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Abstract

Genetic Algorithms have worked fairly well for the VLSI cell placement problem, al-
beit with significant run times. This is all the more true for multi-objective cell placement,
where the need to optimize conflicting objectives adds another level of complexity. A mod-
ified distributed parallel GA is presented for VLSI cell placement where the objectives are
optimizing power dissipation, timing performance and interconnect wirelength, while lay-
out width is a constraint. Fuzzy rules are incorporated in order to design a cost function that
integrates these objectives into a single overall value. A pseudo-diversity approach is taken,
wherein solutions with the same overall cost values are not permitted in the population at
any given time. A series of experiments are performed on ISCAS-85/89 benchmarks to
compare speedups. The speedup gains achieved using this parallel GA are compared with
the speedup of a parallel Tabu Search strategy.

1. Introduction

As VLSI (Very Large Scale Integration) technologies continue to proceed towards further submicron-
scale circuit fabrication, the issues of design and optimization have become all the more de-
manding. The cell placement phase which is one of the intermediate steps in the physical design
stage of these circuits, involves designing and optimizing the circuit layout by positioning cells
within a constrained area. Given the sheer complexity of modern circuit densities, this design
stage is an inherently NP-hard problem for which conventional constructive techniques have
often proved inadequate. Genetic Algorithms on the other hand have proven quite effective in
reaching satisfactory layout designs, albeit with long run-times [Chan (1991), Esbensen (1992),

Sait (2001)]. As such, significant efforts have been put into speeding Genetic Algorithms, the
most promising of which is their parallelization.

The parallel GA described in this paper targets the optimization of width-constrained, multi-
objective placement. It is a derivative of the standard distributed parallel GA, which follows an
island approach, with independently evolving subpopulations and periodic exchange of solu-
tions through migration.

The cost functions for the objectives - minimizing wire-length, delay and power dissipation
- and the serial genetic algorithm used as the base for performance comparison are slight mod-
ifications of earlier work [Sait (2001)]. The serial GA follows an aggressive pseudo-diversity
approach, wherein instead of preventing identical solution strings in the population, the fuzzy
fitness is used as the unique attribute. No two solutions in the population are allowed to have



the same fitness values. The Parallel Genetic Algorithm maintains this artificial population
diversity within each processor.

2. Problem and Cost Function Modeling

In this section, we formulate our problem and the cost function used in our optimization process.

2.1 Problem Formulation

We are addressing the problem of VLSI standard cell placement with the objectives of optimiz-
ing power consumption, timing performance (delay), and wirelength while considering layout
width as a constraint. Semi-formally, the problem can be stated as follows:

A set of cells or modules M = {my,ma,...,m,} and a set of signals S = {s1,s9,..., 51}
is given. Moreover, a set of signals S,,., where S,,. C S, is associated with each module
m; € M. Similarly, a set of modules M, where M, = {mi|s; € Sp,} is called a signal net, is
associated with each signal s; € S. Also, a set of locations L = {Ly, Lo, ..., L,}, where p > n
is given. The problem is to assign each m; € M to a unique location L;, such that all of our
objectives are optimized subject to our constraints [Sait (2001)].

2.2 Cost Functions
Now we formulate cost functions for our three said objectives.

Wirelength Cost: Interconnect wirelength of each net in the circuit is estimated and then total
wirelength is computed by adding the individual estimates:

COStwire = Z lZ (1)

ieM
where [; is the wirelength estimation for net  and M denotes total number of nets in circuit.

Power Cost: Power consumption p; of a net ¢ in a circuit can be given as:

1
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where C; is total capacitance of net ¢z, Vpp is the supply voltage, f is the clock frequency, S;
is the switching probability of net z, and « is a technology dependent constant. Assuming a fix
supply voltage and clock frequency, the above equation reduces to the following:

pi~Ci+ S (3)
The capacitance C; of cell ¢ is given as:
Ci=0Ci+ >, CF )
JEM;

where ('Y is the input capacitance of gate j and C7 is the interconnect capacitance at the output
node of cell i. At the placement phase, only the interconnect capacitance C'” can be manipulated
while CY comes from the properties of the cell from the library used and is thus independent of
placement. Moreover, C7 depends on wirelength of net 7, so Equation 3 can be written as:

pi =l S; &)
The cost function for estimate of total power consumption in the circuit can be given as:
COStpower = Z P = Z(lz ' Sz) (6)
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Delay Cost: This cost is determined by the delay along the longest path in a circuit. The delay
T, of a path 7 consisting of nets {vq, vq, ..., v }, is expressed as:

k-1
T, =5 (CD; + ID;) (N
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where C'D; is the switching delay of the cell driving net ve and [ D; is the interconnect delay of
net vi. The placement phase affects ID; because C D; is technology dependent parameter and
is independent of placement. be estimated as:

Cost getay = max{T,} (8)

Width Cost: Width cost is given by the maximum of all the row widths in the layout. We
have constrained layout width not to exceed a certain positive ratio « to the average row width
Wy, Where w,,, 1s the minimum possible layout width obtained by dividing the total width of
all the cells in the layout by the number of rows in the layout. Formally, we can express width
constraint as below:

Width — wgyy < @ X Weyg 9

Overall Fuzzy Cost Function: Since, we are optimizing three objectives simultaneously, we
need to have a cost function that represents the effect of all three objectives in form of a single
quantity. We propose the use of fuzzy logic to integrate these multiple, possibly conflicting
objectives into a scalar cost function. Fuzzy logic allows us to describe the objectives in terms
of linguistic variables. Then, fuzzy rules are used to find the overall cost of a placement solution.
In this work, we have used following fuzzy rule:

IF a solution has SMALL wirelength AND LOW power consumption AND SHORT delay
THEN it is an GOOD solution.

The above rule is translated to and-like OWA fuzzy operator [ Yager (1988)] and the mem-
bership () of a solution z in fuzzy set GOOD solution is given as:

[ B min {u;(2)}+(1=8)-1 ¥ u(z);

J=p,d;! 1=p,d,l

plz) = if Width — wgyg < o - Wy, (10)

0; otherwise.

Here y;(x) for j = p,d, [, width are the membership values in the fuzzy sets LOW power
consumption, SHORT delay, and SMALL wirelength respectively. 3 is the constant in the range
[0, 1]. The solution that results in maximum value of x(x) is reported as the best solution found
by the search heuristic.

The membership functions for fuzzy sets LOW power consumption, SHORT delay, and
SMALL wirelength are shown in Figure 1. We can vary the preference of an objective ; in
overall membership function by changing the value of g; . The lower bounds O; for different
objectives are computed as given in Equations 11-14:

n
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Op:ZSil;‘ Vo, € {vy,v9,...,0,} (12)
i=1
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Od:ZCDj—i—[D; Vv, € {vi,v2,...,v1} in path 7, (13)
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Figure 1. Membership functions.
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Ouwidth = (14)
where O; for j € {l, p,d, width} are the optimal costs for wirelength, power, delay and layout
width respectively, n is the number of nets in layout, [* is the optimal wirelength of net v;, C'D;
is the switching delay of the cell : driving net v;, I.D; is the optimal interconnect delay of net
v; calculated with the help of [;, S; is the switching probability of net v;, 7. is the most critical
path with respect to optimal interconnect delays, & is the number of nets in 7. and Width; is
the width of the individual cell driving net v;.

3. Experimental Setup

The parallel architecture used in this work relies on distributing work load on a dedicated com-
puting clutster with individual nodes connected via a low-latency network. Each of these nodes,
which totalled eight in all is a general purpose stand-alone Pentium workstation running at
2.0GHz with 256MB memory and running the Red Hat Linux distribution. The cluster runs
over a FastEthernet switch. Communication between nodes is achieved using the MPICH im-
plementation of the Message Passing Interface.

In terms of GFlops measure, the maximum performance of the cluster, with NAS Parallel
Benchmarks is 1.6 GFlops, (using NAS’s LU, Class A, for 8 processors). Using this same
benchmark for a single processor, the individual performance of one machine was found out
to be 0.3 GFlops. The maximum bandwidth achieved using PMB was 91.12 Mbits/sec, with
an average latency of 68.69 usec per message. ISCAS-89 circuits are used as performance
benchmarks for evaluating the proposed parallel GA placement technique. These circuits are of
various sizes in terms of number of cells and paths, and thus offer a variety of test cases.

The profiling and performance tools used in the program development consisted of standard
GNU applications available natively on Linux such as the ubiquitous Gdb, Gprof, Vmstat, as
well as MPI-specific software such as Upshot and Vampir/VampirTrace for measuring program
performance and behavior.

4. Distributed Parallel Genetic Algorithm

The serial Genetic Algorithm used as the basis for speed-up comparison is a variant of the
canonical GA, in that an aggressive diversity approach is adopted to ensure that no two solutions
within the population and generated offsprings are similar. However, instead of comparing
actual solution strings and thus incurring significant computational overhead, the fuzzy fitness
value is adopted as the distinguishing attribute. This approach serves to widen the search,
while limiting the possibility of premature convergence of the process in local minima solution



space. The encoding the solution and the application of genetic operators such as parent choice,
crossover, mutation, and selection are taken from earlier work [Sait (2001)].

Before approaching plausible strategies of parallelization, a profiling of the serial GA is
required to determine computation-intensive functions and routines. This is shown below in
Table 1 where the percentage of runtime spent in the main components of the sequential GA
- the fitness calculation and application of genetic operators is documented. These profiles
generated for the ISCAS’89 benchmark circuits show that most time consuming for all circuits
is the delay calculation and the genetic crossover. Other components of the fitness objective
such as minimizing wirelength and power dissipation as well as the genetic selection operator
consume less runtime.

Table 1. Percentage Time Spent in Genetic Operators versus Fitness Calculation.

Ckt Delay | Wire | Power | Fitness | Crossover | Selection
(%) | (%) | (%) (%) (%) (%)
$298 396 | 7.3 1.96 49.0 44.1 14
s386 | 448 | 7.0 1.70 534 393 1.3
s832 39.6 | 6.7 1.22 47.7 452 1.7
s641 784 | 2.1 0.36 81.0 14.2 0.4
s953 446 | 6.1 1.01 521 42.2 1.3
s1196 | 519 | 44 1.09 57.5 36.9 1.0
s1238 | 514 | 4.6 | 099 57.1 38.6 0.6
s1494 | 385 | 43 | 0.84 43.8 51.6 04
s1488 | 37.7 | 5.3 1.10 442 51.6 0.6

Given the above profile, it can be seen that the traditional model of Global Parallel GA,
wherein only the fitness is distributed among processors, fails. The global parallel GA model,
assumes that application of genetic operators is trivial, with most time spent in fitness calcula-
tions [Adamidis (1994), Cantu-Paz (1998)].

The distributed parallel GA as reported often in literature, is a more popular approach,
wherein the population is distributed among processors. Each processor applies the genetic
algorithm to its assigned subpopulation with periodic or condition-triggered migration of solu-
tions between them [Cantu-Paz (1998), Cantu-Paz (1998b)].

In our model, which is a variant of the distributed parallel GA, the size of the initial popu-
lation created by the root process increases linearly with the number of processors. This guar-
antees that the initial population per process stays constant even as the number of processes
grow. Also, given that this initial population constructor is located at root, and controlled by
our pseudo-diversity approach, no two solutions will be the same in terms of fitness function.
These distinct populations have a high probability of following different evolutionary paths, and
with effective migration policies can help explore a much wider search space.

Figure 2 illustrates this model in the form of a schematic diagram, while the algorithm is
presented in pseudo-code in Figure 3. The initial population constructor on the master (root)
processor creates the initial population which is a multiple of the number of processors. This is
then distributed to all non-root processors. Following this, all nodes, including the root execute
the serial GA on their allocated population for a predefined number of iterations called the
Migration Frequency (M F'). Then each node sends a certain number of its best solutions to the
root. The number of solutions sent is controlled by the Migration Rate (M R) parameter. The
root determines the M R best solutions from the collective M Rx* (V) solutions and broadcasts it
to all processors. These migrants if not already present on the processors, are then absorbed into
the existing population by weeding out and replacing the weakest solutions. Each processor then
continues with the serial GA for another M F' number of generations. Every interval between
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Figure 2. Schematic Diagram illustrating the working of the Distributed Search Space Parallel
GA.

migrations, i.e., the length of time defined by MF number of generations is called as Epoch.
The stopping criteria is a predefined number of Epochs.

It is important to note that the migrant absorption policy dictates the replacement of worst
solutions with incoming migrants only if the migrants already do not exist within the population.
Also, logically this model could represent a fully connected topology of non-hierarchical pro-
cessing elements which cooperate to determine the best M R solutions among themselves and
absorb these into their existing populations. Figure 3 shows the pseudo-code for this algorithm.

Although this model logically represents a non-hierarchical parallel architecture, physically
it is implemented here as a Master-Slave model. The master processor is responsible for deter-
mining the source and destination of migrant solutions.

5. Experimental Results, Comparison, and Discussion

In this parallel GA model, the objective as mentioned earlier is to encourage each processor
to potentially explore different areas of the search space. These processors communicate at
intervals exchanging best solutions, thereby effectively communicating information about the
search space to one another. This approach has the potential to both reduce runtime significantly,
as well as reach higher quality solutions within the same number of iterations or time length.
The population sizing, genetic operators and migration parameters for this multiple-population
model are listed below.

e Population size of 32 per processor is always maintained regardless of number of pro-
cessors. The initial population construction is done at the root processor, and as such,
diversity can be enforced. The population is then distributed among all other processors.

e Regarding the genetic operators, Roulette wheel is used for parent selection, dual PMX
crossover is used for offspring generation while an elitist roulette mechanism is employed



ALGORITHM Distributed_Parallel GA
NOTATION
RANK : 0=Root Processor designated by Rank=0
RANK : ANY = All processors, including Root
M F'=Migration Frequency
M R=Migration Rate
N=Number of Processors
FEpoch = Instances of Migration
EPOCH_MAX =Maximum Number of Migrations Stopping Criteria
Begin
FOR RANK:0
Initial Population Constructor
Distribute Initial Population
ENDFOR RANK:0

FOR RANK:ANY
Receive Allocated Population
ENDFOR RANK:ANY

LOOP-A
FOR RANK:ANY
LOOP-B
Serial GA on Allocation Population:
Choice of Parents
Crossover and Offspring Generation
Fitness Calculation
New Population Selection
END LOOP-B IF [Num_Iterations >= MF]
ENDFOR RANK:ANY

FOR RANK:0
Collect the MR*(N-1) solutions
Determine best MR distinct solutions
Broadcast MR solutions

ENDFOR RANK:0

FOR RANK:ANY
Receive MR Best Solutions
IF [Received Migrants not present in existing Population]
Replace Worst Solutions with Received Solutions
ENDIF
ENDFOR RANK:ANY

END LOOP-A IF [Epoch >= EPOCH_MAX]
FOR RANK:(0
Return Best solution.

ENDFOR RANK:0

End (Distributed_Parallel GA)

Figure 3. Structure of the Distributed Parallel GA.
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Figure 4. The decrease in runtime to reach a pre-defined fitness objective with increasing num-
ber of processors.

for new population selection, in which the best solution is always selected, while the other
solutions are based on roulette wheel.

e A Migration frequency of 20 generations is empirically selected i.e., migration occurs
after a static epoch length.

e Migration rate is only one i.e., only the best solution is sent to other processes.

e The migrant absorption policy requires the migrant to replace the worst quality solution
in the processor’s population.

e The run length was for a thousand epochs. With each epoch of twenty generations, each
processor cumulatively runs 20000 generations.

Table 2. Parallel GA:Variation in runtime taken to reach a target fitness with increasing number
of processors.

Circuit | Target | Time taken to reach target fitness
Fitness | P=1 | P=3 | P=5 p=7
s386 0.504 IS | 99 | 5.7 6.7
s641 0.616 | 793 | 307 | 390 289
$832 0479 | 128 | 43 | 37 39
s953 0.511 | 309 | 136 | 91 108
s1196 | 0.484 | 988 | 327 | 262 205
s1488 | 0482 | 1883 | 677 | 435 418
s1494 | 0496 | 1405 | 847 | 638 479

Table 2 shows the amount of time taken to reach a predefined fitness objective with increas-
ing number of processors. As seen, there is a constant decrease in runtime for all circuits with
significant performance gains. The results for the smaller circuits show that the runtime levels
off after approximately three to four processors, while in the case of larger circuits, the speedup
continues even upto eight processors. This would be because of the less-expansive search space
in the case of smaller circuits, which is effectively covered by 3-4 processors. Concurrently,
with larger circuits, the increasing number of processors translates into a more expanded view
of the search space and lesser runtimes to reach target fitnesses. A more clear view of this trend
can be seen from the graphs shown in Figure 4.



Figure 5 shows a speedup comparison between the parallel Genetic Algorithm discussed
and the parallel Tabu Search approach mentioned earlier. The figure shows that for the circuits
s1488 and s1494, the parallel GA presents continuous gains in speedup, though for the latter
circuit, the speedup after five processors tends to decrease. In comparison, the parallel TS
approach shows minimal speedup with upto five processes, followed by an increase in runtime
with additional processors. However, it should be noted that the absolute runtimes demonstrated
by Tabu Search in general are significantly lesser than those for Genetic Algorithms. This is
simply because Tabu Search works with a single solution and simple moves, while Genetic
Algorithms work with a population and more complex crossover schemes to navigate the search
space.

The speedup gains illustrated by the above parallel GA model can be compared against a
parallel Tabu Search approach applied to the same VLSI problem. Tabu Search is an artificial
intelligence based heuristic that works on a single solution at a time. The heuristic navigates
through the search space using single-move strategies to discover new solutions and a memory
component that conditionally prevents returning to previously visited areas of the search space
[Sait (1999)].

The parallel Tabu Search strategy used here is reported in literature as a synchronous master-
slave model with the following characteristics: P-control (each process is responsible for its
search), Rigid Synchronization (all processes must communicate and synchronize at specified
points), and Multi-Point Single Strategy (All processes start with different initial solution, but
follow identical search strategies) [Toulouse (1996), Crainic (1997)]. This parallelization ap-
proach is similar to our Parallel GA approach, in terms of the synchronous behavior, each
process conducting its own search and following identical search strategies.

Figure 5 shows a speedup comparison between the parallel Ge netic Algorithm discussed
and the parallel Tabu Search approach. The figure shows that for the circuits s1488 and s1494,
the parallel GA presents continuous gains in speedup, though for the latter circuit, the speedup
after five processors tends to decrease. In comparison, the parallel TS approach shows minimal
speedup with upto five pr ocesses, followed by an increase in runtime with additional proces-
sors. However, it should be noted that the absolute runtimes demonstrated by Tabu Search in
general are significantly lesser than those for Genetic Algorithms. This is simply because Tabu
Search works with a single s olution and simple moves, while Genetic Algorithms work with a
population and more complex crossover schemes to navigate the search space.

6. Future Work and Conclusion

This paper presented the application of a modified Distributed GA to a multi-objective VLSI cell
placement problem. The algorithm focussed on distributing the search space among processors
with an increasing initial population size instead of distributing the work load with a static
population. Also, an appreciable degree of diversity is maintained by preventing solutions with
the same fuzzy fitness value to exist within the population at the same time.

The results showed a significant reduction in runtime for all circuits, although the speedup
was more obvious for larger ones. This speedup trend was compared to a parallel Tabu Search
approach from literature, and was shown to be more consistent with increasing number of pro-
CESSOTS.

This work can be extended along two lines. One would be to achieve a parallel GA that
follows the evolutionary path of the serial GA, as close as possible with linear speedups.
This would be a modification of the traditional Global Master-Slave parallel GA, wherein the
computation-intensive crossover function is also distributed among the processors.

A second approach would be to seed the parallel Genetic Algorithm with solutions from
low-runtime iterative heuristics such as Tabu Search. Most GA systems generate random initial
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populations which then are used to navigate through the search space. However, including a
high quality result from a low runtime heuristic into the initial population would likely acceler-
ate the search process with the parallel GA.
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