current solutions neighborhood.

Suggestions to increase efficiency of TS by parallelizing also include partitioning the search space,
which is difficult, or partitioning the problem into smaller sub-problems, determining the best moves for
each sub-problem, and then performing a compound move [10].

Attempts to solve several practical NP-hard problems have been reported in literature. For example,
parallel implementations include those for the vehicle routing problem [11], and quadratic assignment
problem (QAP) [13]. For the QAP, the parallelization strategy has been implemented on the Connec-
tion Machine CM-2, a massively parallel SIMD machine. A reduction in the runtime per iteration was
achieved when compared to other sequential and parallel implementations [14, 13].

Parallelization of SimE: Unlike other iterative heuristics the parallelization of SimE has not been the
subject of much research. Three ways of speeding up the SimE algorithm have been suggested in liter-
ature [3, 4]: (1) a distributed memory MIMD parallel algorithm, (2) a shared memory MIMD parallel
algorithm that is based on an extension of basic SimE using the concepts of windowing and hierar-
chy, and (3) hardware acceleration which consists of implementing time consuming parts in hardware
(namely, goodness computation).

A parallelization strategy for VLSI cell placement for a single objective (wirelength) was attempted
on a network of workstations [3], where each station is assigned a number of rows of the placement
problem, in a pre-determined order. The stations executes one iteration of the SimE algorithm on the
cells of the rows assigned to it. In each iteration, the rows are redistributed among the processors in a
predetermined order [3].

In the following section, we briefly mention our NP-hard, multiobjective, VLSI cell placement prob-
lem. Problem formulation and models for estimating the costs for the various objectives to be optimized
are referred. In Section 3, details of the parallelized algorithms is presented. Experimental setup, re-



sults obtained on ISCAS benchmark Circuits and other observations are given in Section 4, followed by
Conclusion in Section 5.

2. PLACEMENT OPTIMIZATION PROBLEM AND COST FUNCTIONS

Due to its complexity, VLSI design process is divided into several intermediate levels of abstraction.
Placement is a phase in physical level, and is a process of arranging circuit cells (components) on a
layout surface with a goal of optimizing certain design objectives while meeting the given constraints.

In this work, we deal with standard cell placement, where all the cells are constrained to have the
same height, while the width of the cell is variable and depends upon its complexity [2]. Cells are
arranged in rows with routing channels between the rows. Due to varying width of cells, row widths may
be unequal depending on the type and number of cells placed in a row. An approximation would be to
treat cells as points, but in order to have a more accurate estimate of wirelength, widths of cells are taken
into account. Heights of routing channels are estimated using the vertical constraint graphs constructed
during the channel routing phase. With this information, a fairly accurate estimate of power dissipation,
delay and total wirelength can be obtained [2]. The aggregate cost of the solution is computed using
fuzzy rules used in [8].

The multiobjective placement problem under consideration is NP-hard, and conventional constructive
techniques have often proved inadequate. Even the wire-length only optimization problem is known to
be NP-Complete [1].

3. PARALLELIZATION & IMPLEMENTATION OF ITERATIVE HEURISTICS

In this section we present the parallelization strategies and the implementation details of the heuristics.
We discuss the how the computationally intensive tasks are handled in each heuristic to distribute the
workload amongst the available processors.

3.1. Parallel Tabu Search

A generic intuitive strategy for parallelization is to partition the data into small subsets that are distributed
among the processors. Each processor is responsible for a data subset and implements a sequential ver-
sion of the concerned function (or the heuristic) over this data subset.

The sequential implementation of TS was analysed using profiling tools (GNU profiler) to obtain
insight into determining the time consuming operations of the code and the usage of resources. For the
circuits experimented on, between 60-80% of time was spent on computation of cost of the objectives
and their fuzzification. Furthermore, experiments with parameters revealed that for our hard optimization
problem with conflicting multiobjectives, large sizes of candidate list (upto 120) were required to obtain
high quality solutions. Since the computation of cost for all moves in the candidate list was the most time
consuming operation, (in each iteration) the algorithm was designed to partition this workload.

Therefore, the parallel Tabu Search strategy adopted in this work employs dividing the operations
within a TS iteration. According to taxonomy given by Crainic et. al [15], our approach can be classified
as a synchronous master-slave (one master and remaining slaves), 1-control (each process is responsible
for its search), Rigid Synchronous (RS) (all processes are forced to establish communication and ex-
change information at specific points) and Single Point Single Strategy (SPSS) (all the processes start
with the same initial solution and follow the same strategy).



Algorithm MasterProcess;
Begin

(* S0 is the initial solution. *)
(* BestS is the best solution. *)
(* PCL is the Partial Candidate List. *)
(* p is the number of slave processors. *)
(* OBM is the Overall Best Move. *)
GenerateS0 andp number ofPCLs;

SendS0 and aPCL to each slave process;
While iteration-count< max-iterations

Receivebest move and cost from each slave;
FindOBM subject to tabu restrictions;
GenerateP number ofPCLs;

SendOBM and aPCL to each slave process;
UpdateBestS; /*by applyingOBM onBestS*/;

EndWhile
Return (BestS)

End. /*MasterProcess*/
Fig. 1. The master process in parallel TS.

Algorithm SlaveProcess;
Begin

ReceiveS0 and aPCL from the master process;
CurS = S0; (* Current Solution *)
While iteration-count< max-iterations

Try each move inPCL and compute cost;
Sendthe best move and its cost to the master process;
ReceiveOBM and aPCL from the master process;
UpdateCurS /* by applyingOBM onCurS */;

EndWhile
End. /*SlaveProcess*/

Fig. 2. The slave process in parallel TS.

In this implementation, there is an initialization step during which, the master process (Figure 1
generates and sends an initial solution and a disjoint (non-overlapping) partial candidate list (PCL) to
each slave process. A move in a PCL assigned to a slave in a particular iteration does not appear in PCLs
assigned to other slaves. Each slave process searches its local neighborhood by trying each move in the
partial candidate list on the initial solution and computes gains due to them. Then it sends the best move
and its corresponding cost (or gain) to the master process. The master process selects the overall best
move (OBM) among the moves it received from slave processes subject to tabu restrictions.

Then in each subsequent iteration, the master process sends the overall best move and a new partial
candidate list to each slave process. Each slave process now starts by performing the received overall
best move so that all the slave processes start their iteration from the same solution. Each slave process
searches its local neighborhood and sends the best move and its cost to the master process. The pseudo
code of the slave process is given in Figure 2.

3.2. Parallel Simulated Evolution

The parallelization of the SimE algorithm is carried out by partitioning the workload among available
processors. The partitioning is done according to rows. The workload for each slave in the cell placement
problem is the computation of SimE operations of Evaluation, Selection, and Allocation on it’s assigned
rows [3].



Algorithm SlaveProcess(CurS, Φs)
Notation
(* B is the bias value. *)
(* CurS is the current solution. *)
(* Φs are the rows assigned to slaves. *)
(* mi is modulei in Φs. *)
(* gi is the goodness ofmi. *)

Begin
Receive PlacementAnd Indices

Evaluation:
ForEach mi ∈ Φs evaluategi;

Selection:
ForEach mi ∈ Φs DO

Begin
If Random > Min(gi + B, 1)
Then

Begin
S = S ∪ mi; Removemi from Φs

End
End

Sort the elements of S
Allocation:

ForEach mi ∈ S Do
Begin

Allocate(mi, Φs)
(* Allocate mi in local partial solution rowsΦs. *)

End
SendPartialPlacementRows
End. (*Slave Process*)

Fig. 3. Structure of the Distributed Simulated Evolution Algorithm.

The row allocation pattern that was proposed in [3] is made up of two alternating sets of rows. In the
even iterations, each slave gets a slice ofdK

m
e rows, (wherem is the number of slaves, andK is the total

number of rows in the placement) while in the odd iterations thejth slave gets the set of rowsj, j + m,
j + 2m, and so on. It has been shown that with the above fixed pattern of assigning rows to slaves in
alternate steps, each cell can move to any position on the grid in at most two steps [3]. The consequence
of row partitioning however is that the each processors has only a partial view of the placement. This
hinders free cell movement, making it more difficult for cells to reach their optimal locations. Results
from implementing this strategy on our multiobjective optimization problem revealed that even when
given a large amount of time, the best solution obtained was poorer than one achieved by the serial
implementation.

Though the lack of a global placement view will always exist in case of a parallel algorithm, the
effects of restrictive cell movement can be alleviated by using a better row allocation pattern. The use
of a pattern that facilitates a variety of combination among the rows sounds intuitively better. In this
work we propose an enhanced random row allocation scheme. The pseudo code of the parallel simulated
evolution is illustrated in Figures 3 and 4. As can be seen, one of the processors (the master) is in-charge
of running SimE on a particular partition as well as performing the following tasks periodically at the
end of each iteration: (1) receive the partial placements from all other processors and combine them into
a new solution and evaluate its fitness, (2) partition the new solution to obtain a new row allocation, and
finally, (3) distribute the resulting sub-populations among the processors. The number of rows randomly



Algorithm ParallelSimulatedEvolution
ReadUser Input Parameters
ReadInput Files

Begin
Construct Initial Placement
Repeat
Generate RandomRow-Indices

ParFor
Slave Process(CurS, Φs)

(* Broadcast Cur Placement And Row-Indices. *)
EndParFor
ParFor

ReceivePartialPlacementRows
EndParFor

ConstructCompleteSolution
CalculateCost

Until (Stopping Criteria is Satisfied)
Return BestSolution.

End. (*Parallel SimulatedEvolution*)

Fig. 4. Outline of Overall Parallel Algorithm.

assigned depends on the size of the placement and the number of processors. This is repeated for all
iterations until the termination condition is met.

4. EXPERIMENTS & RESULTS

4.1. Experimental Setup

The experimental setup consists of the a homogeneous cluster of 8 machines, x86 architecture, Pentium-
4 of 2 GHz clock speed, and 256 MB of memory. These machines are connected by 100Mbit/s Ethernet
switch. The operating system used in RedHat Linux 7.3 (kernel 2.4.7-10). The paradigm used for paral-
lelization is MPI (Message Passing Interface). Specifically, MPICH (a portable implementation of MPI
standard 1.1) is used in our implementation. In terms of GFlops measure, the maximum performance
of the cluster, with NAS Parallel Benchmarks was found to be 1.6 GFlops, (using NAS’s LU, Class A,
for 8 processors). Using this same benchmark for a single processor, the individual performance of one
machine was found out to be 0.3 GFlops. The maximum bandwidth that was achieved using PMB was
91.12 Mbits/sec, with an average latency of 68.69µsec per message.

4.2. Results & Discussion

In this section we present the performance of the implemented heuristics. ISCAS-85/89 circuits are used
as performance benchmarks for evaluating the proposed parallel TS placement technique. These circuits
are of various sizes in terms of number of cells and paths, and thus offer a variety of test cases.

For comparison purposes, a parallel genetic algorithm (GA) which is a derivative of a standard dis-
tributed GA and follows the island model, with independently evolving sub-populations and periodic ex-
changes of solutions through migration [5, 6], was implemented. A pseudo-diversity approach is taken,
wherein similar solutions are not permitted in the population at any time. This diversity serves to widen
the search, while limiting the possibility of premature convergence in local minima solution space. The



initial population is constructed at the master process and distributed amongN slave processes which
start running serial GA on their allocated population for a predefined number of iterations called the
Migration Frequency (MF ). Then each slave process sendsMR (Migration Rate) number of its best
solutions to the master process, which selectsMR overall best solutions and broadcasts them to all slave
processes. Each slave process absorbs the incoming best solutions into its population (if they are not
already found) by replacing the weakest solutions. Each slave process then continues with the serial GA
for anotherMF iterations. Standard PMX crossover is used to generate offsprings [1].

We begin with a comparison of TS and GA. The quality of solution obtained and runtime required
using different number of processors for both TS and GA are tabulated in Table 1. For each circuit, the
number of cells are given in the table. The ‘µ(s) TS’ and ‘µ(s) GA’ columns show the aggregate fuzzy
membership of solution obtained by TS and by GA respectively, whereas ‘p’ denotes the number of
processors used. It should be noted that runtimes shown are for achieving a certain fixed quality.

Parallel TS clearly outperformed Parallel GA, both in terms of quality and runtimes. As can be
observed, in case of large circuits, parallel GA was unable to find a reasonable quality solution even after
running for a large amount of time. Even for smaller circuits, the solution quality obtained using TS is
significantly superior to that obtained using GA. The proposed parallel TS has shown a consistent trend
in terms of speedup with increasing number of processors. On the other hand, parallel GA did not show
such performance or trend.

Table 1. Run times and solution qualityµ(s) for achieving a target membership for serial and parallel TS/GA approaches. UH indicates
unreasonably high runtime requirement.

Circuit # of µ(s) Time for Time for Parallel TS µ(s) Time for Time for Parallel GA
Name Cells TS Serial TS p=2 p=3 p=4 p=5 p=6 p=7 GA Serial GAp=3 p=5 p=7
s386 172 0.688 52 28 20 17 16 15 14 0.504 15 9.9 5.7 6.7
s641 433 0.785 934 472 332 239 205 171 151 0.616 793 307 390 289
s832 310 0.644 74 40 33 23 22 20 19 0.479 128 43 37 39
s953 440 0.661 195 98 71 53 46 41 36 0.511 309 136 91 108
s1196 561 0.653 374 187 132 97 88 78 67 0.484 988 327 262 205
s1488 667 0.603 259 131 93 69 63 55 49 0.482 1883 677 435 418
s1494 661 0.601 268 137 96 72 65 57 51 0.496 1405 847 638 479
c3540 17530.665 2142 1146 703 547 440 370 344 - UH UH UH UH
s3330 19610.699 1186 590 451 313 245 210 184 - UH UH UH UH
s5378 29930.669 1850 914 601 467 371 312 264 - UH UH UH UH
s9234 58440.631 5571 28552006152512721062849 - UH UH UH UH

Table 2 illustrates the quality of solution obtained for the two SimE parallelization schemes, namely
random row distribution strategy and fixed row distribution strategy. The table illustrates the amount
of time for the taken to reach a predefined fuzzy membership with increasing number of processors.
For the strategy proposed in this paper, as can be seen, there is a constant decrease in runtime, for all
circuits, with increase in number of processors. Better trends are observed for medium to large circuits,
than for smaller ones, as can be seen in Figure 5(a). Speedup is also illustrated in the bar-chart given in
Figure 5(b). Due to space restrictions, and scaling factor limitations, not all results have been included
in the same figure for sake of clarity.

The fitness values achieved with the proposed random row allocation are consistently higher in all
test cases when compared to the fixed row allocation scheme, as shown by theQual Fixedcolumn in
Table 2, the fixed row allocation never equals 100% of the solution quality obtained by the proposed



Runtime vs. no. of processors

0

10

20

30

40

50

60

70

80

p=1 p=2 p=3 p=4 p=5

Number of Processors

R
u

n
ti

m
e 

(s
ec

)

s1238
s1494
s1488

Speed-up of circuits (Random Strategy)

p=1 p=1 p=1
p=2

p=2

p=2
p=3

p=3

p=3

p=4

p=4

p=4

p=5

p=5

p=5

0

2

4

6

8

10

12

14

16

18

20

s1238 s1494 s1488

Circuits

S
p

ee
d

u
p

p=1
p=2
p=3
p=4
p=5

a b

Fig. 5. (a) The decrease in runtime to reach a pre-defined fitness objective with increasing number of processors; (b) Speedup versus number
of machines.

scheme. Further, the run times are far better, and the speedup is super linear in most cases for the random
row distribution strategy. This can be attributed to modified working space of the selection and allocation
operators on each slave, as in each iteration different sets and combination of rows are addressed. This
has resulted in even more reduced times to obtain desired solution quality than with workload partitioning
alone.

Table 2. Run times of Parallel SimE for a achieving a target fitness, for serial and parallel implementations, for both random and fixed row
allocation strategies. UH indicates unreasonably high times.

Circuit # of Time for Random Row DistributionQual Time for Fixed Row Distribution
Name Cells p=1 p=2 p=3 p=4 p=5 Fixed p=2 p=3 p=4 p=5
s641 433 UH 4.99 4.97 3.99 3.87 79.7% 9.14 1.08 0.76 0.55
s1238 540 16.5 9.24 9.29 6.12 3.14 95.8%17.838.4711.30 5.71
s1494 661 67 17.4 6.15 4.88 5.89 82.3% 2.77 1.85 1.76 4.34
s1488 667 60.23 24.6 7.78 3.72 3.02 96.6% 22.0 4.89 5.1 16
s3330 1961 UH 678.02 115 108.5 49.14 33.8% 316 215 4.6 3.4
s5378 2993 UH 1620 338.2286.6 178.6 46.8% UH UH 124.3 95.0

When SimE was compared to other heuristics, the following was observed. For GAs, the time for
completion to obtain solutions of a certain pre-specified quality were exorbitantly high. And in some
cases, for the given run-time, acceptable solutions could not be obtained. For example, for the S1494,
the serial GA implementation took 1883 Seconds, and when the parallel version was executed on 7
processors the best time was 418 Seconds (with 8% inferior quality than that obatined by SimE).

When comparing Parallel SimE with parallel TS, better quality was obtained in some cases at the
cost of high computation time using TS, for the same quality the run-time requirements for TS were
over three times more than that required by parallel SimE. For example, for s1494, the time taken by
serial TS was 268 Seconds, and when parallel TS was run on 6 processors, the runtime was 57 Seconds,
(compared to 5 Seconds by SimE) with slightly better quality, and TS took over 15 Seconds to obtain
solutions of same quality as SimE. A similar trend was seen for all circuits.



Table 3. Run times and solution qualityµ(s) for achieving a target membership for serial and parallel SA approaches.
Circuit # of µ(s) Time for Time for Parallel SA
Name Cells SA Serial SA p=3 p=4 p=5 p=6 p=7 p=8
s386 172 0.659 18 9.5 7.2 6.7 5.5 5.0 4.7
s641 433 0.755 221 189.3 169.7 129.6 125.2 120.5 117.7
s832 310 0.638 45 35.0 25.3 19.6 15.6 14.9 14.2
s953 440 0.704 122 96.6 83.4 60.1 56.5 54.5 53.4
s1196 561 0.675 190 145.9 130.9 110.3 96.9 98.2 94.8
s1488 667 0.650 275 151.4 118.4 112.6 98.8 94.0 92.6
s1494 661 0.647 214 131.4 116.2 101.9 98.1 92.3 89.1
c3540 17530.734 2445 2153.01950.51510.21306.21288.21124.4
s3330 19610.793 2137 1875.51658.61572.91419.51254.51081.2

For simulated annealing, the asynchronous multiple-Markov chain parallelization strategy was cho-
sen [7]. In this strategy, each slave processor runs the Metropolis loop for a fixed number of iterations.
Upon completion of the loop, the slave replaces the best solution in the master only if it has found a better
one, else, it receives the solution at the master to be used as an initial solution for subsequent iterations.
Since all slaves are running the same Metropolis loop for the same number of iterations, the decrease
in the runtime to find a solution of a specified quality is not significant, however a decreasing trend in
required runtime is observed. As can be see from Table 3, given enough time, parallel SA was also able
to achieve slightly better quality solutions than SimE. However, for a fixed slightly lower quality, SimE
was seen to be increasingly faster than SA as processors were increased. For instance, for s1494, with 3
processors SA took 131 Seconds to achieve the desired quality, while SimE took only 6.1 Seconds. With
5 processors, SA required 101 Seconds on average, while SimE needed only 5.9 Seconds. Similar trends
are seen for most circuits.

5. CONCLUSIONS

In this work, we presented the parallelization of non-deterministic heuristics, namely, Tabu Search and
Simulated Evolution, with the objective of accelerating the solution to a constrained multiobjective VLSI
cell placement problem. Fuzzy logic was resorted to assist in integration of the costs of multi-objectives.
Profile analysis of sequential code was conducted to assist in selecting and engineering earlier proposed
parallelization strategies. The TS implementation was based on a synchronous candidate list partitioning
model whereas the implementation of parallel SimE was an enhancement of the approach proposed in [3,
4].

For comparison purposes, a parallel genetic algorithm (GA) based on the island model [5, 6], and a
parallel SA based on the Asynchronous Multiple-Markov Chain Model [7] were implemented. Results
of experiments on ISCAS-85/89 benchmark circuits revealed that for the proposed and implemented
strategies, while TS exhibited linear speedups, it was possible to obtain super-linear speedups with SimE.
However the quality of TS and SA was slightly superior to other techniques. While SA required the
largest run times, it provided the best quality solutions. However, the efficiency (defined as Speedup/p,
wherep is the number of processors) was far below 100% for SA.

Finally, it can be concluded, that for appreciable quality solutions, simulated evolution with random
row distribution SimE has exhibited dramatic speedups with increase in number of processors, even
when compared to other, more established heuristics. The results obtained suggest that in scenarios



where placement quality considerations are overridden by design time constraints, the proposed parallel
SimE algorithm with Random Row Distribution should be favored.

6. REFERENCES

[1] Sadiq M. Sait and Habib Youssef.Iterative Computer Algorithms and their Application to Engi-
neering. IEEE Computer Society Press, December 1999.

[2] Sadiq M. Sait and Habib Youssef.VLSI Physical Design Automation: Theory and Practice. World
Scientific, Singapore, 2001.

[3] Ralph M. Kling and Prithviraj Banerjee. ESP: A new standard cell placement package using simu-
lated evolution.Proceedings of 24th Design Automation Conference, pages 60–66, 1987.

[4] Prithviraj Banerjee.Parallel Algorithms for VLSI Computer-Aided Design. Prentice Hall Interna-
tional, 1994.

[5] M. Toulouse, T. G. Crainic, and M. Gendreau. Issues in Designing Parallel and Distributed search
Algorithms for Discrete Optimization Problems.Publication CRT-96-36, Centre de recherche sur
les transports, Université de Montŕeal, Montŕeal, Canada, 1996.

[6] Erick Cant-Paz. A survey of parallel genetic algorithms.Calculateurs Parallles, Reseaux et Systems
Repartis, 1998.

[7] John A. Chandy, Sungho Kim, Balkrishna Ramkumar, Steven Parkes, and Prithviraj Banerjee. An
evaluation of parallel simulated annealing strategies with application to standard cell placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16:398–410,
April 1997.

[8] Sadiq M. Sait, Mahmood R. Minhas, and Junaid A. Khan. Performance and low-power driven VLSI
standard cell placement using tabu search.Proceedings of the 2002 Congress on Evolutionary
Computation, 1:372–377, May 2002.

[9] Van-Dat Cung, Simone L. Martins, Celso C. Riberio, and Catherine Roucairol. Strategies for the
Parallel Implementation of metaheuristics.Essays and Surveys in Metaheuristics, pages 263–308,
Kluwer 2001.

[10] I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro. Improving search by incorporating evo-
lution principles in parallel tabu search. InProc. of the first IEEE Conference on Evolutionary
Computation- CEC’94, pages 823–828, June 1994.

[11] Bruno-Laurent Garica, Jean-Yves Potvin, and Jean-Marc Rousseau. A parallel implementation of
the tabu search heuristic for vehicle routing problems with time window constraints.Computers &
Operations Research, 21(9):1025–1033, November 1994.

[12] M. Malek, M. Guruswamy, M. Pandya, and H. Owens. Serial and parallel simulated annealing and
tabu search algorithms for the traveling salesman problem.Annals of Ops. Res., 21:59–84, 1989.

[13] J. Chakrapani and J. Skorin-Kapov. Massively parallel tabu search for the quadratic assignment
problem.Annals of Operations Research, 41:327–341, 1993.

[14] E. Taillard. Robust tabu search for the quadratic assignment problem.Parallel Computing, 17:443–
455, 1991.

[15] T. G. Crainic, M. Toulouse, and M. Gendreau. Towards a taxonomy of parallel tabu search heuris-
tics. INFORMS Journal of Computing, 9(1):61–72, 1997.


