
Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 1

Evolutionary Algorithms for VLSI Multiobjective Netlist

Partitioning

Sadiq M. Sait, Aiman H. El-Maleh, Raslan H. Al-Abaji
({sadiq, aimane, raslan}@ccse.kfupm.edu.sa)
King Fahd University of Petroleum & Minerals, Computer Engineering,
Dhahran - 31261, Saudi Arabia

Abstract. The problem of partitioning appears in several areas ranging from
VLSI, parallel programming, to molecular biology. The interest in finding an optimal
partition especially in VLSI has been a hot issue in recent years. In VLSI circuit
partitioning, the problem of obtaining a minimum cut is of prime importance. With
current trends, partitioning with multiple objectives which includes power, delay and
area, in addition to minimum cut is in vogue. In this paper, we engineer three itera-
tive heuristics for the optimization of VLSI netlist bi-Partitioning. These heuristics
are based on Genetic Algorithms (GAs), Tabu Search (TS) and Simulated Evolution
(SimE). Fuzzy rules are incorporated in order to handle the multiobjective cost
function. For SimE, fuzzy goodness functions are designed for delay and power, and
proved efficient. A series of experiments are performed to evaluate the efficiency of
the algorithms. ISCAS-85/89 benchmark circuits are used and experimental results
are reported and analyzed to compare the performance of GA, TS and SimE.

Further, we compared the results of the iterative heuristics with a modified FM
algorithm, named PowerFM, which targets power optimization. PowerFM performs
better in terms of power dissipation for smaller circuits. For larger sized circuits
SimE outperforms PowerFM in terms of all three, delay, number of net cuts, and
power dissipation.

Keywords: Genetic Algorithms, Tabu Search, Simulated Evolution, multiobjective,
Fuzzy Logic, Netlist partitioning.

1. Introduction

VLSI circuit design has various objectives. Until the beginning of this
decade, two main objectives of VLSI circuit design were the minimiza-
tion of cutset and the improvement of timing performance. A large
number of efforts targeting either one (especially cutset) or both of the
above objectives are reported in the literature (Sait, 1995; Toulouse,
2002). The power consumption of the circuit was not of main concern
while trying to optimize the above two objectives, nevertheless quite a
reasonable number of techniques aiming at low power objective are
proposed for all phases in physical design including partitioning of
circuit, floorplanning, placement and routing (Sait, 1995).

As different techniques are applicable and have been reported at
different steps of the VLSI design process (Pedram, 1995), few performance-

journal_subhan.tex; 12/06/2005; 18:00; p.1

2 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

driven partitioning techniques at physical-level design exist in the lit-
erature. Therefore, the need for a system which incorporates all the
three aspects of the design process (delay, cut, power) is increasing.
In standard CMOS VLSI circuits, switching activity of circuit nodes is
responsible for most of the power dissipation. It is reported in (Kuroda,
2001) that this switching activity contributes 90% to the total power
dissipation in the circuit. Therefore, most of the reported techniques
focus on this aspect (Devadas, 1995).

For the partitioning phase, two low-power oriented techniques based
on Simulated Annealing (SA) algorithm have recently been presented
(Choi, 1999). An enumerative optimal delay partitioning algorithm tar-
geting low power is proposed by Vaishnav et al. in (Vaishnav, 1999). A
circuit partitioning algorithm under path delay constraints is proposed
by Tetsushi et al. in (Tetsushi, 1998). Drechsler et. al. (Drechsler,
2002) have presented a new recursive bi–partitioning algorithm that
is especially applicable, if a large number of final partitions, e.g. more
than 1000, has to be computed. A two step algorithm is implemented
for the proposed approach. Further, the problem is divided into several
sub-problems based on recursive splits, but with increasing recursion
depth more run time is invested. Recently, Mardhana and Ikeguchi
have proposed a neurosearch based method for solving a VLSI netlist
partitioning problem (Mardhana, 2003). They explain the key concepts
of neurosearch and methods to support a VLSI netlist partitioning
program. The designed library consists of novel data structure man-
agement and basic functions for a move-based search which depends
on moves generated by a neural network.

In this work, we address the problem of optimizing delay, power
and cutset in the partitioning step at the physical level. Three iterative
approaches based on Genetic Algorithm (GA), Tabu Search (TS) and
Simulated Evolution are presented to solve the multiobjective opti-
mization problem of partitioning. The following section gives a brief
overview of methods for solving multi–objective problems, the details
for which can be found in (Sait, 1999).

1.1. Methods for Solving Multi–Objective Problems

In this section we present various competing methods to solve multi-
objective problems. Ideas discussed here can also be used with other
non–deterministic iterative heuristics.

Ad-Hoc Weights
One way to solve multi–objective problems is to assign a constant
weight to each of the multiple objective functions. The weight assigned

journal_subhan.tex; 12/06/2005; 18:00; p.2

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 3

will depend on the importance of the objective. Assuming that all
objectives are to be maximized, the fitness of an individual (solution)
can be expressed as

f(x) = w1 · f1(x) + w2 · f2(x) + · · ·+ wn · fn(x) (1)

Where x is a string, n is the number of objective functions, f(x) is
a combined fitness function, fi(x) is the ith objective, and wi is the
weight of the ith objective. The problem with multi-objective functions
is the difficulty in determining suitable weights. This is because, in most
practical problems, no two objectives are related.

Pareto Optimality
A notion of optimality that respects the integrity of each of the separate
criteria is the concept of Pareto optimality. Here, suppose we wish to
minimize two objectives, expressed as f1 and f2. Let A, B, C, D, E,
and F, be six possible solutions to our optimization problem, with the
following fitnesses:

A : (10, 90) B : (20, 70) C : (08, 75)
D : (15, 60) E : (09, 65) F : (14, 63)

That is, solution A has a value of f1=10 and f2=90. If we plot the 6
points f1 versus f2, obviously those that are lower and on the left are
regarded as the best. Points C and D are good choices since there are no
points better than these in both the criteria. C is best with respect to f1

and D with respect to f2. On the other hand, A and B are poor choices.
Solution A(10,90) is dominated by solution C(08,75), since 10 > 8 and
90 > 75. (If any solution p is to the right and top of another solution q,
then we say p is dominated by q.) A is also dominated by E. Similarly,
B(20,70) is dominated by D(15,60), E(09,65) and F(15,60). The set of
solutions that are not dominated by any other solution is {C, D, E, F}.
In this problem, as in any other multi-objective optimization problem,
such a set of solutions comprises the Pareto-optimal (P-optimal) set.
It is from this set that the decision maker has to make a choice. The
Pareto optimality concept does not assist in making a single choice.

VEGA
In VEGA (Schaffer, 1985), the population for GA is divided into equally
sized, disjoint sub-populations, each governed by a different objective
function. Selection for next generation is performed independently of
each criteria; however crossover is performed across sub-population
boundaries. The problem with this scheme is, independent selection of
best solution in each criterion results in potential bias against middle

journal_subhan.tex; 12/06/2005; 18:00; p.3

4 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

solutions (such as E and F in our previous case). That is, those which
are good but not the best with respect to any single criterion.

MOGA
Murata and Ishibuchi proposed a Multi-Objective GA (MOGA) (Mu-
rata, 1995) which uses a weighted sum of multiple objective functions to
combine them into a scalar fitness function. The key feature of MOGA
is that the weights attached to the multiple objective functions are
not constant but randomly specified for each selection. Therefore, the
direction of search in MOGA is not fixed.

Fuzzy Logic Approach
For many problems, two distinct forms of problem knowledge exist:

1. Objective knowledge which is used a lot in engineering problem
formulations (e.g., mathematical models, etc.),

2. Subjective knowledge which represents linguistic information that
is usually impossible to quantify (e.g., rules, expert information,
etc.).

Subjective knowledge is always ignored at the front end of engineer-
ing designs; but it is frequently used to evaluate such designs. The
two forms of knowledge can be coordinated in a logical way using
fuzzy logic. Fuzzy Logic plays a pivotal role in computing with words.
The computation with words finds its motivations when the available
information is too imprecise to justify the use of numbers and also
when there is a tolerance for imprecision which can be exploited to
achieve tractability, robustness, low solution cost, and better rapport
with reality. In our work, we will adopt the fuzzy logic approach for
the multi–objective netlist partitioning problem.

2. Problem Formulation and Cost Functions

This work addresses the problem of VLSI netlist partitioning with the
objective of optimizing power consumption, timing performance (de-
lay), and cutset while considering the Balance constraint (same as area
constraint as unit area is assumed for every gate). Formally, the prob-
lem can be stated as follows: Given a set of modules V = {v1, v2, ..., vn},
the purpose of partitioning is to assign the modules to a specified
number of clusters k (two in our case) satisfying prescribed properties.
In general, a circuit can have multi-pin connections (nets) apart from
two-pin and therefore it is better to represent it by a hypergraph. A
hypergraph H(V, E) is defined where V is a set of nodes and E is

journal_subhan.tex; 12/06/2005; 18:00; p.4

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 5

a set of hyperedges. Node vi ∈ V corresponds to an element (e.g., a
gate) in the circuit, and hyperedge ei ∈ E corresponds to a net in the
circuit. Hyperedge ei consists of the signal source node S(ei) and a
set of destination nodes D(ei) and ei = (S(ei), {D(ei)}). The signal
source node S(ei) of the net ei corresponds to the output of a gate
and the set of destination nodes D(ei) corresponds to the inputs of the
gates. Given a hypergraph H(V, E) with E = {e1, e2, · · · , em} being
the set of signal nets, each net is a subset of V containing the modules
connecting the net. It is assumed that for each hyperedge e ∈ E, |e| ≥ 2
(it connects at least two nodes). Our task is to divide V into 2 subsets
(clusters) V0 and V1 in such a way that the objectives are optimized,
subject to some constraints. Extension to multi–way partitioning is
possible and the details can be found in (Al-Abaji, 2002).

Cutsize: The set of hyperedges cut by a cluster C is given by E(C) =
{e ∈ E: 0 < |e∩C| < |e|} i.e., e ∈ E(C) if at least one, but not all, of the
pins of e are in C. The set of nets cut by a partitioning solution pK can
be expressed as E(pk) =

⋃k
i=1 E(ci) or equivalently E(pk) = {e ∈ E|

∃u, v ∈ e, h �= l with u ∈ Ch and v ∈ Cl}. We say that |E(pk)| is the
cutsize of pk. The cost function can be written as follows:

f =
∑
e∈ψ

w(e) (2)

where ψ ⊂ E denotes the set of off-chip edges, i.e., nets cut. The
weight w(e) on the edge e represents the cost of wiring the correspond-
ing connection as an external wire. If all weights equal one, the cost
function becomes simpler:

f = |ψ| (3)

where |ψ| denotes the cardinality of the set ψ.

Delay: In order to deal with a signal path, a hypergraph is decomposed
into directed edges ek = (S(ek)), w) for ek ∈ E and w ∈ D(ek). Let
the graph which consists of a set of nodes V and a set of decomposed
directed edges E be the directed graph G

′
= (V, E). A signal path

is represented by an alternating sequence of nodes and directed edges
v1, e1, v2, e2, ..., vk−1, ek−1, vk, where el = (vl, vl+1)(1 ≤ l ≤ k − 1) and
vi �= vj, i ≥ 1 , j ≤ k , i �= j. The path from node vi to node vj is
denoted by pij. Nodes which are included in the path pij are defined
as V (pij). A path-cut number of path pij, denoted ncut(pij), is the
number of nets cut which are included in the path pij. In the general
delay model where gate delay d(v) and constant inter-chip wire delay
are considered, dc � d(v) where dc is due to the off-chip capacitance
denoted as Coff . Let the delay of node vi ∈ V be d(vi) and the delay

journal_subhan.tex; 12/06/2005; 18:00; p.5

6 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

of net ek ∈ E which is cut be dc. Given a partition Φ : (VA, VB), the
path delay d(pij) between nodes vi and vj is the sum of the node delays
d(vi) ∈ V (pij) and the delay of nets which are cut. To optimize delay,
we need to minimize the following function:

d(pij) =

⎛
⎝ ∑

vi∈V (pij)

d(vi)

⎞
⎠ + dc × ncut(pij) (4)

Power: The average dynamic power consumed by a CMOS logic gate
in a synchronous circuit is given by:

Paverage
i = 0.5

V 2
dd

Tcycle
Cload

i Ni (5)

where Cload
i is the load capacitance, Vdd is the supply voltage, Tcycle is

the global clock period, and Ni is the number of gate output transitions
per clock cycle. In our work Ni is calculated using the symbolic simula-
tion technique of (Ghosh et. al, 1992) under a zero delay model. Cload

i

in Equation 5 consists of two components: Cbasic
i which accounts for the

load capacitances driven by a gate before circuit partitioning, and the
extra load Cextra

i which accounts for the additional load capacitance
due to the external connections of the net after circuit partitioning.
Then, the total power dissipation of circuit ζ is:

Pζ = β
v2

dd

Tcycle

∑
i∈ζ

(Cbasic
i + Cextra

i)Ni (6)

where β is a constant that depends on technology.
When a circuit partitioning corresponds to a physical partitioning,

Cextra
i of a gate that is driving an external net is much larger than

Cbasic
i . The power model given in Equation 6 can be further simplified.

It is assumed that the power dissipation contribution due to variations
of Cbasic

i under different partitioning solutions is negligible. Further-
more, considering that the fixed overhead capacitance for an external
net is dominant within Cextra

i , it can be assumed that Cextra
i is identical

for each net. This leads to the following objective function (Vaishnav,
1999).

Oζ =
∑
i∈ζv

Ni (7)

where ζv corresponds to the set of visible gates, i.e., the set of gates
that drive a load external to the partition.

Area or Balance Constraint: If we assume that the area of all cells
is identical, then the problem reduces to balancing the two partitions

journal_subhan.tex; 12/06/2005; 18:00; p.6

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 7

1.0
C i/ O i

1 .0

g i
* g i

i
cµ

Figure 1. Membership functions.

in terms of the number of cells. The balance constraint is given below:

|β1 − β2|
φ

≤ α (8)

where βi is the number of cells in partition i, φ is the total number of
cells in the circuit, α is the tolerance which is equal zero in case of a
perfect balance. When balance is used as cost, it will be |β1 − β2|.

2.1. Overall Fuzzy Cost Function:

In order to solve the multiobjective partitioning problem, linguistic
variables are defined as: cutset, power dissipation, delay and balance.
The following fuzzy rule is used to combine the conflicting objectives:

Rule 1: IF a solution has Small cutset AND Low power consumption
AND Short delay AND Good Balance THEN it is a GOOD solution.

The above rule is translated to and-like OWA fuzzy operator (Yager,
1998) and the membership µ(x) of a solution x in fuzzy set good solution
is given as:

µc
pdcb(x) = βc × min(µc

p(x), µc
d(x), µc

c(x), µc
b(x)) +

(1− βc) × 1
4

∑
j=p,d,c,b

µc
j(x) (9)

where µc(x) is the membership of solution x in fuzzy set of acceptable
solutions, µc

pdcb(x) is the membership value in the fuzzy sets of “ within

journal_subhan.tex; 12/06/2005; 18:00; p.7

8 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

acceptable power”, “within acceptable delay”, “within acceptable cut-
set” and “within acceptable balance” respectively. βc is a constant in
the range [0, 1]; the superscript c represents the cost. In this paper,
µc(x) is used as the aggregating function. The solution that results in
maximum value of µc(x) is reported as the best solution found by the
search heuristic.

The membership functions for fuzzy sets Low power consumption,
Short delay, and Small cutset are shown in Figure 1. We can vary
the preference of an objective j in the overall membership function by
changing the value of gj, which represents the relative acceptable limits
for each objective where gj ≥ 1.0.

The lower bounds Oj (shown in Figure 1) for different objectives
are computed as follows:

Ob = 1, (to avoid divide by zero) (10)

Op =
∑
i∈ζ

(Cbasic
i)Ni ∀vi ∈ {v1, v2, ..., vn}, (11)

Od =
k∑

j=1

CDj , ∀vj ∈ {v1, v2, ..., vk} in path πc, (12)

Oc = 1. (13)

where Oj for j ∈ {b, p, d, c} are the lower bounds on the costs for bal-
ance, power dissipation, delay and cutset respectively, n is the number
of nets in the circuit, CDj is the switching delay of the cell j driving
net vj, Ni is the switching probability of net vi, πc is the most critical
path with respect to optimal interconnect delays assuming that no net
on this path is cut, k is the number of nets in πc. The minimum power
is obtained if no net is cut, which means substituting 0 for Cextra

i in
Equation 6. The components of the goal vector G are calculated as
follows:

gbalance =
|ζ|
Ob

(14)

gcut =
n

Oc
(15)

gdelay =
Initial delay

Od
(16)

gpower =
Initial power

Op
(17)

Where |ζ| is the number of cells in the circuit. Initial delay and initial
power are the values computed from initial solutions.

journal_subhan.tex; 12/06/2005; 18:00; p.8

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 9

3. Simulated Evolution (SimE) Approach

The Simulated Evolution algorithm (SimE) is a general search strategy
for solving a variety of combinatorial optimization problems.

The pseudo-code of SimE is given in Figure 2 (Sait, 1999). SimE
operates on a single solution, termed as population. Each population
consists of elements. In case of the partitioning problem, these elements
are cells to be moved. The algorithm has one main loop consisting of
three basic steps, Evaluation, Selection and Allocation. In the Eval-
uation step, goodness of each element is measured. Goodness of an
element is a single number between ‘0’ and ‘1’, which is a measure of
how near is the element from its optimal location. After that comes
Selection which is the process of selecting those individuals which are
unfit (badly placed) in the current solution. For that purpose, the
goodness of each individual is compared with a random number (in
the range [0,1]); if the goodness is less than the random number then it
is selected. Allocation is the SimE operator that has the most impact
on the quality of solution. Its main function is to mutate the population
by altering the location of selected cells. The three steps are executed
in sequence until no noticeable improvement to the population good-
ness is observed after a number of iterations or a prefixed number of
iterations are completed. A higher value of goodness means that the
element is near its optimal location. For single objective optimization,
the goodness can be calculated as follows,

gi =
Oi

Ci
(18)

where Oi is the estimated optimal cost and Ci is the actual estimate
of the cost.

In Selection, an individual having high goodness measure still has
a non-zero probability of assignment to selected set. It is this element
of non-determinism that gives SimE the capability of escaping local
minima.

Cut Goodness: Let Vi = {v1, v2, ..., vk} be the set of nets connected
to cell i, and Ui be a subset of Vi containing the connected nets to cell i
that are cut. The goodness function for a cell is defined and computed
as follows:

gci =
di − wi

di
(19)

Where di is the total number of nets connected to cell i (i.e., |Vi|), and
wi is the number of nets connected to cell i that are cut (i.e., |Ui|).

journal_subhan.tex; 12/06/2005; 18:00; p.9

10 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

ALGORITHM Simulated Evolution(B,Φi, SC)
B = Bias Value. Φ = Complete Solution.
Φi = Initial Solution. SC = Stopping Criterion.
ei = Individual link in Φ.

Oi = Lower bound on cost of ith link.

Ci = Current cost of ith link in Φ.
gi = Goodness of ith link in Φ.
S = Queue to store the selected links.
Allocate(ei, Φi) allocates ei in partial solution Φi.

Repeat

EVALUATION: ForEach ei ∈ Φ DO
Begin

Evaluate gi

End
SELECTION: ForEach ei ∈ Φ DO

Begin
If random(1) > min(gi + B, 1)
Begin

S = S ∪ ei;
Φ = Φ − ei;

End
End
sort(S)

ALLOCATION: ForEach ei ∈ S DO
Begin

Allocate(ei, Φi)
End

Until SC is satisfied
Return (Best solution)
End Simulated Evolution

Figure 2. Structure of the simulated evolution (SimE) algorithm.

The cut goodness is simply the number of uncut nets over the
total nets connected. Since gci is between 0 and 1, we can take the
fuzzy membership µc as equal to the goodness µc = gci. An example
of goodness calculation is shown in Figure 3; the goodness of cell 5 is
calculated as follows: gc5 = 3−2

3 = 0.33.

Power Goodness: The power goodness gpi of a cell is defined as a
measure of how well placed is the cell in its present block according to
power consumption and can be computed as follows:

gpi =
∑k

j=1 Sj (j ∈ Vi) − ∑k
j=1 Sj (j ∈ Ui)∑k

j=1 Sj (j ∈ Vi)
(20)

journal_subhan.tex; 12/06/2005; 18:00; p.10

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 11

2�

3�

1�

4�

����5�
0.2�

0.1�

0.2�

7�

0.3�

 6�

0.4�

0.1�

Partition 1� Partition 2�

Figure 3. Power and Cut Goodness Calculation.

Sj is the switching probability of the cell that drives the net. The
goodness is equal to the sum of the switching probabilities of the cells
that are driving the uncut nets over the sum of the switching probabil-
ities of the cells that are driving all nets connected. In this way a cell is
placed in the partition where the sum of the switching probability of the
cut nets is optimized. Results show that this goodness function gives
high quality solutions with less power dissipation. Since 0 ≤ gpi ≤ 1
we can take the fuzzy membership µp = gpi. An example of power
goodness calculation is shown in Figure 3; the goodness of cell 5 is
calculated as follows: gc5 = 0.7−0.4

0.7 = 0.428.
The power and cutset objectives are possibly conflicting. Hence it is

possible to find alternative solutions for a specific circuit. For example,
there may exist a solution with high number of cuts and low power
consumption (because the nets cut have less switching probability) and
another with lower cuts and higher power consumption.

Delay Goodness: In our problem, we deal with multi-pin nets, which
makes it hard to design a suitable and simple delay goodness function.
We propose the following delay goodness:

gdi =
|Ki| − |Li|

|Ki| (21)

where gdi is the delay goodness of cell i. We consider the set of the crit-
ical paths passing through i and define the set Ki as the set of all cells
connected to these paths. We also define Li as a subset of Ki, containing
those cells which are connected to the critical paths passing through i
and are not in the same block as i. This goodness function will tend

journal_subhan.tex; 12/06/2005; 18:00; p.11

12 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

2�

3�����1�

����
4�

����5�
��

7�

����
 6�

Partition 1� Partition 2�

Q�

Q�
SET�

CLR�

D�

Q�

Q�
SET�

CLR�

D�

Figure 4. Delay Goodness Calculation.

to drive the cells that are connected by the critical path to the same
block, thus minimizing the delay along the path. A cell is considered
good in its block if the majority of cells connected to all critical paths
passing through it are also placed in the block. An example for delay
computation is given in Figure 4. To calculate gd4, we first compute
|K4| = 5 for the critical path {1,4,5,7,6}which is the only one connected
to cell 4. |L4| = 3 which are cells {1, 5, 7}. This gives gd4 = 5−3

5 = 0.4.
However, gd5 = 0.6, and hence is better placed according to the delay
consideration.

3.1. Proposed Fuzzy Evaluation Scheme and Selection

With the classical goodness of cut only, it is possible that a cell having
a high goodness with respect to cut may not be selected even though
it may have low goodness with respect to circuit delay and power. In
order to overcome this problem, it is necessary to include power and
delay in the goodness measure along with cut goodness. Also, it is not
desirable to select all the cells even if they all have a low goodness
value. In this case, it is desirable to select those cells which are far
from their lower bounds as compared to other cells in the design. For
this purpose, the following fuzzy rule is proposed.

Rule R2: (as compared to other cells)
IF cell i is

near its optimal Cutset goodness
AND
near its optimal power goodness

journal_subhan.tex; 12/06/2005; 18:00; p.12

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 13

AND
near its optimal net delay goodness
OR
Tmax(i) is much smaller than Tmax

THEN it has a high goodness.

Tmax is the delay of the most critical path in the current iteration and
Tmax(i) is the delay of the longest path traversing cell i in the current
iteration.

The above-mentioned fuzzy rule is interpreted as follows:

gi = µi(x) = β × min(µic(x), µip(x), µid(x)) +

(1 − β) × 1
3

∑
j=c,p,d

µij(x) (22)

where

µid(x) = βd × max(µdg(x), µipath(x))

+(1 − βd) × 1
2
(µdg(x) + µipath(x)) (23)

The superscript e is used here to represent evaluation so that other
fuzzy notations in other steps of SimE can be distinguished. The term
x represents the block of cell i, µi(x) is the membership in the fuzzy
set of high goodness and gi is the goodness of cell i. β and βd are
constants between 0 and 1 to control OWA operators. µic(x) and µip(x)
represent the membership in fuzzy sets of near optimum cutset and
near optimum power as compared to other cells. Moreover, µid(x) is
the overall delay goodness, and represents the membership in fuzzy
set of near optimum timing performance. It is obtained after applying
“OR-like” OWA to µdg(x) and µipath(x), which are the memberships in
fuzzy sets of near optimum cell delay goodness as compared to other
cells and Tmax(i) (most critical path passing trough cell i) is much
smaller than Tmax (current most critical path of the circuit). µipath(x)
is included in the computation of µid(x) because if a cell is not in the
critical path then it must have high goodness with respect to delay
objective. After considerable number of iterations, it is possible that
a cell is in the critical path but is also very near to its optimal delay
goodness. In that case, it is not possible to optimize it further. At this
stage, µdg(x) overrides µipath(x).

The base values for cutset and power are not needed since the
membership is directly computed as described earlier. As for cell delay
goodness it is composed of net delay µdg(x) which is computed directly

journal_subhan.tex; 12/06/2005; 18:00; p.13

14 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

1.0 2.0

1.0
Tmax(i)�is�much�smaller�than�Tmax

e
pathX

e
pathµ

�
Figure 5. Membership function for Tmax(i) � Tmax.

by using Equation 21. For computing µipath(x) we define base value
Xipath(x) for fuzzy set { Tmax(i) much smaller than Tmax}, and is
computed in Equation 24:

Xipath(x) =
Tmax

Tmax(i)
(24)

The membership function for Xipath(x) is illustrated in Figure 5.
Experimentally we found that a base value of 2 is suitable to quantify
that Tmax(i) is much smaller than Tmax. In our implementation, the
Biasless Selection scheme proposed by Khan et al in (Khan et. al, 2002)
is used. The selection bias B is totally eliminated and a cell is selected
if Random > goodnessi.

4. Genetic Algorithm (GA) and Tabu Search (TS)

In this section, implementation details of the genetic algorithm and
Tabu search for solving the multiobjective partitioning problem are de-
scribed. First, the details of the partitioning Genetic Algorithm for Mul-
tiobjective optimization are discussed, followed by a brief description
of the Tabu Search (TS) implementation.

4.1. Genetic Algorithm (GA) For Timing and Low Power

Driven Partitioning

GA algorithm starts with a set of initial solutions called population
that is generated randomly. In each iteration (known as generation in
GA terminology), all the individual chromosomes in the population are
evaluated using a fitness function. Then, in the selection step, two of

journal_subhan.tex; 12/06/2005; 18:00; p.14

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 15

the above chromosomes at a time are selected from the population. The
individuals having higher fitness values are more likely to be selected.
After the selection step, different operators namely crossover, muta-
tion act on the selected individuals for evolving new individuals called
offsprings (Sait, 1999). These genetic operators are described below.

In GA implementation, we use an encoded representation of a
solution in the form of a simple string made up of symbols called genes.
The string of genes is called chromosome.

One important genetic operator is crossover. It is applied on two
individuals that were selected in the selection step earlier to gener-
ate an offspring. The generated offspring inherits some characteristics
from both its parents in a way similar to natural evolution. There
are different crossover operators namely simple(single point), order,
partially mapped, and cycle. The simple crossover, for instance, works
by choosing a random cut point in both parent chromosomes (the cut
point should be the same in both parents) and generating the offspring
by combining the segment of one parent to the left of the cut point with
the segment of the other parent to the right of the cut (Sait, 1999).
For description of other crossover operators see (Sait, 1999; Sipakoulis,
1999; Al-Abaji, 2002). In this implementation, the simple crossover is
used.

The mutation operator is used to introduce new random informa-
tion in the population. It is usually applied after the crossover operator.
It helps in producing some variations in the solutions so that the search
does not get trapped in a local minima. An example of mutation oper-
ation is the swapping of two randomly selected genes of a chromosome.
However, mutation is applied with a low rate so that GA does not turn
into a memory-less search process (Sipakoulis, 1999). In our work, two
mutation variations are used, the first one is by random selection of a
cell and swapping its partition. The second is by randomly selecting
two cells one from each partition and swapping them.

For addressing a multiobjective optimization problem to minimize
three mutually conflicting objectives, fuzzy membership functions and
fuzzy rules are used for evaluating the fitness of a solution. The fitness
value of a chromosome is its membership value µ(x) in the fuzzy set of
acceptable solution. This membership is computed using Equation 9.
Individuals are selected based on the elitism-random selection (ernd),
where the best Np

2 chromosomes are selected and the remaining Np

2 are
selected randomly. Based on experimental results, this scheme offers
better choice than other schemes, because it provides a balance between
greediness and randomness.

journal_subhan.tex; 12/06/2005; 18:00; p.15

16 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

4.2. Tabu Search Approach

Tabu Search (TS) is one of the most popular iterative heuristics and
there have been many efforts involving application of TS to the parti-
tioning problem (Hammami, 2003). Tabu search starts from an initial
feasible solution and carries out its search by making a sequence of
random moves or perturbations. A Tabu list is maintained which stores
the attributes of a number of previous moves. This list prevents tak-
ing the search process back to recently visited states (Sait, 1999). In
each iteration, a subset of neighbor solutions is generated by making
a certain number of moves and the best move (the move that resulted
in the best solution) is accepted, provided it is not in the Tabu list.
Otherwise, if the said move is in the Tabu list, it is accepted only
if it leads to a solution better than the best solution found so far
(aspiration criterion). Thus, the aspiration criterion can override the
Tabu list restrictions. The solution encoding and initialization steps are
similar to those described above for GA. In each iteration, we generate
a number of neighbor solutions by making perturbations as follows: two
cells are selected randomly, then their locations are interchanged. The
number of neighbor solutions generated in each iteration is dependent
on circuit size. The characteristic of the move that we keep in Tabu
list is the indices of the cells involved in interchange. The size of Tabu
list is taken also depending on the circuit size i.e., 10% of the total
number of cells. In this work, short term memory element was used for
TS implementation. The aspiration criterion used is as follows: if the
current best solution is the best seen so far i.e., better than the global
best, then it is accepted and Tabu restriction is overridden.

5. Experimental Results

Table I shows the details of the ISCAS-85/89 circuits which are used
as benchmarks. The results obtained from GA and TS are compared
in terms of the overall quality of the best solution and run time in
Table II. P (sp) represents the cost due to power, that is the sum of
the switching probabilities of all the cut nets; it has no unit since
switching probability has no unit. D(ps) is the delay of the most critical
path in picoseconds (ps), µ(x) is the membership value, Best(s) is the
execution time in seconds for reaching the best solution. In both TS
and GA each run consists of 10, 000 iterations or generations.

The results shown are the best case results obtained after the tun-
ing of various algorithmic parameters of GA and TS (only one time for
all circuits). The details of these algorithmic parameters and their fine

journal_subhan.tex; 12/06/2005; 18:00; p.16

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 17

tuning are discussed in (Sait, 2003). In the case of GA the population
size is 10, the crossover used is simple with a probability equal to 0.99,
while for mutation it is 0.01. In case of TS, the size of neighborhood is
also 10, while Tabu list size is chosen to be 0.1 the size of the circuit.
From the results, it is clear that TS performed better than GA for
most of the circuits in terms of the quality of the best solution as well
as run time. In terms of quality of solution, the advantage of TS over
GA gets emphasized when the size of the circuit gets bigger. Also the
execution time of GA increases significantly with the increase in circuit
complexity. The higher execution time of GA can be attributed to its
parallel nature i.e., a population of solutions is to be processed in each
generation. Figure 6 shows the performance of TS and GA against
execution time in seconds for the circuit S13207. It is clearly noticed
that TS is by far faster and of better final quality. Figure 7 and Figure 8
show the trend of solution’s (a) cutset, (b) delay, (c) power, (d) balance,
(e) average fitness, (f) best fitness for GA and TS respectively, in case
of circuit S13207. It is clear from the shown plots that TS achieves a
membership that is better than that reached by GA.

Comparing SimE to GA and TS, as can be seen from Table II,
SimE achieves significantly better results for most of the circuits. It
achieves a higher fitness value in 12 of the 15 circuits than GA or TS.
For the circuits S3330, S5378, S9234, and S15850, the values achieved
for delay, cutset, and power are significantly better. Figure 6 shows
the performance of SimE versus TS and GA with respect to time for
the circuit S13207. Clearly, SimE achieves a higher quality solution
in much less time. Figure 9 shows the trend of solution (a) cutset,
(b) delay, (c) power, (d) cells selected, (e) average cells goodness, and
(f) best fitness for the circuit S13207. As can be observed, the cutset,
delay, and power reduce at a much faster rate than TS and GA. Also
the number of cells selected becomes smaller which indicates that the
cells are getting better assigned as the algorithm progresses.

We also made a comparison of Power–only SimE and Multiobjec-
tive SimE with a modified version of the FM (Fiduccia, 1982) algo-
rithm, named PowerFM . The details and results for PowerFM can be
found in (Sait, 2003). Table III shows a comparison of results between
the two SimEs and PowerFM. Pavg refers to the average power of the re-
sults obtained from 100 runs of the PowerFM. The notation in Table III
is as follows: D(ps) stands for Delay and it is measured in pico-seconds,
Cut is the number of nets cut, P (sp) is the power dissipation measured
in terms of switching probability, T (s) is the total time taken by the
whole run for PowerFM and SimE respectively.

From Table III it can be seen that Multiobjective SimE performs
better than PowerFM in terms of delay D(ps) and the number of net

journal_subhan.tex; 12/06/2005; 18:00; p.17

18 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

M
ax

im
um

 F
itn

es
s

pe
r

ge
ne

ra
tio

n

TS
GA
SimE

Figure 6. Multiobjective SimE, GA and TS performance for the circuit S13207
against time.

0 2000 4000 6000 8000 10000
1000

2000

3000

4000

5000

(a
)C

ut
se

t(
ne

ts
 c

ut
)

0 2000 4000 6000 8000 10000
1000

1500

2000

2500

3000

(b
)D

el
ay

 (
ps

)

0 2000 4000 6000 8000 10000
4

6

8

10
x 10

4

(c
)P

ow
er

 (
su

m
 o

f S
w

.P
.)

0 2000 4000 6000 8000 10000
0

20

40

60

(d
)C

el
l d

iff
er

en
ce

0 2000 4000 6000 8000 10000
0.2

0.4

0.6

0.8

1

Generations

(e
)A

vg
 F

itn
es

s

0 2000 4000 6000 8000 10000
0.2

0.4

0.6

0.8

1

Generations

(f
)B

es
t F

itn
es

s

Figure 7. Performance of GA for the circuit s13207.

journal_subhan.tex; 12/06/2005; 18:00; p.18

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 19

0 2000 4000 6000 8000 10000
1000

2000

3000

4000

(a
)C

ut
se

t(
ne

ts
 c

ut
)

0 2000 4000 6000 8000 10000
500

1000

1500

2000

(b
)D

el
ay

 (
ps

)

0 2000 4000 6000 8000 10000
4

6

8

10
x 10

4

(c
)P

ow
er

 (
su

m
 o

f S
w

.P
.)

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

(d
)C

el
l d

iff
er

en
ce

0 2000 4000 6000 8000 10000
0.2

0.4

0.6

0.8

1

Generations

(e
)A

vg
 F

itn
es

s

0 2000 4000 6000 8000 10000
0.2

0.4

0.6

0.8

1

Generations

(f
)B

es
t F

itn
es

s
Figure 8. Performance of TS for the circuit s13207.

0 0.5 1 1.5 2

x 10
4

0

2000

4000

6000

(a
)C

ut
se

t(
ne

ts
 c

ut
)

0 0.5 1 1.5 2

x 10
4

0

1000

2000

3000

4000

(b
)D

el
ay

 (
ps

)

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8
x 10

4

(c
)P

ow
er

 (
su

m
 o

f S
w

.P
.)

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

(d
)C

el
ls

 s
el

ec
te

d

0 0.5 1 1.5 2

x 10
4

0.4

0.6

0.8

1

Generations

(e
)A

vg
 c

el
ls

 g
oo

dn
es

s

0 0.5 1 1.5 2

x 10
4

0.6

0.7

0.8

0.9

1

Generations

(f
)B

es
t F

itn
es

s

Figure 9. Multiobjective SimE performance for the circuit S13207.

journal_subhan.tex; 12/06/2005; 18:00; p.19

20 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

cuts Cut for all benchmark circuits. But PowerFM performs better in
terms of power dissipation P (sp) up to circuit S2081 when compared to
Multiobjective SimE. For larger sized circuits (from S3330 to S15850)
Multiobjective SimE outperforms PowerFM in terms of all three, de-
lay, number of net cuts, and power dissipation. It can also be seen
that the Power–only SimE performs well for power when compared to
Multiobjective SimE. Power-only SimE shows poor performance when
compared to PowerFM up to circuit S2081. Power-only SimE shows
better performance for larger sized circuits (from S3330 to S15850)
when compared to PowerFM.

6. Conclusions

In this paper, iterative algorithms for multiobjective optimization namely
GA, TS and SimE for VLSI partitioning were proposed. Fuzzy logic is
used to integrate the objectives namely power, delay, cutset and balance
into a scalar cost value. Fuzzy goodness functions were developed for
SimE. It is clear from the results that TS outperforms GA in terms of
final solution costs and execution time, and the difference gets higher
with the increase in circuit complexity. The superiority of TS can be
attributed to its directed search approach and its higher greediness
tendency as compared with GA to obtain a good solution. For most
of the circuits, SimE achieved significantly better results than TS and
GA. For the large circuits, the superiority of SimE in achieving higher
quality solutions is highlighted. This is attributed to the smart strategy
of the algorithm in selecting badly assigned cells and attempting to
assign them in better partitions.

Further, we compared the results of iterative heuristics with the
modified FM algorithm, named PowerFM, which targets power opti-
mization. It was observed that SimE performs better than PowerFM in
terms of delay D(ps) and the number of net cuts Cut for all benchmark
circuits. But PowerFM performs better in terms of power dissipation
P (sp) up to circuit S2081 when compared to SimE. For larger sized
circuits (from S3330 to S15850) SimE outperforms PowerFM in terms
of all three, delay, number of net cuts, and power dissipation.

Acknowledgment

The authors thank King Fahd University of Petroleum & Minerals,
Dhahran, Saudi Arabia, for support, under Project code COE/ITERATE/221.
Special thanks to Abdul Subhan for assisting in the preparation of the
manuscript.

journal_subhan.tex; 12/06/2005; 18:00; p.20

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 21

Table I. The ISCAS-85/89 benchmark circuits
details.

Name Number of cells Number of nets

S298 136 130

S386 172 165

S641 433 410

S832 310 291

S953 440 417

S1196 561 547

S1238 540 526

S1488 667 648

S1494 661 642

S2081 122 121

S3330 1962 1888

S5378 2994 2944

S9234 5845 5822

S13207 8652 8530

S15850 10384 10296

References

Ackley, D. H.. A Connectionist Machine For Genetic Hillclimbing. Kluwer, 1987.
Al-Abaji, R. H.. Evolutionary Techniques for Multi-objective VLSI Netlist Par-

titioning. Master’s thesis, King Fahd University of Petroleum and Minerals,
Dhahran, Kingdom of Saudi Arabia, May 2002.

Choi, I.S. and S.Y. Hwang. Circuit Partitioning algorithm for Low-Power Design
Under Area Constraints Using Simulated Annealing. IEE Proc. Circuits Devices
Systems, 146(1):8–15, February 1999.

Devadas, S. and Sharad Malik. A Survey of Optimization Techniques Targeting Low
Power VLSI Circuits. 32nd ACM/IEEE Design Automation Conference, 1995.

Drechsler, R. and Gunther, W. and Eschbach, T. and Linhard, L. and Angst, G.
Recursive bi-partitioning of netlists for large number of partitions. Euromicro
Symposium on Digital System Design, 2002.

journal_subhan.tex; 12/06/2005; 18:00; p.21

22 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

B
en

ch
m

a
rk

S
im

u
la

ted
E

v
o
lu

tio
n

S
im

E
G

en
etic

A
lg

o
rith

m
T
a
b
u

S
ea

rch

C
ircu

it
D

(p
s)

C
u
t

P
(sp

)
µ
(x

)
T

B
e
s
t(s

)
D

(p
s)

C
u
t

P
(sp

)
µ
(x

)
T

B
e
s
t(s

)
D

(p
s)

C
u
t

P
(sp

)
µ
(x

)
T

B
e
s
t(s

)

S
2
9
8

1
9
7

1
1

8
3
7

0
.9

5
6
2

2
3
3

1
9

1
0
1
3

0
.7

9
4
3

1
9
7

2
4

9
2
6

0
.8

1
2
1

S
3
8
6

3
9
3

2
8

1
6
9
6

0
.7

4
1
5
2

3
5
6

3
6

1
5
2
9

0
.7

5
1
5
1

3
8
6

3
0

1
4
2
6

0
.7

6
7
7

S
6
4
1

8
8
6

1
6

1
7
3
8

0
.9

8
9
6
6

1
0
4
3

4
5

2
3
5
5

0
.8

3
1
5
4
0

8
8
9

5
9

2
2
8
1

0
.8

5
8
1
8

S
8
3
2

4
0
0

3
9

3
1
3
2

0
.6

9
1

2
5
7

4
4
4

4
5

3
0
3
4

0
.6

8
2
7
6

4
4
6

5
0

2
7
3
1

0
.6

8
2

8
0

S
9
5
3

4
7
6

4
8

2
4
7
3

0
.9

3
2
4
9

5
2
6

9
6

2
9
1
6

0
.6

9
1
8
2

4
6
6

9
9

2
5
1
8

0
.7

3
4

2
2
5

S
1
1
9
6

4
1
5

7
8

5
4
8
8

0
.8

2
3
9
8

3
9
6

1
2
3

5
4
4
3

0
.7

6
3
7
3

3
0
1

1
0
6

4
9
2
0

0
.8

0
1

1
3
4

S
1
2
3
8

3
5
0

7
7

5
9
6
0

0
.7

3
2
0
5

4
7
5

1
2
7

5
7
1
3

0
.7

2
3
6
5

4
0
8

7
9

4
5
9
7

0
.7

5
1
6
0

S
1
4
8
8

6
1
2

8
3

5
8
9
2

0
.7

7
1
6

5
7
1

1
0
4

5
6
4
8

0
.7

1
1
1
8
3

5
2
8

9
8

5
5
2
9

0
.7

2
4
0
5

S
1
4
9
4

5
0
2

7
1

6
2
5
0

0
.8

1
8
0
2

6
1
4

1
0
2

5
4
7
4

0
.7

0
1
0
4
0

5
8
5

1
0
1

5
3
3
9

0
.7

1
4
2
7

S
2
0
8
1

3
2
5

1
3

7
0
6

0
.9

4
8
9

3
0
2

2
6

7
8
7

0
.7

3
3
2

2
2
5

1
7

7
7
0

0
.7

9
1
6

S
3
3
3
0

3
9
4

4
6

8
4
3
1

0
.9

8
8
1
2

5
7
1

2
9
9

1
0
3
5
8

0
.7

5
2
0
7
4

5
3
3

2
9
5

1
0
2
9
8

0
.7

9
9
9
4

S
5
3
7
8

5
5
4

1
6
1

1
4
0
9
4

0
.9

5
4
6
5

5
8
7

5
7
3

1
8
4
3
7

0
.7

4
2
6
8
6

5
9
0

4
3
0

1
6
5
2
7

0
.7

9
1
1
0
0

S
9
2
3
4

8
3
1

1
9
6

2
5
6
7
2

0
.9

8
3
8
5
3

1
3
1
3

1
0
9
0

3
8
1
4
9

0
.7

2
5
9
4
9

1
0
5
2

9
1
8

3
4
0
5
5

0
.8

1
2
8
2
1

S
1
3
2
0
7

1
0
1
4

3
1
3

3
5
0
1
4

0
.9

8
3
1
2
9

1
3
9
9

1
6
8
3

4
5
6
1
1

0
.7

4
8
0
9
7

8
4
3

1
3
3
2

4
1
1
1
4

0
.7

9
3
6
9
0

S
1
5
8
5
0

1
1
8
9

4
1
6

4
0
7
1
6

0
.9

6
1
8
5
0

1
8
2
0

2
1
8
3

5
1
7
4
7

0
.7

4
1
0
2
0
6

1
4
1
1

1
6
7
1

4
7
4
8
0

0
.8

3
1

5
1
3
0

A
v
era

g
e

µ
(x

)
0
.8

7
6

A
v
era

g
e

µ
(x

)
0
.7

3
6

A
v
era

g
e

µ
(x

)
0
.7

7
4

T
able

II.C
om

parison
betw

een
Sim

E
,
G

A
and

T
S.

journal_subhan.tex; 12/06/2005; 18:00; p.22

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 23

B
en

ch
m

a
rk

P
o
w

er-o
n
ly

S
im

E
M

u
ltio

b
jectiv

e
S
im

E
P
o
w

erF
M

C
ircu

it
D

(p
s)

C
u
t

P
(sp

)
T

(s)
T

b
e
s
t (s)

D
(p

s)
C

u
t

P
(sp

)
T

(s)
T

b
e
s
t (s)

D
(p

s)
C

u
t

P
(sp

)
T

(s)
P

a
v

g

S
2
9
8

3
0
1

2
1

7
3
8

9
7

2
6

1
9
7

1
1

8
3
7

1
0
2

6
2

3
0
1

2
0

7
3
2

0
.0

5
8
2
8

S
3
8
6

4
4
9

3
7

1
5
6
7

1
5
6

1
5
2

3
9
3

2
8

1
6
9
6

1
5
6

1
5
2

4
3
4

2
9

1
5
1
1

0
.3

9
1
6
7
3

S
6
4
1

1
1
3
3

3
8

1
7
0
4

1
4
1
6

7
1
9

8
8
6

1
6

1
7
3
8

1
3
9
0

9
6
6

1
2
2
1

4
4

1
6
6
7

0
.6

1
1
7
7
3

S
8
3
2

5
2
7

6
8

3
1
1
6

2
1
3

1
6
2

5
0
0

4
5

3
2
3
2

2
7
4

2
5
7

5
2
7

5
1

2
8
5
5

1
.9

7
3
3
3
8

S
9
5
3

1
1
2
0

1
3
4

2
3
6
9

4
2
4

3
9
8

4
7
6

4
8

2
4
7
3

5
2
8

2
4
9

9
0
2

1
2
0

2
1
9
1

0
.6

0
2
4
2
2

S
1
1
9
6

5
9
8

1
0
9

5
2
0
6

3
6
1

3
4
3

4
1
5

7
8

5
4
8
8

4
6
3

3
9
8

6
1
2

6
8

4
1
1
6

1
.8

1
5
2
8
9

S
1
2
3
8

6
5
8

1
3
1

5
9
2
8

3
3
0

3
1
6

3
5
0

7
7

5
9
6
0

4
1
7

2
0
5

5
4
4

6
2

4
2
1
8

1
.8

0
5
3
5
8

S
1
4
8
8

6
5
5

1
0
5

5
6
8
6

1
0
0
9

8
7
9

6
1
2

8
3

5
8
9
2

1
0
8
2

7
1
6

7
2
4

7
0

5
2
2
8

5
.6

0
5
7
8
7

S
1
4
9
4

7
3
8

1
2
5

6
2
0
1

8
0
0

4
3
3

5
0
2

7
1

6
2
5
0

1
0
1
7

8
0
2

6
3
0

8
0

5
3
5
4

7
.1

9
6
0
2
2

S
2
0
8
1

3
8
6

1
5

5
8
3

7
3

5
8

3
2
5

1
3

7
0
6

9
3

8
9

3
3
5

7
5
6
5

0
.1

1
5
8
6

S
3
3
3
0

5
5
2

2
2
8

9
3
5
4

1
6
8
5

1
0
0
8

3
9
4

4
6

8
4
3
1

1
6
6
2

1
0
8
6

5
9
3

2
2
6

9
5
2
2

6
.3

7
1
0
1
8
0

S
5
3
7
8

7
3
8

2
9
9

1
3
6
8
8

1
5
8
2

1
1
4
2

5
5
4

1
6
1

1
4
0
9
4

2
1
1
7

4
6
5

5
7
4

3
6
3

1
4
5
6
5

1
9
.2

2
1
5
4
5
3

S
9
2
3
4

8
9
8

2
0
9

2
5
5
6
5

3
6
7
2

1
9
7
6

8
3
1

1
9
6

2
5
6
7
2

4
7
3
3

3
8
5
3

8
3
2

3
8
9

2
6
7
8
4

9
2
.5

0
2
9
1
0
0

S
1
3
2
0
7

1
0
9
9

6
9
0

3
4
9
2
1

7
1
5
0

5
3
6
5

1
0
1
4

3
1
3

3
5
0
1
4

6
2
9
5

3
1
2
9

1
2
8
6

9
2
9

3
7
1
9
0

2
7
3

3
9
1
5
5

S
1
5
8
5
0

1
4
5
8

6
8
8

4
0
6
8
6

8
1
2
2

5
7
3
2

1
1
8
9

4
1
6

4
0
7
1
6

7
9
7
8

1
8
5
0

1
4
6
4

9
1
9

4
2
5
2
1

3
1
8
.5

6
4
3
2
3
8

T
able

III.C
om

parison
betw

een
P
ow

er–only
Sim

E
,
M

ultiob
jective

Sim
E

,and
P
ow

erF
M

.

journal_subhan.tex; 12/06/2005; 18:00; p.23

24 Sadiq M. Sait, Aiman El-Maleh, Raslan Al-Abaji

Fiduccia C. M. and Mattheyses R. M. A Linear-Time Heuristic for Improving
Network Partitions. Proc. of the 19th IEEE Design Automation Conference,
pages 175–181, 1982.

Ghosh, A., S. Devadas, K. Keutzer, and J. White. Estimation of Average Switch-
ing Activity in Combinational and Sequential Circuits. Design Automation
Conference, pages 253–259, 1992.

Hammami, M. Ghedira, K. Tabu search for the k-graph partitioning problem
Computer Systems and Applications, 2003. Book of Abstracts. ACS/IEEE
International Conference on, Vol., Iss., 14-18 July 2003 Pages: 85

Khan, Junaid A., Sadiq M. Sait, and Mahmood R. Minhas. Fuzzy Biasless Simulated
Evolution for Multiobjective VLSI Placement. IEEE CEC 2002, Hawaii USA,
12-17 May 2002.

Kuroda, T. CMOS design challenges to power wall. Microprocesses and Nanotech-
nology Conference, 2001 International, Vol., Iss., 2001 Pages:6-7

Mardhana, E. and Ikeguchi, T. Neurosearch: a program library for neural network
driven search meta-heuristics [VLSI netlist partitioning example]. Proceedings of
International Symposium on Circuits and Systems, Pages: V-697- V-700, 2003.

Murata, T. and Ishibuchi, H. MOGA multi–objective genetic algorithms. Proceed-
ings of International Conference on Evolutionary Computation, pages 289–294,
1995.

Pedram, M. CAD for Low Power: Status and Promising Directions. IEEE In-
ternational Symposium on VLSI Technology, Systems and Applications, pages
331–336, 1995.

Sait, Sadiq M. and Habib Youssef. VLSI Physical Design Automation: Theory and
Practice. McGraw-Hill Book Company, Europe, 1995.

Sait, Sadiq M. and Habib Youssef. Iterative Computer Algorithms with Applications
in Engineering: Solving Combinatorial Optimization Problems. IEEE Computer
Society Press, California, December 1999.

Sait, S.M. and El-Maleh, A.H. and Al-Abaji, R.H. General iterative heuristics
for VLSI multiobjective partitioning. Circuits and Systems, 2003. ISCAS ’03.
Proceedings of the 2003 International Symposium on, Vol.5, Iss., 25-28 May 2003
Pages: V-497- V-500 vol.5

Sait, S.M. and El-Maleh, A.H. and Al-Abaji, R.H. Enhancing performance of itera-
tive heuristics for VLSI netlist partitioning. Proceedings of the 2003 10th IEEE
International Conference on Electronics, Circuits and Systems, 507–510, 2003.

Schaffer, J.D. Multiple objective optimization with vector evaluated genetic
algorithms. Proceedings of International Conference on GAs, 93–100, 1985.

Sipakoulis, G.C. Karafyllidis, I. Thanailakis, A. Genetic partitioning and placement
for VLSI circuits. Electronics, Circuits and Systems, 1999. Proceedings of ICECS
’99. The 6th IEEE International Conference on, Vol.3, Iss., 1999 Pages:1647-1650
vol.3

Tetsushi, J. M. and Koide S. W.. A Circuit Partitioning Algorithm Under Path
Delay Constraints. IEEE, pages WT32–1.1 WT32–1.4, 1998.

Ouyang, M. and Toulouse, M. and Thulasiraman, K. and Glover, F. and Deogun, J.S.
Multilevel cooperative search for the circuit/hypergraph partitioning problem.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, Vol.21, Iss.6, Jun 2002 Pages:685-693

Vaishnav, H. and M. Pedram. Delay optimal partitioning targeting low power VLSI
circuits. IEEE Trans. on Computer Aided Design, 18(6):298–301, June 1999.

journal_subhan.tex; 12/06/2005; 18:00; p.24

Evolutionary Algorithms for VLSI Multiobjective Netlist Partitioning 25

Yager, R.R.. On Ordered Weighted Averaging Aggregation Operators in Multicri-
teria Decision making. IEEE Transaction on Systems, MAN, and Cybernetics,
18(1), January 1988.

Zadeh, L. A. Fuzzy sets. Information Contr., 8:338-353, 1965.

journal_subhan.tex; 12/06/2005; 18:00; p.25

journal_subhan.tex; 12/06/2005; 18:00; p.26

