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Introduction
A significant part of digital circuits is constituted by sequen-
tial synchronous circuits behaviour of which can be presented
by a finite state machine (FSM). So nothing strange the FSM
synthesis methods are continually developed (cf. the mono-
graphs [14, 19] or [17, 8]). One of the most crucial steps in
FSM synthesis is the encoding of FSM states referred to as the
state assignment problem (SAP). It consists in the unique as-
signment of bit strings to the states of sequential circuit (SC).
This step of FSM synthesis is important because it affects the
quality of realised SC (cost/area, maximum frequency, power
consumption).
Effective algorithms for the state encoding were developed,

e.g. NOVA [18] for two-level implementation targeted to
Programmable Logic Arrays (PLAs) or MUSTANG [10] and
JEDI [15] for multilevel FSM implementation. However, state
assignments generated by these methods, for FSMs imple-
mented in modern programmable devices [1, 7] allowing ef-
ficient implementations of digital systems, are far from opti-
mum [9]. Taking above into account, and considering other
conditions (cf. [5, 12, 16]) we decided to try to cope with SAP
using evolutionary algorithm (EA).
Genetic and evolutionary algorithms are successfully used

in VLSI CAD [11]. They were also applied to SAP [3, 4, 5]. In
this paper we propose an evolutionary algorithm for SAP. We
introduce the original crossover operators and next compare
them with the known ones using.
State assignment problem
States of FSM are named but when a sequential circuit is
implemented they are represented by bit strings. Therefore
during FSM synthesis states have to be encoded i.e. uniquely
assigned with binary strings (state codes). Assume FSM has
m states from the set S = {s1, s2, ..., sm}. The minimum
number of bits that must be used to encode FSM states is
rmin = | log2 m], where |d] is the smallest integer not less
than d. The number A of possible assignments is

A = Cm
2r ·m! =

2r!

(2r −m)!
(1)

where Cm
2r is the number of k−element combinations with-

out repetitions from n elements. Naturally, when good state
assignment is searched for all values of r from the range
rmin, ..., m then the number A of possible assignments is

A =

m

r=rmin

Cm
2rm! =

m

r=rmin

2r!

(2r −m)!
. (2)

However, the search space can be reduced when equivalence
classes of state assignments are taken into account [19]. The
space of all possible solutions of the SAP is huge, and the
problem is NP-hard [8, 19]. Moreover, the quality of solutions
strongly depends on the architecture of the target device in
which FSM is to be implemented. When we add that the
form of the optimisation function is difficult to define, the
SAP seems to be a suitable field for application of EAs and
evolutionary techniques [4, 3, 5].

Here we focus our attention on crossover operators (along
with genotypes). In classical genetic algorithms a chromo-
some is represented by a binary string. For SAP the individ-
ual could be represented by a string of m · r bits, where each
r consecutive bits constitute the code of the subsequent FSM
state. For example, when m = 5 and r = 3, the chromosome
111011101001110 assigns strings 111, 011, 101, 001, 110 to the
states s1, s2, s3, s4, s5, s6, respectively.

Proposed evolutionary algorithm
In proposed EA for SAP chromosome is represented by a
string of integers: i-th number constitutes a code of i-th FSM
state si, e.g. an individual 73516 represents assignment of
7(10)3(10)5(10)1(10)6(10) to the states s1, s2, s3, s4, s5, respec-
tively. Assume U(i) and W (i) (abbreviated as ui and wi,
respectively) denote an allele (gene value) at the i-th posi-
tion of chromosome U and W , respectively, l - chromosome
length (number of chromosome genes/positions, here l = m)
and L(U) - the set of positions (loci) of chromosome U . Let
C(U, W ) = {i : ui = wj , j = 1, 2, ...l},
D(U, W ) = {i : ui = wj , j = 1, 2, ...l, i = j},
E(U, W ) = {i : ui = wi, i = 1, 2, ...l}.
These three sets are mutually disjoint and L(U) = C(U, W )∪
D(U, W ) ∪ E(U, W ). It should be noticed that |C(U, W )| =
|C(W, U)|, |D(U, W )| = |D(W, U)|, E(U, W ) = E(W, U),
where |A| is the cardinality of the set A. Analogously we
define C(W, U), D(W, U) and E(W, U) with the same proper-
ties.

Assume F is a set of loci of a chromosome, F ⊂ L. Let
G(F, U, k, h) = {f ∈ F : 0 < H(k, U(f)) ≤ h}, where H(i, j)-
the Hamming distance between numbers i and j.

Using that notation two crossover operations M1 and M2,
and order-based mutation are defined. We chose the rank-
based selection [20] and applied elitist strategy (n from the
best chromosomes of the current population are uncondition-
ally selected to the new one).

Experimental results
The effectiveness of the proposed crossover operators has been
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checked with the use of several MCNC benchmark FSMs [21].
FSMs used in tests were synthesized by Altera Multiple Ar-
ray MatriX Programmable Logic User System (MAX+PLUS
II) in the device of MAX9000 family [2] (actually it was the
EPM9320RC208-15 device). EA (program has been written
in C/C++) called the MAX+PLUS II (further on referred to
as MPII) to ascertain the fitness of chromosomes.
Based on experimental results it can be seen that EA is

an effective algorithm for FSM state assignment, competitive
- regarding generated results - to the commercially available
state-of-the-art software containing a lot of domain knowl-
edge.Although EA has searched only for state assignments
that yield cheaper FSM implementation, obtained results,
generally show also an increase in the FSM maximum (clock-
to-clock) frequency. The main disadvantage of the EA is its
execution time. In our experiments one EA run took from
several hours up to 29 hours (this time cost was mainly be-
cause of calling the external software - here MPII - to evaluate
generated solutions), but it must be added that experiments
were done simply using personal computer. In our imple-
mentation the EA worked sequentially. EAs are parallel from
their nature so parallel implementation of the EA shall radi-
cally decrease the run time.
On the other hand the experimental results confirm the

high stability of EAs. It should be noted that EA param-
eters were chosen arbitrary. Moreover, the proposed M
crossovers can be fine-tuned. We believe the better results
can be obtained after EA and its operators parameters are
adjusted. Proposed crossover operators M1 and M2 were
designed for SAP. Since this problem belongs to the wider
class of combinatorial optimisation problems (COPs) than
commonly known travelling salesman problem (which can be
formulated as a special case of SAP; of course fitness func-
tions and schemata are different for these problems), hence
operators proposed in this paper can be applicable to other
COPs.
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