Reconfigurable Multimedia Datapath for Low Cost Media Processors

Aamir A. Farooqui 1, Vojin G. Oklobdzija 2, Sadiq M. Sait
	1Synopsys(Inc.

Synopsys Systems & IP Group

700 Middlefield Road,

Mountain View CA 94043-4033

USA

(650) 584-5689

aamirf@synopsys.com
	2ACSEL

Electrical and Computer Engineering Department

University of California

Davis, CA 95616

USA

(510) 486-8171

vojin@ece.ucdavis.edu

	Department of Computer Engineering
King Fahd University of Petroleum & Minerals
Dhahran-31261,
Saudi Arabia

+966-3-860-6665

sadiq@ccse.kfupm.edu.sa

	

Abstract

Media processing involves complex signal processing algorithms that require high-speed integer and floating-point operations. Moreover, media signal processing with the wider and varying word lengths require reconfigurable architectures which can be reconfigured for a variety of data formats, and depending on algorithms and applications. This paper presents a new reconfigurable datapath organization for media signal processing supporting MPEG-1, MPEG-2, and MPEG-4 standards. A single datapath has been utilized for integer as well as floating-point operations, suitable for low cost consumer electronics media processors. The proposed datapath can support a maximum of 16 parallel single-instruction multiple data (SIMD) integer operations and 2 parallel SIMD floating-point operations. New instructions have been developed to speed up the execution of Matrix Multiplication, Discrete Cosine Transform (DCT), Inverse Discrete Cosine Transform (IDCT), Fast Fourier Transform, 3D-Graphics, and Synthetic & Natural Hybrid Video Coding (SNHC). These operations are implemented by re-using the hardware without significant increase in area and delay. The datapath has been modeled in Verilog and its VLSI design is implemented using 0.25u CMOS Technology library employing Synopsys synthesis tools. All operations are single-cycle running at 200 MHz.

Key Words:

MPEG

VLSI

Computer Arithmetic
Multiplication
 IDCT Datapath

1. Introduction

Low cost and low power consumer electronics embedded media processors need a simple and area efficient datapath that can support MPEG standards and Synthetic & Natural Hybrid video Coding (SNHC, or 3D graphics support) [
] [
] [
] [
] [
]. The goal of this research is to develop a reconfigurable datapath that can support integer as well as floating-point (FP\\0 operations for low cost, consumer electronics media processors. This paper presents the design of a reconfigurable datapath organization and special SIMD integer and (FP) floating point instructions to support MPEG-1, 2, 4, SNHC and 3D graphics. The datapath is reconfigurable, scalable, area efficient, and offers programmability for interactive use. The reconfigurability and area reduction is achieved by the efficient re-use of same hardware and reducing redundancy instead of using redundant hardware as done in [
] [
]. The datapath can assist in the efficient and flexible coding and representation of both natural (pixel-based) as well as synthetic (computer generated) data (SNHC) by integrating FP operation support with integer operations. In order to support multiple data types with variable word lengths and formats, special techniques are developed to reconfigure the multipliers, adders, and to perform condition resolution.
The remainder of the paper is organized as follows. In Section 2 an overview of the proposed datapath is presented. In Section 3 integer instruction execution is described. Results and comparisons are presented in Section 4.

2. Overview of the Datapath

In this Section, we present the organization of the designed datapath. The organization of the designed datapath is as follows. It consists of two pipelined stages, and supports operations on both 128- and 64-bit signed unsigned integers and single precision floating-point numbers. The block diagram of the datapath is depicted in Fig. 1.
The first pipeline stage comprises four 16x32 partitioned multipliers (blocks 1, 2, 3, and 4), two 64-bit partitioned comparators, three 12-bit adders for FP exponent calculation, and 4x4 Sum of Absolute difference (SAD) instruction. The second pipeline stage contains two 64-bit partitioned shifters, adders, and circuit for normalization and rounding.
The datapath instructions are divided into groups: Groupt-1 consists of Add/Subtract, Average, Shift, Logical and Permutation operations, Group-2 consists of Multiply, Sum, Sum of Absolute difference, Pack and UNPACK, and finally Group-3 includes Compare, Min, Max, Absolute value, and Absolute difference instructions. All instructions are of SIMD type and have a single cycle latency and throughput except the “Multiply, FP Multiply, FP Add, and SAD" which have a latency of two cycles and single cycle throughput. In the following sections we discuss the implementation of some of these instructions for the proposed datapath. (What is SAD?)
The section is too brief… could it be a subsection or a part of the previous/next section?
3. Instruction Execution

In this section the instruction execution on the proposed datapath is presented. (How does it differ with instruction execution in other processors, and why is it more suitable for multimedia applications?)
Fig. 2
 illustrates the macro-level implementation of the two cycle datapath, containing four 16x32 multipliers, 3x2 compressors, and two 64-bit adder-subtractors.

[image: image1.wmf]MUX

Pipeline Register

Input Registers

64-Bit

Partitioned

Comparator

(B)

MUL

16x32

(2)

8-Bit

Exponent

Add/Sub

MUX

3-2 Compressor

MUX

Pipeline Register

Input Registers

64-Bit

Partitioned

Comparator

(B)

MUL

16x32

(3)

4-2 Compressor & MUX

8-Bit

Exponent

Add/Sub

8-Bit

Exponent

Sub

MUX

Shifter

4-2 Compressor

64-Bit Partitioned Adder

Normalizer

Round

12-Bit Adder

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

2

2

2

1

1

1

1

2

2

2

2

2

64-Bit Partitioned Adder

Normalizer

Round

1

1

2

Shifter

1

1

2

12

3

5

20

2

4

3

7

3

2

22

5

6

20

MUL

16x32

(4)

MUL

16x32

(1)

4-2 Compressor & MUX

MUX

Fig. 1. Block diagram of the proposed Datapath.

3.1. Add/Sub Instructions

The Add/Sub instructions are executed in the second pipeline stage of the datapath using the 64-bit partitioned adders. The partition of the 64-bit adders (what is partitioned here, the adder or the data…? How can signals partition the hardware?) is performed according to the partition control signals as shown in Table‑2 (Table 2 is referred to before Table 1). Since two 64-bit adders are required for multipliers (you mean for multiplication?), by re-using these adders we can support two 64-bit operations in parallel. Table‑1 shows the operation of these instructions on input operands A and B; the result is produced in (Registers?) C and D. In a 64-bit register Rx, where x = 0…n, A, B, C, and D can be a byte, half-word, word, or double word packed as 8-bytes, 4-half-words, 2-words, and a double-word respectively.

[image: image2.wmf]Carry

Sum

x

A

2

x

B

2

A

3

B

3

+/-

E

1

D

Clk

Clk

Carry

Sum

x

A

0

x

B

0

A

1

B

1

E

0

C

Clk

Clk

+/-

Fig. 2. Macro-level implementation of the datapath.

The ADD and SUB operations are performed as normal Addition and Subtraction (with and without saturation). The parallel average of two numbers is a very common and useful function in image and video processing (see Fig. 3-a). Only few high performance ISAs [xv] support this operation. This combined operation involves an addition and a right shift of one bit (divide by two). In the proposed datapath, AVG2 operation is implemented using the 64-bit partitioned adder; performing normal addition and finally shifting the result one bit right. The datapath shifts in the carry out bit as the most significant bit of the result, so it has the added advantage that no overflow can occur.

Table‑1. Instructions supported by the ALU (A, B, are the inputs, and C, D are the outputs).

	Instruction
	Operation
	Result

	ADD
	A + B
	C

	ADS(U)
	A + B
	C or SAT(max)

	ADS(S)
	A + B
	C or SAT(min) or SAT(max)

	SUB
	A-B
	C

	SUBS(U)
	A-B
	C

	SUBS(S)
	A-B
	C or SAT(min) or SAT(max)

	AVG2(U)
	A+B/2
	C/2

	AVG2(S)
	A+B/2
	C/2

Table‑2. Partition of the ALU, using Partition control signals.

	Part1Part0
	ALU partition

	00
	Byte

	01
	Half_word

	10
	Word

	11
	Double_word

3.2. Multiply Instructions

The multiply instructions and their macro operations are shown in Table‑3. These instructions are executed using 32x16 multiplier blocks of the datapath. The partition of the multipliers is performed according to the partition control signals as shown in Table‑2 (11 is used for 24-bit operation). The multiplier hardware is configured for signed and unsigned operation using the sign control bit. When 'Sign' bit is '1' signed multiplication is performed and when it is '0' unsigned multiplication is performed. This group of instructions requires two-cycle latency with a single-cycle throughput. Following we explain the execution of multiply and sum of products instructions.

[image: image3.wmf]O1

O2

O3

O4

O5

O6

O7

O8

O1+O5

2

O2+O6

2

O3+O7

2

O4+O8

2

64-bit

Input 1

64-bit

Input 2

64-bit

Output 2

(a

Fig. 3. Parallel averaging operation.

Multiply. In multiply operation, the two input operands are multiplied in the first cycle producing Sum and carry vectors, and in the second cycle Sum and carry vectors are finally added using the 64-bit partitioned adder to produce the final result as shown in Fig. 4. Since the result of multiplication is twice the width of the input operands, the result of simple multiplication is produced in C and D (C contains the lower half of the result and D contains the upper half of the multiplication???). The only difference in MUL (U) and MUL(S), is that MUL(U) is the unsigned multiplication, while MUL(S) is the signed multiplication.

Table‑3. Multiply operations supported by the proposed datapath.

	Description
	Inst.
	Operation

	Mult. with full resol. (S/U)
	MUL
	C = A*B

	Mult. with accumulate (S/U)
	MULA
	C = A*B + C'

	Mult. with deduct (S / U)
	MULD
	C = A*B - C'

	Multiply upper half result with round. (S / U)
	MULH
	C = Ah*Bh

	Floating point Multiply
	FP MUL
	(M0 x M1 , E0 + E1)

	3D-Floating point sum of two products
	3D-FSMUL
	(M3 x M2 , E3 + E2) +

(M0 x M1 , E0 + E1)

	Sum of 2 Integer prod. (S/ U)
	SUMP
	A1*B1 + A0*B0

	Sum of 2 products with accumulate (S / U)
	SUMPA
	A1*B1 + A0*B0 + C'

	Sum of 2 products with deduct (S / U)
	SUMPD
	A1*B1 + A0*B0 - C'

	Sum of 4 Integer prod. (S/ U)
	SUM4P
	A3*B3+A2*B2+A1*B1+ A0*B0

	Sum of Absolute difference
	SAD
	(| A - B |

	Sum of eight operands
	SUM8
	(A

	Pack (S/ U) numbers
	PK
	

	Unpack (S/ U) numbers
	UPK
	

SUM4P. Sum of two products is supported by most of the high performance media processors, but at present no processor exists that supports Sum of Four products. This operation performs the addition of four products and it is equivalent to four multiply and three additions as shown below:

C = A0xB0 + A1xB1 + A2xB2 + A3xB3
Matrix multiplication is heavily used in IDCT, FFT, and other media signal processing algorithms. We have found that this operation (SUM4P) dramatically increases (2 to 1) the execution of matrix multiplication by performing seven operations in a single cycle. Moreover, by using this operation, high precision processing is done because the rounding error is reduced as compared to two sum of products operation, in which two rounded results are added to get the addition of four products. While in this case full precision addition of the four products is performed and then rounding is performed.

The proposed datapath performs the addition of four products (SUM4P instruction) in two cycles with single cycle throughput. This operation is supported only for half-word operands. The instruction execution at macro level is shown in Fig. 5. This instruction requires four multiplications A3xB3, A2xB2, A1xB1, and A0xB0 these multiplications are performed in the first cycle using the MUL 32x16 blocks. The summation of two products (A3xB3 + A2xB2, and A1xB1+ A0xB0) is performed in the first cycle (Fig. 5) using the 4x2 compressor after the multipliers. Then, the summation of four 16x16 products is performed in the second cycle using the second 4x2 compressor. The sum and carry vectors produced by the summations are finally added using the 64-bit partitioned adder to produce the addition (A0xB0 + A1xB1 + A2xB2 + A3xB3) as shown in Fig. 5. In order to produce the result of the same bit width as the input the result of the addition is rounded and only the upper half of the result is stored in the output. As one can see from Fig. 5, Sum of four products operation requires the same datapath and components as required in Sum of two products for word operands, hence this instruction is implemented without any extra hardware cost and delay.

[image: image4.wmf]B

A

x

Carry

Sum

+

C

D

Carry

Sum

+

C

D

x

A

0

x

B

0

A

1

B

1

a)

b)

Fig. 4. Two cycle multiply operation a) 8x8 or 16x16, and b) 24x24 or 32x32.

[image: image5.wmf]Carry

Sum

x

A

0

x

B

0

A

1

B

1

Carry

Sum

x

A

2

x

B

2

A

3

B

3

+

C

D

Fig. 5. Sum of four products. (needs explanation, diff between sigma and + in the last stage?)
4. Performance Estimation

The datapath performance is estimated for IDCT, Image reconstruction, and 3D Geometric Transformations using hand written assembly code. In this performance analysis it is assumed that the data is already available in the registers (loaded by the main processor or load store unit). Cache hit rate is assumed to be 100%, and instruction issue rate is one instruction/cycle. Add (ADD), Subtract (SUB), Average (AVG), Average of four operands (AVG4) and Permute (PERM) instructions operate on 128-bit data, while multiply related instructions operate on 64-bit data, Butterfly instruction perform two operations on two 64-bit operands and produce two 64-bit results. (Any tools used, any plots, any comparison with other architectures for the same data or same multimedia operations?)
The datapath requires, a total of 192 cycles to perform an 8x8 (2D) IDCT matrix-vector implementation of IDCT, while [v], [
], [
], and [iv] requires 512, 448, 560, 500 respectively. This gives a performance gain of 2.33 over the current existing architectures. The main contribution to this performance gain is the new Sum of Four Products (SUM4P) instruction. Similarly, a total of (92 + 16 =) 108 cycles are required to perform 8x8 IDCT using Lee's Algorithm [
] for fast 2D IDCT. While [
] [11 optimized], [
], and [
] require 704, 504, 450, and 520 instructions respectively, giving it a performance gain of more than four times over existing architectures. The main contributions to this performance gain are the Butterfly, and 128-bit Add-Sub instructions, which constitute nearly 40% of Fast IDCT computation.

The datapath requires only 9 instructions/cycles to implement 3-D geometric transformation, while [v], [
], and [
] require 16, 16, and 13 instructions respectively (Basis for saying this, an example or clarification will help). This is more than a 1.4 times increase in performance. This gain is due to the new FP Sum of Products (3D-FSMPY) instruction, which can perform two FP multiplications in parallel, thereby giving a performance gain of nearly 1.44 over the current existing architectures.

5. Conclusions

This paper presents an overview of a programmable datapath to support MPEG-1, MPEG-2, and MPEG-4 standard Synthetic & Natural Hybrid video Coding (SNHC). The datapath can support a maximum of 16 parallel SIMD integer operations and 2 parallel SIMD floating-point operations. The datapath is reconfigurable, scalable, and area efficient and offers programmability for interactive use. In this datapath, the reconfigurability is achieved by the efficient re-use of same hardware. The datapath can assist in the efficient and flexible coding and representation of both natural (pixel-based) as well as synthetic (computer generated) data (SNHC) by integrating floating-point operation support with integer operations. New instructions have been developed to speed up the execution of Matrix Multiplication, Discrete Cosine Transform (DCT), Inverse Discrete Cosine Transform (IDCT), Fast Fourier Transform, 3D-Graphics and Synthetic & Natural Hybrid Video Coding (SNHC). The datapath organization and development of algorithms, combined with circuit techniques yield performance improvement in media signal processing. (My concern in this paper is that the design aspect is not clearly justified. Why certain decisions were made, and what are the tradeoffs (if any) have to be highlighted. How things are done in other processors must be presented in the text and compared… and all decisions must be justified).
References:

[�] Nadehara, K., Kuroda, I., Daito, M., and Nakayama, T., "Low-power multimedia RISC", IEEE Micro Mag., vol. 15, pp. 20-29, Dec. 1995.

[�] Makino, H.; Suzuki, H.; Morinaka, H.; Nakase, Y.; Mashiko, K.,"A 286 MHz 64-bit floating point multiplier with enhanced CG operation", Symposium on VLSI Circuits, Digest of Technical Papers., 1995 , Page(s): 15 -16.

[�] Suzuki, K.; et. Al., “A 2000-MOPS embedded RISC processor with a Rambus DRAM controller”, IEEE Journal of Solid-State Circuits, Volume: 34 7, July 1999, Page(s): 1010 –1021.

[�] Mohri, A.; et. al., , “A real-time digital VCR encode/decode and MPEG-2 decode LSI implemented on a dual-issue RISC processor”, IEEE Journal of Solid-State Circuits, July 1999 , Page(s): 992 –1000 Volume: 34 7.

[�] Fujishima, H.; Takemoto, Y.; Onoye, T.; Shirakawa, I., “An architecture of a matrix-vector multiplier dedicated to video decoding and three-dimensional computer graphics”, IEEE Transactions on CAS for Video Technology, Volume: 9 2, March 1999, Page(s): 306 -314.

[�] Schmookler, M.S., et. al., “A low-power, high-speed implementation of a PowerPC microprocessor vector extension”, Proceedings 14th IEEE Symp. on Comp. Arith., 1999 , Page(s): 12 –19.

[�] Suzuki, K.; et. Al., “A 2000-MOPS embedded RISC processor with a Rambus DRAM controller”, IEEE Journal of Solid-State Circuits, Volume: 34 7 , July 1999 , Page(s): 1010 –1021.

[�] Bum-Sik, K., Yun-Ho, C., Lee-Sup, K., "IRAM Design for Multimedia Applications", ISCA 1997, Page(s) 1-9.

[�] M. Yoshida, H. Ohtomo, and I. Kuroda, “A new generation 16-bit general purpose programmable DSP and its video rate application”, in Proc. IEEE VLSI Signal Processing VI, Oct. 1993, pp. 93–101.

[�] C. Loefer, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D DCT algorithms with 11 multiplications”, in Proc. Int. Conf. Acoustics, Speech, and Signal Processing 1989 (ICASSP’89), pp. 988–991.

[�] Kuroda, I., “Processor architecture driven algorithm optimization for fast 2D-DCT”, IEEE Signal Processing Society [Workshop on] VLSI Signal Processing, VIII, 1995, Page(s): 481 –490.

[�] Holmann, E.; Yamada, A.; Yoshida, T.; Uramoto, S., “Real-time MPEG-2 software decoding with a dual-issue RISC processor”, [Workshop on] VLSI Signal Processing, IX, 1996, Page(s): 105 –114.

[�] Peleg, A. and Weiser, U.,"MMX technology extension to the Intel architecture", IEEE Micro Mag., vol. 16, pp. 42-50, Aug. 1996.

[�] Radhika Thekkath, et. al.; “An Architecture Extension for Efficient Geometry Processing”, Hot Chips 1999.

[�] Oberman, S., et. al.; “AMD 3Dnow! Technology: Architecture and Implementations”, IEEE Micro, Page(s): 37-48, April 1999.

_1033934996.vsd
O1�

O2�

O3�

O4�

O5�

O6�

O7�

O8�

O1+O52�

O3+O72�

O4+O82�

64-bit Input 1�

O2+O62�

64-bit Input 2�

64-bit Output 2�

(a�

_1067437725.vsd

_997977197.vsd
Carry�

Sum�

x�

A0�

x�

B0�

A1�

B1�

Carry�

Sum�

+�

C�

D�

x�

A2�

x�

B2�

A3�

B3�

_1022831197.vsd
C�

Carry�

Sum�

x�

A2�

x�

B2�

A3�

B3�

+/-�

D�

E1�

E0�

Clk�

Clk�

Clk�

Clk�

+/-�

Carry�

Sum�

x�

A0�

x�

B0�

A1�

B1�

_995545993.vsd
x�

A�

B�

Carry�

Sum�

A1�

+�

C�

D�

B1�

x�

B0�

A0�

x�

Carry�

Sum�

+�

C�

D�

a)�

b)�

