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Abstract - When fuzzy logic is used with mul-
tiobjective optimization, min/max operators may
not be desirable. This is primarily due to lack of
compensation/submission of min/max. To over-
come this, Ordered Weighted Averaging(OWA)
operators were proposed by Yager. OWA re-
quires the selection of a control parameter β,
which is different for different problem instances.
In this work we propose new fuzzy aggregating
functions that simulate the fuzzy AND/OR logic,
and have the advantages of OWA without a need
of any control parameter. Comparison with OWA
for the VLSI cell placement using Simulated Evo-
lution produced encouraging results.

I. Introduction

In a multiobjective optimization problem (MOP), bal-
ancing different objectives by weight functions is difficult.
Fuzzy logic is a convenient vehicle for solving this prob-
lem. It allows to map values of different criteria into lin-
guistic values, which characterize the level of satisfaction
of the designer with the numerical value of the objectives.
All these numerical values operate over the interval [0,1]
defined by the membership functions for each objective
[1].

A fuzzy logic rule is an If-Then rule. The If part (an-

tecedent) is a fuzzy predicate defined in terms of linguistic
values and fuzzy operators (Intersection and Union).
The Then part is called the consequent. Fuzzy union
operators are known as s-norm operators while fuzzy
intersection operators are known as t-norm. Gener-
ally, s-norm is implemented using max and t-norm as
min function, i.e., µA∪B(x) = max (µA(x), µB(x)), and
µA∩B(x) = min (µA(x), µB(x)). This is known as the
min−max logic initially introduced by Zadeh [2].

However, formulation of multi-criteria decision func-
tions do not desire pure “anding” of t-norm nor the
pure “oring” of s-norm. Also the indifference to the in-

dividual criteria of each of these two forms of operators
led to the development of Ordered Weighted Averaging
(OWA) operators [3]. This operator falls in the category
of compensatory fuzzy operators and allows easy adjust-
ment of the degree of “anding” and “oring” embedded in
the aggregation. According to [3], “orlike” and “andlike”
OWA for two fuzzy sets A and B are implemented as
given in Equations 1-2 respectively.
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β is a constant parameter in the range [0,1]. It repre-
sents the degree to which OWA operator resembles the
pure “or” or pure “and” respectively. However, it is dif-
ficult to select a suitable value of β without any trial
runs of an optimization algorithm for each problem in-
stance, because a suitable value of β is different for each
problem instance. In order to solve this problem, a set
of aggregating functions (AND like and OR like) is pre-
sented in this paper. These aggregating functions do not
need any user specified parameter and also provide the
compensation/submission in a controlled manner.

II. Proposed Fuzzy Aggregating Functions

Two fuzzy aggregating functions, AND like fuzzy ag-
gregation (AFA) and OR like fuzzy aggregation (OFA)
are presented in this work.

A. And Like Fuzzy Aggregation (AFA)

This function does not receive, directly the membership
values of fuzzy sets as parameters, but instead it receives
the membership values of complementary fuzzy sets.

Let µ, µ1 and µ2 be the membership values in fuzzy
sets S, S1 and S2. The membership µ̄ in S̄ (the com-
plementary fuzzy set of S) is obtained by using fuzzy
complementary operator.
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Fig. 1. (a) And Like Fuzzy Aggregation , (b) Or Like Fuzzy Aggregation.

Now the And Like Fuzzy Aggregation (AFA) is defined
as follows,

µ̄ = w̄1 µ̄1 + w̄2 µ̄2 (3)

µ = 1− µ̄ (4)

where

w̄n =
µ̄n

µ̄1 + µ̄2
(5)

If the membership value µ1 in one fuzzy set S1 is lower
than other, then corresponding membership µ̄1 in com-
plementary fuzzy set S̄1 is higher than the other, result-
ing in higher weight w̄1, leading to higher membership µ̄
in resulting complementary fuzzy set S̄. It results in the
lower membership µ in the resulting fuzzy set S. This
behavior is analogous to t-norm where, if one member-
ship is low, then the resulting membership is also low. If
the membership values in all complementary fuzzy sets
are equal then equal weights are assigned and the result-
ing membership is high. In short the AFA has following
advantages.

1. It simulates the behavior of fuzzy AND logic (espe-
cially at the boundaries).

2. There is no need to adjust any parameter like β in
OWA.

3. All the weights are controlled automatically.
4. It provides the compensation for any partial fulfill-

ment.
5. It rejects the solutions having diverse membership

values in different fuzzy sets, that can be accepted
in the case of “pure anding” and “andlike OWA”.

After combining Equations 3, 4 and 5 and generalizing
the function to n fuzzy membership values to be ANDed,
we can define the AFA function as follows,

µ = 1−

∑n
i=1 µ̄

2
i

∑n
i=1 µ̄i

(6)

B. Or Like Fuzzy Aggregation (OFA)

Or like fuzzy aggregation (OFA) is analogous to s-norm
in behavior. Unlike AFO it receives directly the mem-
bership values. The function is defined as follows,

µ = w1 µ1 + w2 µ2 (7)

where
wn =

µn

µ1 + µ2
(8)

If the membership in one fuzzy set is higher than the
membership values in the other fuzzy sets then it will
be given higher weight, hence the membership value µ in
resulting fuzzy set S will be higher, that is analogous to
s-norm. Unlike “pure oring” it also provides interaction
from other membership functions having lower values.

After combining Equations 7 and 8 and generalizing
the function to n fuzzy membership values to be ORed,
we can define the OFA as follows,

µ =

∑n
i=1 µ

2
i

∑n
i=1 µi

(9)

Figure 1 shows the behavior of proposed fuzzy aggre-
gating functions. Figure 1(a) shows the behavior of AFA,
it can be seen that the functions operates as a min oper-
ator on the extremes and acts like a compensatory oper-
ator in the middle. Due to this fact, it is not possible to
unintentionally optimize only a single objective (possible
in OWA and not desirable), due to the compensation. It
provides compensation in a controlled manner, when the
membership values to be aggregated are near each other
it behaves as a compensatory function, however if these
are diverse, indicating optimization of a single objective,
then it behaves as a pure min and force the optimization
algorithm to optimize other objectives as well.

Figure 1(b) shows the behavior of OFA, it shows that
the functions behaves as pure max in boundaries and also
exhibits the effect due to submission of other membership
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Fig. 2. Membership functions within acceptable range.

values. However, it does not waste time in differentiat-
ing the degree of submission of a particular objective,
because in OR logic if one objective is fulfilled then it is
sufficient.

III. VLSI Cell Placement

The placement problem can be stated as follows: Given
a set of modules (cells)M = {m1,m2, · · · ,mn}, and a set
of signals V = {v1, v2, · · · , vk}, each module mi ∈ M is
associated with a set of signals Vmi

, where Vmi
⊆ V . Also

each signal vi ∈ V is associated with a set of modules
Mvi

, where Mvi
= {mj |vi ∈ Vmj

}. Mvi
is called a signal

net. Placement consists of assigning each module mi ∈
M to a unique location such that a given cost function
is optimized and constraints are satisfied [4].

In our case of VLSI cell placement, three objectives are
considered in this work i.e., (1) wirelength minimization,
(2) power dissipation minimization, and (3) circuit delay
minimization with satisfying the layout width constraint.
It is shown in [1] that cost due to these objectives can be
computed as follows,

Costwire =
∑

j∈M

lj (10)

Costpower =
∑

i∈M

Sili (11)

Costdelay = Tπc
(12)

where M is the total number of nets in the circuit, li
is the wirelength estimation of net i, Si is the switching
activity on net i and Tπc

is the delay in the current most
critical path in the circuit [1], [5].

In order to combine these three objectives and one con-
straint, the following fuzzy rule is suggested.

Rule R1: IF a solution is within acceptable wire-length

AND acceptable power AND acceptable delay AND
within acceptable layout width THEN it is an ac-
ceptable solution.

Using And like fuzzy aggregation (AFA) the above

fuzzy rule translates to the following:

µcpdw(x) = 1−

∑

j=p,d,w µ̄
c2
j (x)

∑

j=p,d,w µ̄
c
j(x)

µc(x) = min(µcpdw(x), µ
c
width(x)) (13)

where µc(x) is the membership of solution x in fuzzy
set of acceptable solutions, µcpdw(x) is the membership
in fuzzy set of “acceptable power AND acceptable de-
lay AND acceptable wire-length”, whereas µcj(x) for j =
p, d, w,width, are the individual membership values in
the fuzzy sets within acceptable power, delay, wire-length,

and layout width, respectively. The superscript c rep-
resents “cost”. The solution that results in maximum
value of µc(x) is reported as the best solution found by
the search heuristic. Notice that the third AND opera-
tor in the above fuzzy rule is implemented as a pure min
because the width constraint has to be always satisfied.

The shape of membership functions for fuzzy sets
within acceptable power, delay and wire-length are as
shown in Figure 2(a), whereas the constraint within ac-

ceptable layout width is given as a crisp set as shown in
Figure 2(b). Since layout width is a constraint, its mem-
bership value is either 1 or 0 depending on goalwidth (in
our case goalwidth = 1.25). However, for other objec-
tives, by increasing or decreasing the value of goali one
can vary its preference in the overall membership func-
tion. Ois for i ∈ {w, p, d, width} represent the lower
bounds for wire-length, power, delay and layout width
respectively.

IV. Fuzzy Simulated Evolution for Placement

Simulated Evolution (SE) is a general, iterative meta-
heuristic to solve combinatorial optimization problems
[1], [6], [7]. The general SE algorithm is illustrated in
Figure 3 and comprises three main steps namely Evalu-
ation, Selection, and Allocation.

In order to apply simulated evolution, one has to design
a suitable goodness measure, a cost function, and an ap-
propriate allocation operator. Due to the multi-objective
nature of the placement problem, the goodness measure,
cost function, and the allocation operator should take
into consideration all objectives.
Fuzzy Goodness Evaluation: A designated location
of a cell is considered good if it results in short wire-
length for its nets, reduced delay, and reduced power.
These conflicting requirements can be expressed by the
following fuzzy logic rule.

Rule R2: IF cell i is near its optimal wire-length AND
near its optimal power AND (near its optimal net de-

lay OR Tmax(i) is much smaller than Tmax) THEN
it has a high goodness.



ALGORITHM Simulated Evolution(B,Φinitial, StoppingCondition)
NOTATION
Φ= Complete solution.
mi= Module i. gi= Goodness of mi.
ALLOCATE(mi,Φi)=Function to allocate mi in partial solution Φi

Begin

Repeat

EVALUATION:
ForEach mi ∈ Φ evaluate gi;
/* Only elements that were affected by moves of previous */
/* iteration get their goodnesses recalculated*/

SELECTION:
ForEach mi ∈ Φ DO

begin

IF Random > gi

THEN

begin

S = S ∪ mi; Remove mi from Φ
end

end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO

begin

ALLOCATE(mi,Φi)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Fig. 3. Structure of the simulated evolution algorithm.

where Tmax is the delay of the most critical path in the
current iteration and Tmax(i) is the delay of the longest
path traversing cell i in the current iteration.

With the AND and OR logic implemented as AFA,
and OFA, rule R2 evaluates to the expression below:

goodnessi = µei (x) = 1−

∑

j=w,p,d µ̄
e2
ij(x)

∑

j=w,p,d µ̄
e
ij(x)

(14)

where

µeid(x) =
µe2inet(x) + µe2ipath(x)

µeinet(x) + µeipath(x)
(15)

The base values for fuzzy sets near optimal wire-length,
power, net delay, and for the fuzzy set “Tmax(i) much
smaller than Tmax”, for each cell, are represented by
Xiw(x), Xip(x), Xinet(x) and Xipath(x), respectively [1].
Membership functions of these base values are shown in
Figure 4.

Selection: In this stage of the algorithm, some cells
are selected probabilistically depending on their good-
ness values. A cell i is selected if Random > goodnessi.
Where Random is a Gaussian random number with
mean = Gm − Gσ and standard deviation = Gσ. Gm,
and Gσ are the mean and standard deviation of goodness
values of cells in the initial solution.
Allocation: In the allocation stage, the selected cells are
to be placed in the best available locations. We have con-
sidered selected cells as movable modules and remaining
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Fig. 5. Membership functions used in allocation.

cells as fixed modules. Selected cells are sorted in de-
scending order of their goodnesses with respect to their
partial connectivity with unselected cells. One cell from
the sorted list is selected at a time and its location is
swapped with other movable cells in the current solution.
The swap that results in the maximum gain is accepted
and the cell is removed from the selection set.

The goodness of the new location is characterized by
the following fuzzy rule:

Rule R3: IF a swap results in reduced overall wire-

length AND reduced overall power AND reduced de-

lay AND within acceptable layout width THEN it
gives good location.



The above rule is interpreted as follows:

µai wpd(l) = 1−

∑

j=p,w,d µ̄
a2
ij(l)

∑

j=p,w,d µ̄
a
ij(l)

(16)

µai (l) = min( µai width(l), µ
a
i wpd(l) ) (17)

the superscript a is used here to represent allocation.
µai (l) is the membership of cell i at location l in the
fuzzy set of good location. µai wpd(l) is the membership in
the fuzzy set of “reduced wire-length and reduced power
and reduced delay”. µaiw(l), µ

a
ip(l), µ

a
id(l), and µaiwidth(l)

are the membership in the fuzzy sets of reduced wire-
length, reduced power, reduced delay and within accept-
able width, respectively.

The base values of membership functions in allocation
are represented as Xa

iw(l), X
a
ip(l) X

a
id(l), and X

a
i width(l).

Membership functions for these base values are shown
in Figure 5. The values of aw, ap, ad and awidth depend
upon priority on the optimization level of the respective
objective. In our case, we have set aw = 0.75, ap = 0.75,
ad = 0.85 and awidth = 0.25. The algorithm terminates
when no further improvement is observed in the best so-
lution found.

V. Experiments and Results

Fuzzy Simulated Evolution using OWA (OFSE) and
Fuzzy Simulated Evolution using proposed Fuzzy Aggre-
gating Functions (AFSE) are applied on thirteen different
ISCAS benchmark circuits.

Table I compares the quality of final solution generated
by OFSE, and AFSE. The circuits are listed in order of
their size (136- 5844 modules). It is clear that proposed
aggregating functions (AFSE) has performed better than
OWA operators (OFSE), except for two smaller circuits.
In most of the cases AFSE is better in terms of all ob-
jectives, because of its better directed search capabilities
in the solution space. However, in some cases, slight
increase in the cost of one objective has resulted larger
decrease in cost of other objectives (see S953 and S1488).
In general, AFSE performs better than OFSE in terms
of quality of final solution.

In order to compare improvement in the quality of solu-
tion versus time, we plot the current membership values
of the solution obtained by OFSE and AFSE (Figure 6-
(a) and (b)). These plots are for test case S3330. It can
be observed that the quality of solution improves rapidly
in AFSE based search as compared to OFSE. This be-
havior was observed for all test cases.

Figures 6(c), and (d) track with time the total num-
ber of solutions found by OFSE and AFSE, for various
membership ranges. Note however that AFSE exhibited

slightly faster evolutionary rate than OFSE. For exam-
ple, after about 200 seconds, almost all new solutions
discovered by AFSE have a membership more than 0.6
in the fuzzy subset of good solutions with respect to all
objectives, and almost none were found with lower mem-
bership values. In contrast, for OFSE, it is after 300
seconds that the first solution with membership greater
than 0.6 was found (see Figure 6). This behavior was
observed for all test cases.

VI. Conclusion

In this paper, we have proposed two fuzzy aggregat-
ing functions for multiobjective optimization problem.
In this work these functions are applied on VLSI cell
placement problem, however, these can be applied to
any multiobjective optimization problem. These func-
tions exhibits the good qualities of OWA operators and
are more directed towards optimal solution than OWA
without the need of any control parameter. Simulation
results for our test cases with the proposed aggregating
functions produced better results than those with OWA
operators.
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Fig. 6. (a), and (b) show membership values versus execution time for OFSE, and AFSE respectively. (c), and (d) show
cumulative number of solutions visited in a specific membership range versus execution time for OFSE, and AFSE.

TABLE I

Comparison between proposed aggregating functions and OWA. L is wirelength in µm, P is power cost in

µm, D is delay in pico seconds, and T is the execution time in seconds.

Circuit AFSE OFSE
L (µm) P (µm) D (ps) T (s) L (µm) P (µm) D (ps) T(s)

S2081 2932 452 116 24 2740 422 114 126
S298 4853 925 139 82 4548 915 139 46
S386 7140 1653 202 153 8357 2036 203 117
S641 9445 2092 650 836 12811 3072 687 175
S832 19191 4359 356 293 23140 5251 416 192
S953 28290 4394 236 344 29526 5025 223 351
S1196 34331 10523 340 565 35810 11276 359 613
S1238 36333 11329 382 566 41318 12303 362 699
S1488 51793 12397 712 674 57730 13810 700 374
S1494 52711 12824 763 575 54523 12986 768 762
S3330 135650 17378 437 6619 183288 24797 460 5351
S5378 207252 29432 341 19159 326840 48360 435 11823
S9234 641670 101362 919 49479 857174 137712 923 42692


