Multiobjective VLSI Cell Placement Using
Distributed Simulated Evolution Algorithm

Sadiq M. Sait Mustafa I. Al Ali Mustafa Zaidi

King Fahd University of Petroleum & Minerals
Computer Engineering Department
Dhahran 31261, Saudi Arabia
E-mail: {sadig,mustafa,alizaili@ccse.kfupm.edu.sa

Abstract—Simulated Evolution (SimE) is a sound stochastic ~ The pseudo-code of SImE is similar to that given in Fig-
approximation algorithm based on the principles of adaptation. yre 1 [1]. Although the illustration depicts the slave process
It properly engineered it is possible for SImE to reach near- y, pe giscussed later, if the entire set of rows is allocated to

optimal solutions in lesser time then Simulated Annealing [1], [2]. inal then th fi f the algorithm is th
Nevertheless, depending on the size of the problem, it may have @ Single processor, then the execution of the aigorithm 1S the

large run-time requirements. One practical approach to speed Same as that of the serial SimE.
up the execution of SimE algorithm is to parallelize it. This is For large test cases, SImE has large runtime requirements.
all the more true for multi-objective cell placement, where the The reason is that, like other stochastic iterative algorithms,
need to optimize conflicting objectives (interconnect wirelength, SImE is blind. It has to be told when to stop. Depending on
power dissipation, and timing performance) adds another level of . .' . P P . g
difficulty [3]. In this paper a distributed parallel SimE algorithm ~ Which stopping criteria are used, as well as the size of the
is presented for multiobjective VLS| standard cell placement. problem, SimE may consume hours of CPU time before it
Fuzzy logic is used to integrate the costs of these objectives. Thestops. The most practical approach to speed up the execution
algorithm presented is based on random distribution of rows of SimE algorithm is to parallelize it. Unlike Simulated
to individual processors in order to partition the problem and = Annealing [4], [5] Genetic Algorithms [6] and Tabu Search [7]
distribute computationally intensive tasks, while also efficiently S . .
traversing the complex search space. A series of experiments aretN€ parallelization of SimE has not been the subject of much
performed on ISCAS-85/89 benchmarks to compare speedup with research. Kling and Banerjee suggested three ways of speeding
serial implementation and other earlier proposals. Discussion up the SimE algorithm [2], [8].
on comparison with parallel implementations of other iterative A parallelization strategy for VLSI cell placement for a
heuristics is included. . I .
single objective (wirelength) was attempted on a network of
workstations [2], where each station is assigned a number of
_ _ . _ . rows of the placement problem, in a pre-determined order.
Simulated Evolution algorithm (SimE) is a general searcthe stations executes one iteration of the SimE algorithm on
strategy for solving a variety of combinatorial optimizationhe cells of the rows assigned to it. In each iteration, the
problems [2]. It operates on a single solution, termed @ws are redistributed among the processors in a predetermined
population. Each population consists of elements. In case gfder [2].
the placement problem, these elements are cells to be moveq, this paper we are addressing the problem of parallelizing
The algorithm has one main loop consisting of three basigmE to solve the multiobjective VLSI standard cell placement
steps, Evaluation, Selection and Allocation. _ by using a cluster of low cost PCs. The goal is to achieve a
In the Evaluationstep, goodnessof each element is mea-pjacement quality very near or equal to that achieved by serial

sured as a single number between ‘0" and “1', which is &f\gorithm, but with run times that decrease linearly (or super-
indicator of how near the element is from its optimal locationinearlyy with increasing number of processors.

Then comesSelection which is the process of selecting |4 the next section we present the details of our NP-
elements which are unfit (badly placed) in the current solutioRard, multiobjective, VLSI cell placement problem. Problem
An individual having high goodness measure still has a Nosymylation and models for estimating the costs for the various
zero probability of beingselected It is this element of non- gpjectives to be optimized are presented. In Section Il the
determinism that gives SimE the capability of escaping locglstriputed algorithm is detailed. Experimental setup, results
minima. The last stepAllocation has the most impact on gptained on ISCAS benchmark circuits, and other observations

the quality of solution. Its main function is to mutate thgye given in Section IV, followed by Conclusion in Section V.
population by altering the location of selected cells.

The above three steps are executed in sequence until no no- |,
ticeable improvement to the population goodness is observed
after a number of iterations, or a fixed number of iterations In this section, we formulate our multiobjective fuzzy cost
are completed. function used in the optimization process.

I. INTRODUCTION

. MuLTIOBJECTIVE FuzzY COSTFUNCTION

Algorithm SlaveProcess(ursS, ®;)
Notation
(* B is the bias value. *)
(* CurS is the current solution. *)
(* @, are the rows assigned to slave*)
(* m; is modulei in ®,. *)
(* g: is the goodness af;. *)
Begin
Receive PlacemenfAnd._ Indices
Evaluation:
ForEach m; € ®, evaluatey;;
Selection:
ForEach m; € &, DO
Begin
If Random > Min(g; + B, 1)
Then
Begin

S =5 U m;;, Removem; from &,

End
End
Sort the elements of S
Allocation:
ForEach m; € S Do
Begin
Allocate(m;, ®5)

(* Allocate m; in local partial solution rowsb;. *)

End
SendPartialPlacemenRows
End. (*Slave_Process*)

Fig. 1. Structure of the Distributed Simulated Evolution Algorithm.

Algorithm ParallelSimulatedEvolution
ReadUserInput Parameters
ReadInputFiles

Begin
Construct Initial - Placement
Repeat
Generate RandonRow-Indices

ParFor
Slave Proces$CurS, @)
(* Broadcast Cur Placement And Row-Indices. *)
EndParFor
ParFor
ReceivePartial PlacemenRows
EndParFor
ConstructCompleteSolution
CalculateCost
Until (Stopping Criteria is Satisfied)
Return BesiSolution.
End. (*ParalleLSimulatedEvolution*)

Fig. 2. Outline of Overall Parallel Algorithm.

three objectives in the form of a single quantity. We use fuzzy
logic to integrate these multiple, possibly conflicting objectives
into a scalar cost function. Fuzzy logic allows us to describe
the objectives in terms of linguistic variables. Then, fuzzy rules
are used to find the overall cost of a placement solution. In
this work, we have used following fuzzy rule:

IF a solution hasSMALL wirelengthAND LOW power
consumptionAND SHORT delayTHEN it is an GOOD

The objectives considered in our problem include: optgolution.

mizing power consumption, improving timing performance The above rule is translated &md-like OWA fuzzy operator
(delay), and reducing overall wirelength, while, considerinp0] and the membership(z) of a solutionz in fuzzy set
layout width as a constraint. A semi-formal description of the OOD solutionis obtained by:

placement problem can be found in [3]. The multiobjective :

cost function is similar to the one formulated in [9]. The first B min {p (@)} + (1= F) - %j;d,z s ()
objective, wirelength cost({ost.,;r.) IS estimated using an
approximate Steiner tree algorithm.

The power consumption cogt is computed for each net)
i. Assuming a a fix supply voltage and clock frequency, the 0; otherwise.
estimate can be obtained hy ~ C; - S;, (where S; is the
switching probability and”; the total capacitance, of né}.
This can be further improved t@ ~ [;-S; (since interconnect
capacitances are a function of the interconnect lengths, and
input capacitances of the gates are constant). The total esti
of the power dissipation reduces st ,ower = Y _;cps Pi =
ZieM(li ' SL)

The delay cost is taken as the delay along the long
path in a circuit. The delayl’, of a pathr consisting of
nets{vy, ve, ..., v }, Is expressed ag;; = Zf;ll(ODiJrlD,;) Il1. DISTRIBUTED SIMULATED EVOLUTION ALGORITHM

whereC'D; is the switching delay of the cell driving netand The parallelization of the SimE algorithm is carried out

ID; is the interconnect delay of net. The placement phasepy partitioning the workload among available processors. The
affects I D; becauseC'D; is technology dependent parametepaitioning is done according to rows. The workload for each

H ZZ?) = lf Wldth — wayg S - wavga

@

Herep;(z) for j = p, d, [, width are the membership values
in the fuzzy set4 OW power consumption, SHORT deland

ALL wirelengthrespectively3 is the constant in the range

gté]. The solution that results in maximum value jofz) is
reported as the best solution found by the search heuristic. The
membership functions for fuzzy sdt©W power consumption,
SHORT delayand SMALL wirelengthand the lower bounds
e1“81‘ different objectives can be found in [9].

and is independent of placemetostaciay = max{Tx}. slave in the cell placement problem is the computation of
The layout width is constrained not to exceed a certagime operations of Evaluation, Selection, and Allocation on
positive ratioa to the average row widthy . it's assigned rows [2].

Since we are optimizing three objectives simultaneously, weThe row allocation pattern that was proposed in [2] is made
need to have a cost function that represents the effect of @tl of two alternating sets of rows. In the even iterations, each

Runtime vs. no. of processors Speed-up of circuits (Random Strategy)
80
70 4
60

50 4

-8-51238
——s1494
—-s1488

Runtime (sec)
IN
o

Speedup

T T T T |
p=1 p=2 p=3 p=4 p=5 s1238 51494 51488
Number of Processors Circuits

a b

Fig. 3. (a) The decrease in runtime to reach a pre-defined fitness objective with increasing number of processors; (b) Speedup versus number of machines

slave gets a slice ol%} rows, (wherem is the number of RedHat Linux ver 7.3 connected with a fast Ethernet switch.
slaves, andX is the total number of rows in the placement)SCAS-89 circuits are used as performance benchmarks for
while in the odd iterations thg!" slave gets the set of rowsevaluating the parallel SimE placement techniques. These
i, i+ m, 7+ 2m, and so on. It has been shown that witltircuits are of various sizes in terms of number of cells and
the above fixed pattern of assigning rows to slaves in alterngtaths, and thus offer a variety of test cases.
steps, each cell can move to any position on the grid in at mostrable | shows the amount of time taken to reach a predefined
two steps [2]. The consequence of row partitioning howevéitness objective with increasing number of processors for both
is that the each processors has only a partial view of ttiee proposed random row allocation strategy, and the fixed
placement. This hinders free cell movement, making it morew allocation strategy. For the proposed strategy, as can be
difficult for cells to reach their optimal locations. Results fronseen, there is a constant decrease in runtime for all circuits.
implementing this strategy on our multiobjective optimizatioBetter trends are observed for medium to large circuits, than
problem revealed that even when given a large amount of tinfie; smaller ones, as can be seen in Figure 3(a). Speedup is
the best solution obtained was poorer than one achieved by #iso illustrated in the bar-chart given in Figure 3(b). Due to
serial implementation. space restrictions, and scaling factor limitations, not all results
Though the lack of a global placement view will alway$ave been included in the same figure for sake of clarity.
exist in case of a distributed algorithm, the effects of restric- The fitness values achieved with the proposed row allocation
tive cell movement can be alleviated by using a better rosre consistently higher in all test cases when compared to
allocation pattern. Use of a pattern that facilitates a varietiye fixed row allocation scheme, as shown by @l Fixed
of combination among the rows sounds intuitively better. Thisolumn in Table I, the fixed row allocation never equals 100%
lead us to experiment with a random row allocation. of the solution quality obtained by the proposed scheme.
The pseudo code of the parallel simulated evolution Further, the run times are far better, and the speedup is
illustrated in Figures 1 and 2. As can be seen, one of tkaper linear in most cases. This can be attributed to modified
processors (the master) is in-charge of running SimE onwerking space of the selection and allocation operators on
particular partition as well as performing the following taskeach slave, as in each iteration different sets and combination
periodically at the end of each iteration: (1) receive thef rows are addressed. This has resulted in even more reduced
partial placements from all other processors and combine thémes to obtain desired solution quality than with workload
into a new solution and evaluate its fithess, (2) partition thgartitioning alone.
new solution to obtain a new row allocation, and finally, (3)
distribute the resulting sub-populations among the processdts. Comparison With Other Iterative Heuristics

The number of rows randomly assigned depends on the size ofhe runtimes and solution quality was also compared with
the placement and the number of processors. This is repeaeske obtained from parallelizing simulated annealing [4],
for all iterations until the termination condition is met. genetic algorithms (a distributed Search Space para”el strat-
egy) [6], and tabu search [7]. For GAs, the time for completion
to obtain solutions of a certain pre-specified quality were
The parallel SImE strategies mentioned were implementegorbitantly high. And in some cases, for the given run-time,
in C/C++ using MPICH Message Passing Interface impl@cceptable solutions could not be obtained. For example, for
mentation ver 1.2.4. for communication between nodes. Thee S1494, the serial GA implementation took 1883 seconds,
experimental environment used consists of a dedicated clustad when the parallel version was executed on 7 processors
of 8 Pentium IV 2 GHz PCs with 256 MB RAM, runningthe best time was 418 seconds (with 8% inferior quality than

IV. RESULTS ANDDISCUSSION

TABLE |
TABLE DEPICTING THE RUN TIMES FOR A SPECIFIED FITNESSOR SERIAL, AND 2, 3, 4,AND 5 PROCESSORSFOR BOTH RANDOM AND FIXED ROW
ALLOCATION STRATEGIES. UH INDICATES UNREASONABLY HIGH TIMES.

Circuit | # of Random Row Distribution Qual Fixed Row Distribution
Name | Cells [N,=1 | N,=2 | Np=3 | Np=4 | Np,=5| Fixed | Np,=2 | Np,=3 | Np,=4 | N,=5
s641 433 UH 4.99 4.97 3.99 3.87 | 719.7% | 9.14 1.08 0.76 0.55
s1238 | 540 16.5 9.24 9.29 6.12 3.14 | 958% | 17.83 | 847 | 11.30 | 5.71
s1494 | 661 67 174 6.15 4.88 5.89 | 82.3% | 2.77 1.85 1.76 4.34
s1488 | 667 | 60.23 24.6 7.78 3.72 3.02 | 96.6% | 22.0 4.89 5.1 16
s3330 | 1961 UH 678.02 | 115 108.5 | 49.14 | 33.8% | 316 215 4.6 3.4
s5378 | 2993 UH 1620 | 338.2 | 286.6 | 178.6 | 46.8% | UH UH 1243 | 95.0

that obatined by SimE). This work can be extended along several lines. One would
Since cost computation of new generated solutions is vepg to investigate suitable parameters for the SimE algorithm
expensive in our problem, TS was parallelized by partitionirifpat will enable better quality and run-times. At the moment,
and distributing the candidate list (moves) to various slavebe same parameters that have been set for serial execution are
While better quality was obtained in some cases at the cosied. Another approach is to relieve computational resources
of high computation time, for the same quality the run-timguring execution when the quality ceases to improve. This can
requirements for TS were over three times more than thHae achieved by modifying the stopping criteria. If the quality
required by parallel SimE. For example, for s1494, the tin@pes not improve for the lagtiterations ork processors, then
taken by serial TS was 268 seconds, and when parallel TS wag number of processors can be reducekltd, and this can
run on 6 processors, the runtime was 57 Seconds, (compatedtinue until all processors are relieved. The effects of this
to 5 Seconds by SimE) with slightly better quality, and T$&xperiment will be, that while execution continues to improve
took over 15 Seconds to obtain solutions of same quality #e obtained best solution, the distribution of increased number
SimE. A similar trend was seen for all circuits. of rows on reduced number of processors will enable exploring

For simulated annealing, the asynchronous multiple-Markelifferent regions of the search space in the same run, and will
chain parallelization strategy was chosen [4]. Like TS, Paralleppefully result in better quality with reduced resources. Our
SA was also able to achieve slightly better quality solutioriBitial experiments on this idea have been encouraging.
th_an SimE, given eno_ugh time. However, for a fixed quality, ACKNOWLEDGMENT
SimE was seen to be increasingly faster than SA as processors . . .
were increased. For instance, for s1494, with 2 processors SAT he authors thank King Fahd inver§|ty of Petroleum &
took 86 seconds to achieve the desired quality, while Sinlgnerals (KFUPM), Dhahran, Saudi Arabia, for support under
took only 17 seconds. With 5 processors, SA required g3olect Code COE/CELLPLACE/263.
seconds on average, while SimE needed only 6. Similar trends REFERENCES

are seen for r_nOSt C|rcu_|ts.]] o [1] Sadiq M. Sait and Habib Youssef.lterative Computer Algorithms
For appreciable quality solutions, SimE has exhibited dra- with Applications in Engineering: Solving Combinatorial Optimization
matic speedups with increase in number of processors, even Problems IEEE Computer Society Press, California, December 1999.

. - 2] Ralph M. Kling and Prithviraj Banerjee. ESP: A new standard cell
when compared to other, more established heuristics. The 'Ie' placement package using simulated evolutioRroceedings of 24th

sults obtained suggest that in scenarios where placement qual- Design Automation Conferencpages 6066, 1987.

|ty CO”S'dera‘“ons are Overndden by des|gn t|me Constra”']t&,] Sadlq M. Sait anq Habib YOUSSEf VLS'PhySICﬁl DeS|gn Automation:
Theory and PracticeWorld Scientific Pubishey2001.

the proposed parallel SimE algorlthm should be favored. [4] John A. Chandy, Sungho Kim, Balkrishna Ramkumar, Steven Parkes,
and Prithviraj Banerjee. An evaluation of parallel simulated annealing
strategies with application to standard cell placemi&&E Transactions
on Computer-Aided Design of Integrated Circuits and Systd@898—
. . . e . 410, April 1997.

This paper presented the appllcatlon of a modified DIS[5] Robert Azencott, editor. Simulated Annealing Parallelization Tech-
tributed SimE algorithm to a multi-objective VLSI cell place- ~ niques John Wiley & Sons, 1992.

ment problem The algorlthm focused on dlst“butlng the WorRG] Erick Cant-Paz. DeS|gn|ng efficient master-slave parallel genetic algo-
rithms. Genetic Programming1998.

load among processors. Random allocation of work load I E. Taillard. Robust tabu search for the quadratic assignment problem.
each iteration resulted in better traversal of search for our Parallel Computing17:443-455, 1991.

complex multiobjective NP-hard design problem. [8] Prithviraj Bar)erjee. Parallel _Algorithms for VLSI Computer-Aided
L . . . Design Prentice Hall International, 1994.
The results showed a significant reduction in runtime fOTg] Sadiq M. Sait, Mahmood R. Minhas, and Junaid Asim Khan. Perfor-

all circuits, although the speedup was more obvious for larger mance and low-power driven VLSI standard cell placement using tabu

ones. This speedup trend was compared to other established i?;;gﬁspggceﬁg;”gg g;the 2002 Congress on Evolutionary Computation
iterative and evolutionary heurlst|c§ frqm “terf”‘ture’ and Wa$0] Ronald R. ’Yager. On ordered weighted averaging aggregation operators
shown to be more consistent with increasing number of in multicriteria decision makinglEEE Transaction on Systems, MAN,
processors. and Cybernetics18(1), January 1988.

V. FUTURE WORK, CONCLUSION& DISCUSSION

