CONTENTS

� TOC \o "1-3" \h \z �CONTENTS	� PAGEREF _Toc455236590 \h ��1�

Introduction	� PAGEREF _Toc455236591 \h ��2�

Features of HTTP/1.1	� PAGEREF _Toc455236592 \h ��3�

Elements of the HTTP 1.1 Protocol:	� PAGEREF _Toc455236593 \h ��5�

1.	The Service	� PAGEREF _Toc455236594 \h ��5�

2.	The Assumptions	� PAGEREF _Toc455236595 \h ��6�

3.	The Vocabulary	� PAGEREF _Toc455236596 \h ��7�

4.	The Encoding (Format)	� PAGEREF _Toc455236597 \h ��8�

5.	The Procedure Rules	� PAGEREF _Toc455236598 \h ��12�

HTTP Streaming	� PAGEREF _Toc455236599 \h ��14�

Microsoft NetShow	� PAGEREF _Toc455236600 \h ��15�

Real Player	� PAGEREF _Toc455236601 \h ��16�

A Proposed HTTP Streaming Mechanism	� PAGEREF _Toc455236602 \h ��19�

��
Introduction

HTTP is one of the most widely used protocols over the Internet. HTTP has been in use by the World-Wide Web global information initiative since 1990. The first version of HTTP, referred to as HTTP/0.9, was a simple protocol for raw data transfer across the Internet. HTTP/1.0 improved the protocol by allowing messages to be in the format of MIME-like (Multipurpose Internet Mail Extensions) messages, containing metainformation about the data transferred and modifiers on the request/response semantics. However, HTTP/1.0 has some limitations. HTTP/1.1 was developed to overcome those limitations.

In the following section I will shed the light on the major advantages of HTTP/1.1 over HTTP/1.0. Then, I will define the five elements of the HTTP/1.1 protocol.

In the last section, I will describe two available multimedia-streaming solutions. Finally, a new HTTP streaming mechanism is proposed.

�
Features of HTTP/1.1

The focus of the work behind the HTTP/1.1 specification has been to alleviate the most prominent problems in HTTP/1.0 which has led to serious bottlenecks on the Internet as the Web has continues to grow. The result has been the specification of a protocol which will make the Web faster and more efficient. The three main features of interest are as follows:

1) Support for Virtual Hosting

The rapid growth of the Web has produced a frenzy for domain names like mycompany.com, often as important for corporate recognition as a logo. Domain names may be infinite in number, but the IP addresses they translate into are not, and IP address depletion has become a serious concern. The HTTP/1.1 Host header field allows Web service providers to assign multiple domain names to a single IP address in such a way that a Web server can distinguish the home page for mycompany.com from yourcompany.com without using more than one IP address.

2) Requests for information handled more efficiently

HTTP uses the Internet TCP/IP protocol stack. All information you read or write on the Web is sent accross the Net in TCP/IP packets. A TCP connection is really like a responsible courier getting around in a big city (the Net) - it makes sure the data you send and receive reaches the final destination realiably while avoiding traffic jams and allowing other people to get through as well. The funny thing is that TCP drives an old car - it takes time for it to get warm and as soon as it is done, it cools off again very quickly.

To function efficiently, HTTP must take advantage of TCP/IP's strengths and avoid its weaknesses, something that HTTP/1.0 does not do very well. Whenever a client accesses a document, an image, a sound bite etc. HTTP/1.0 creates a new TCP connection and as soon as it is done, it is immediately dismissed and never reused. As a result, TCP rarely has time to get warm leaving lots of "cold cars" with little data creating a lot of traffic jams.

HTTP/1.1 fixes this in two ways: First it allows the client to reuse the same TCP connection (persistent connections) again and again when talking to the same server and second, it makes sure that the courier carries as much information as possible (pipelining) so that it doesn't have to run back and forth as much. That is, not only does HTTP/1.1 use less TCP connections, it also makes sure that they are better used. The result is less traffoc jam and faster delivery.

3) Efficient Caching

Documents you read on the Web are often read by thousands and even millions of other people at the same time. This of course keeps servers very busy. Imagine that instead of having everybody talking to the same server people could get the same information much closer to where they are. This is what caching allows us to do.

Whereas HTTP/1.0 merely enabled caching, it did not specify any well-defined rules describing how a cache should interact with clients or with origin servers. The lack of control resulted in that most content providers and users did not trust the HTTP/1.0 caching model and instead tried to short-circuit it. The result was that many busy parts of the Internet were bogged down even more. A major part of the HTTP/1.1 specification is devoted to provide a well-defined caching model which allows both servers and clients to control the level of cachability and the conditions under which the cache should update its contents.

4)Digest Authentication

Another important part of HTTP/1.1 is the Digest Authentication Specification. Digest authentication allows users to authenticate themselves to a server without sending their passworks in clear text which can be sniffed by anybody listening on the network. In HTTP/1.0, passwords are sent without being encrypted using so-called basic authentication. Although not providing real security, Digest Authentication is an important step in a making the Web a more secure place to live.

�
Elements of the HTTP 1.1 Protocol:

The Service

 The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World-Wide Web global information initiative since 1990. The first version of HTTP, referred to as HTTP/0.9, was a simple protocol for raw data transfer across the Internet. HTTP/1.0, as defined by RFC 1945, improved the protocol by allowing messages to be in the format of MIME-like (Multipurpose Internet Mail Extensions) messages, containing metainformation about the data transferred and modifiers on the request/response semantics. However, HTTP/1.0 does not sufficiently take into consideration the effects of hierarchical proxies, caching, the need for persistent connections, and virtual hosts. In addition, the proliferation of incompletely-implemented applications calling themselves "HTTP/1.0" has necessitated a protocol version change in order for two communicating applications to determine each other's true capabilities.

 This specification defines the protocol referred to as "HTTP/1.1". This protocol includes more stringent requirements than HTTP/1.0 in order to ensure reliable implementation of its features.

 Practical information systems require more functionality than simple retrieval, including search, front-end update, and annotation. HTTP allows an open-ended set of methods that indicate the purpose of a request. It builds on the discipline of reference provided by the Uniform Resource Identifier (URI), as a location (URL) or name (URN), for indicating the resource to which a method is to be applied. Messages are passed in a format similar to that used by Internet mail as defined by the Multipurpose Internet Mail Extensions (MIME).

 HTTP is also used as a generic protocol for communication between user agents and proxies/gateways to other Internet systems, including those supported by the SMTP, NNTP, FTP, Gopher, and WAIS protocols. In this way, HTTP allows basic hypermedia access to resources available from diverse applications.

�

The Assumptions

 HTTP communication usually takes place over TCP/IP connections. The default port is TCP 80, but other ports can be used. This does not preclude HTTP from being implemented on top of any other protocol on the Internet, or on other networks. HTTP only presumes a reliable transport; any protocol that provides such guarantees can be used.

�

The Vocabulary

1- HTTP Message

 HTTP messages consist of requests from client to server and responses from server to client.

 HTTP-message = Request | Response ; HTTP/1.1 messages

Request and Response messages use the generic message format of RFC 822.

2- Request

 A request message from a client to a server includes, within the first line of that message, the method to be applied to the resource, the identifier of the resource, and the protocol version in use.

3- Response

 After receiving and interpreting a request message, a server responds with an HTTP response message.

4- Method

The Method token indicates the method to be performed on the resource identified by the Request-URI. The method is case-sensitive.

 Method = "OPTIONS" ;

 | "GET" ;

 | "HEAD" ;

 | "POST" ;

 | "PUT" ;

 | "DELETE" ;

 | "TRACE" ;

 | extension-method

 extension-method = token

�

The Encoding (Format)

 URIs in HTTP can be represented in absolute form or relative to some known base URI, depending upon the context of their use. The two forms are differentiated by the fact that absolute URIs always begin with a scheme name followed by a colon.

 URI = (absoluteURI | relativeURI) ["#" fragment]

 absoluteURI = scheme ":" *(uchar | reserved)

 relativeURI = net_path | abs_path | rel_path

 net_path = "//" net_loc [abs_path]

 abs_path = "/" rel_path

 rel_path = [path] [";" params] ["?" query]

 path = fsegment *("/" segment)

 fsegment = 1*pchar

 segment = *pchar

 params = param *(";" param)

 param = *(pchar | "/")

 scheme = 1*(ALPHA | DIGIT | "+" | "-" | ".")

 net_loc = *(pchar | ";" | "?")

 query = *(uchar | reserved)

 fragment = *(uchar | reserved)

 pchar = uchar | ":" | "@" | "&" | "=" | "+"

 uchar = unreserved | escape

 unreserved = ALPHA | DIGIT | safe | extra | national

 escape = "%" HEX HEX

 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+"

 extra = "!" | "*" | "'" | "(" | ")" | ","

 safe = "$" | "-" | "_" | "."

 unsafe = CTL | SP | <"> | "#" | "%" | "<" | ">"

 national = <any OCTET excluding ALPHA, DIGIT,

 reserved, extra, safe, and unsafe>

For definitive information on URL syntax and semantics, see RFC 1738 and RFC 1808. The BNF above includes national characters not allowed in valid URLs as specified by RFC 1738, since HTTP servers are not restricted in the set of unreserved characters allowed to represent the rel_path part of addresses, and HTTP proxies may receive requests for URIs not defined by RFC 1738.

 The HTTP protocol does not place any a priori limit on the length of a URI. Servers MUST be able to handle the URI of any resource they serve, and SHOULD be able to handle URIs of unbounded length if they provide GET-based forms that could generate such URIs. A server SHOULD return 414 (Request-URI Too Long) status if a URI is longer than the server can handle.

Note: Servers should be cautious about depending on URI lengths above 255 bytes, because some older client or proxy implementations may not properly support these lengths.

HTTP URL

The "http" scheme is used to locate network resources via the HTTP protocol. This section defines the scheme-specific syntax and semantics for http URLs.

 http_URL = "http:" "//" host [":" port] [abs_path]

 host = <A legal Internet host domain name

 or IP address (in dotted-decimal form),

 as defined by Section 2.1 of RFC 1123>

 port = *DIGIT

 If the port is empty or not given, port 80 is assumed. The semantics are that the identified resource is located at the server listening for TCP connections on that port of that host, and the Request-URI for the resource is abs_path. The use of IP addresses in URL's SHOULD be avoided whenever possible (see RFC 1900). If the abs_path is not present in the URL, it MUST be given as "/" when used as a Request-URI for a resource.

Character Sets

 HTTP uses the same definition of the term "character set" as that described for MIME:

 The term "character set" is used in this document to refer to a method used with one or more tables to convert a sequence of octets into a sequence of characters. Note that unconditional conversion in the other direction is not required, in that not all characters may be available in a given character set and a character set may provide more than one sequence of octets to represent a particular character. This definition is intended to allow various kinds of character encodings, from simple single-table mappings such as US-ASCII to complex table switching methods such as those that use ISO 2022's techniques. However, the definition associated with a MIME character set name MUST fully specify the mapping to be performed from octets to characters. In particular, use of external profiling information to determine the exact mapping is not permitted.

 Note: This use of the term "character set" is more commonly referred to as a "character encoding." However, since HTTP and MIME share the same registry, it is important that the terminology also be shared.

 HTTP character sets are identified by case-insensitive tokens. The complete set of tokens is defined by the IANA Character Set registry.

 charset = token

 Although HTTP allows an arbitrary token to be used as a charset value, any token that has a predefined value within the IANA Character Set registry MUST represent the character set defined by that registry. Applications SHOULD limit their use of character sets to those defined by the IANA registry.

Content Codings

 Content coding values indicate an encoding transformation that has been or can be applied to an entity. Content codings are primarily used to allow a document to be compressed or otherwise usefully transformed without losing the identity of its underlying media type and without loss of information. Frequently, the entity is stored in coded form, transmitted directly, and only decoded by the recipient.

 content-coding = token

 All content-coding values are case-insensitive. HTTP/1.1 uses content-coding values in the Accept-Encoding and Content-Encoding header fields. Although the value describes the content-coding, what is more important is that it indicates what decoding mechanism will be required to remove the encoding.

 The Internet Assigned Numbers Authority (IANA) acts as a registry for content-coding value tokens. Initially, the registry contains the following tokens:

 Gzip

 An encoding format produced by the file compression program "gzip" (GNU zip) as described in RFC 1952. This format is a Lempel-Ziv coding (LZ77) with a 32 bit CRC.

 Compress

 The encoding format produced by the common UNIX file compression program "compress". This format is an adaptive Lempel-Ziv-Welch coding (LZW).

Note: Use of program names for the identification of encoding formats is not desirable and should be discouraged for future encodings. Their use here is representative of historical practice, not good design. For compatibility with previous implementations of HTTP, applications should consider "x-gzip" and "x-compress" to be equivalent to "gzip" and "compress" respectively.

 Deflate

The "zlib" format defined in RFC 1950 in combination with the "deflate" compression mechanism described in RFC 1951.

 New content-coding value tokens should be registered; to allow interoperability between clients and servers, specifications of the content coding algorithms needed to implement a new value should be publicly available and adequate for independent implementation, and conform to the purpose of content coding defined in this section.

�

The Procedure Rules

 The HTTP protocol is a request/response protocol. A client sends a request to the server in the form of a request method, URI, and protocol version, followed by a MIME-like message containing request modifiers, client information, and possible body content over a connection with a server. The server responds with a status line, including the message's protocol version and a success or error code, followed by a MIME-like message containing server information, entity metainformation, and possible entity-body content. The relationship between HTTP and MIME is described in appendix.

 Most HTTP communication is initiated by a user agent and consists of a request to be applied to a resource on some origin server. In the simplest case, this may be accomplished via a single connection (v) between the user agent (UA) and the origin server (O).

 request chain ------------------------>

 UA -------------------v------------------- O

 <----------------------- response chain

 A more complicated situation occurs when one or more intermediaries are present in the request/response chain. There are three common forms of intermediary: proxy, gateway, and tunnel. A proxy is a forwarding agent, receiving requests for a URI in its absolute form, rewriting all or part of the message, and forwarding the reformatted request toward the server identified by the URI. A gateway is a receiving agent, acting as a layer above some other server(s) and, if necessary, translating the requests to the underlying server's protocol. A tunnel acts as a relay point between two connections without changing the messages; tunnels are used when the communication needs to pass through an intermediary (such as a firewall) even when the intermediary cannot understand the contents of the messages.

 request chain -------------------------------------->

 UA -----v----- A -----v----- B -----v----- C -----v----- O

 <------------------------------------- response chain

 The figure above shows three intermediaries (A, B, and C) between the user agent and origin server. A request or response message that travels the whole chain will pass through four separate connections. This distinction is important because some HTTP communication options may apply only to the connection with the nearest, non-tunnel neighbor, only to the end-points of the chain, or to all connections along the chain. Although the diagram is linear, each participant may be engaged in multiple, simultaneous communications. For example, B may be receiving requests from many clients other than A, and/or forwarding requests to servers other than C, at the same time that it is handling A's request.

 Any party to the communication, which is not acting as a tunnel, may employ an internal cache for handling requests. The effect of a cache is that the request/response chain is shortened if one of the participants along the chain has a cached response applicable to that request. The following illustrates the resulting chain if B has a cached copy of an earlier response from O (via C) for a request which has not been cached by UA or A.

 request chain ---------->

 UA -----v----- A -----v----- B - - - - - - C - - - - - - O

 <--------- response chain

 Not all responses are usefully cacheable, and some requests may contain modifiers which place special requirements on cache behavior.

 In fact, there are a wide variety of architectures and configurations of caches and proxies currently being experimented with or deployed across the World Wide Web; these systems include national hierarchies of proxy caches to save transoceanic bandwidth, systems that broadcast or multicast cache entries, organizations that distribute subsets of cached data via CD-ROM, and so on. HTTP systems are used in corporate intranets over high-bandwidth links, and for access via PDAs with low-power radio links and intermittent connectivity. The goal of HTTP/1.1 is to support the wide diversity of configurations already deployed while introducing protocol constructs that meet the needs of those who build web applications that require high reliability and, failing that, at least reliable indications of failure.

 HTTP communication usually takes place over TCP/IP connections. The default port is TCP 80, but other ports can be used. This does not preclude HTTP from being implemented on top of any other protocol on the Internet, or on other networks. HTTP only presumes a reliable transport; any protocol that provides such guarantees can be used; the mapping of the HTTP/1.1 request and response structures onto the transport data units of the protocol in question is outside the scope of this specification.

 In HTTP/1.0, most implementations used a new connection for each request/response exchange. In HTTP/1.1, a connection may be used for one or more request/response exchanges, although connections may be closed for a variety of reasons.

�
HTTP Streaming

The demand for multimedia streams over Internet has increased tremendously. Multimedia streams usually require very high bandwidth, which is not always available in Internet. Many companies had developed their own strategies and applications to stream multimedia. Among those companies are Microsoft and RealNetworks.

Microsoft solution based mainly on developing a special file format called Active Streaming Format “.asf” for streaming the multimedia files. The stream transfer here takes place over the normal HTTP protcol, which in turn uses TCP. It is will known that TCP is reliable, but slow. Hence, the performance of this streaming strategy is questionable.

RealNetworks is very famous in this field and its streaming multimedia server and application are widely used in the Internet. However, they uses a special protocol “RealAudio Client-Server Streaming” to accomplish that. The problem this protocol cannot be used everywhere, since there are restrictions and policies on some parts of the Internet.

We propose here a mechanism utilizing some features in the HTTP 1.1 protocol to stream multimedia videos and audio over HTTP. The following section describes the three streaming methods.

�
Microsoft NetShow

You can unicast “.asf” files using the HTTP protocol with NetShow to stream content through firewalls that don’t support MMS. Using HTTP streaming allows clients to receive streams across a network firewall; however, HTTP streaming does not perform as well as Microsoft Media Server “MMS” streaming, and you can not use certain features of the .asf file, such as jumping to markers.

Note All server software can run on a single computer; however, if you use unicast HTTP streaming, you must run your HTTP server on a separate computer.

By default, HTTP streaming is disabled. To enable HTTP streaming, you must edit the Windows NT system registry to change the setting for HTTP streaming and then stop and restart the NetShow unicast service. You must also add two MIME types for the .asf and .asx extensions on the HTTP server computer.

Caution Before editing the system registry, be sure to back up the registry. Incorrect changes or deletions made to the registry can damage the Windows operating system and prevent the system from running normally.

The foundation for all of the NetShow content-creation components is the Active Streaming Format. ASF is an open, standards-based file format that prepares multimedia content for streaming and adds error correction and other features necessary for streaming. ASF also enables the synchronization of different data types on a common timeline, enabling, for example, .jpg images, bitmaps, or .wav files to be synchronized with each other. Multimedia content must be converted to ASF before delivery over a network. ASF content can be hosted on a local hard disk, an HTTP server, or a specialized media server such as NetShow. This hosting flexibility gives extraordinary freedom to the content creator: the same content can be played locally from a compact disc or a hard disk, or played from a remote location hosted on an HTTP server or a specialized media server. ASF allows content and tool developers to work to a shared specification that supports the authoring, combining, archiving, annotating, and indexing of synchronized media objects, without regard to original media formats or underlying transports.

Multimedia content is stored in ASF as objects. Multimedia objects can include audio, video, still images, events, URLs, HTML pages, script commands, and executable programs. You can easily combine existing multimedia objects into a single ASF multimedia stream. ASF retains the form of each object’s media (including audio and video compression), as well as optional synchronization information. Therefore, when the file is played over a network, users see and hear the file exactly as intended.

ASF data objects are stored within .asf files as packets. Each packet is designed to be directly inserted “as is” into the data field of data communication transport protocols. These packets are streamed across a network at a specific bandwidth or bit rate, so users can use, or “play,” the multimedia data as it arrives. ASF supports a number of standard graphics; video, and audio file formats. You can easily convert other formats to a format that is supported by ASF.

ASF data can be tailored to satisfy a wide variety of differing network requirements. The data in each .asf file is optimized to stream at a distinct bit rate. You can specify ASF streaming bit rates from 14.4 Kbps to 6 Mbps. ASF content can thus be flexibly targeted for specific network environments with distinct capacity requirements.

For more information about ASF, see the Active Streaming Format white paper, available at http://microsoft.com/netshow/about/whtepprs/.

�
Real Player

Real Networks is one of the major companies working in the field of multimedia through Internet. The following article is authored by RealNetworks and is comparing streaming over http with its streaming technology:

“

Delivering time-based information�over the Internet:

HTTP versus RealAudio Client-Server Streaming

As audio-on-demand over the Internet nears ubiquity, a variety of technical approaches are coming to the fore. When RealNetworks Networks began developing RealAudio in early 1994, we spent a substantial amount of time investigating and prototyping a range of approaches before settling on a generalized Client-Server system. In our development process, we learned what would work and would not work under the real-world conditions of the net. The following summarizes what we learned.

The Problem

The Internet is a fantastically scaleable packet-switched network, but was not designed to handle isochronous (continuous time-based) information. As a result, to get a system such as RealAudio to work reliably and consistently in the real world, engineering design decisions need to be made very carefully.

Under the hood, the net has two basic ways it can send data -- reliably, and hopefully as fast as it can (the TCP protocol), or as fast as possible, but without guaranteed reliability (the UDP protocol). UDP does not "guarantee" packet delivery; instead it provides a stream of audio packets without significant delay, but at the cost of occasional lost packets. TCP is more reliable, but at the cost of what are on occasion substantial delays when the protocol "retransmits" information from the server to the client and waits for its receipt to be acknowledged. Neither method gives the user either guaranteed throughput rates or guaranteed minimum latency periods, although UDP is generally superior in both of these regards.

Time-based streams are often very long -- a 30 minute news program, for instance. Yet often users only want part of a program -- the part 15 minutes into the program when the sports reporter presents the latest scores. Information sharing protocols on the Internet such as FTP and HTTP are designed for one-way continuous transmission and have no concept of bi-directional communication between the client and the server that would allow the client to ask the server for only a particular portion of the file, say the 15th through 20th minutes.

Possible Solutions

There are a range of possible solutions to the problem of delivering time-based

information such as RealAudio over the net.

Web servers are one possible solution. They're already ubiquitous and commonly available. Web Servers use the HTTP protocol, which in turn sends information using TCP. Web browsers, particularly commercial-grade browsers such as Netscape, begin presenting some of the information to the user before it has all arrived, thereby shortening presentation delays.

Unfortunately, when web servers are used to send time-based data such as audio that gets rapidly "consumed" by the listener, the TCP "delay" problem can really bog things down. Even a 2 or 3 percent re-transmission rate can bring even a low bitrate audio data stream over a standard modem (say 8 kilobits/second over a 14.4 modem) to a grinding halt. This problem is less commonly observed over high bandwidth communication paths such as T1 lines, but for the content publisher that wants to make audio available to people gaining access to the net through standard phone lines and 14.4 or 28.8 modems, this issue is a significant problem.

A second problem with Web Servers is that, because the HTTP protocol is designed for one-way continuous transmission, it does not allow for a user friendly implementation of such desirable features as "fast forward," "rewind", and "seek" to a particular part of the program. Consumers are used to having these features as part of how they listen to recorded material via their VCRs and CD players, and users will reasonably expect the same features to work over the Internet.

A third problem with Web Servers is that they were designed to deliver large blocks of data to a client as quickly as possible but handle a small number of concurrent accesses. A large scale Web Server is often configured to support around 100 or fewer concurrent connections. This means that a high capacity, expensive server is need to deliver even 100 streams of audio.

An additional problem is that a Web Server approach is inefficient in using network bandwidth. A Web server would typically try to send the whole file as fast as possible -- whether it be a 10 second audio clip or a 2 hour program. However, since in the real world listeners generally listen to relatively short segments -- we have found that the average length per listen is about 4 minutes, even when the source material is an hour or longer -- this often results in wasted bandwidth and transmission time. There is a strong need to avoid this problem by controlling the delivery rate of time based media.

The RealAudio Solution

For the above reasons, RealNetworks found in its field tests in late 1994 and early 1995 that Web servers are not an appropriate vehicle for delivery of audio or other time-based media. As a result, we created the RealAudio protocol and the RealAudio client-server architecture. A key underlying technology was a new protocol for time-based media that supported bi-directional communication between clients and servers, which enables RealAudio users to pause, fast forward, rewind, and skip to particular tracks or particular

sections quickly and reliably.

While the RealAudio system and protocol support both the TCP and UDP protocols, we've found that in the vast majority of the cases the results are much better when the audio is delivered via UDP, which results in a continuous presentation a very high percentage of the time. To get around the problem of occasional packet loss, RealNetworks developed a sophisticated loss correction system that in essence minimizes the impact of any given lost packet and enables the client to "recreate" the missing pieces of the signal. This system works very well under normal lossless conditions, degrades gracefully when packet loss is in the 2-5% range, and even works acceptably when packet loss is as high as 8-10%.

From a user standpoint, access to RealAudio programs is typically via a standard Web link, albeit a magical one. The user clicks on these links and after a second or two of start-up they play, with no further delays. And because the RealAudio Server runs on nearly all of the platforms that popular Web servers run on, a RealAudio Server and a Web Server can be run as separate processes on the same physical hardware. Because the RealAudio Server is more efficient at sending time-based data than a Web server -- it just sends the information the user needs plus a little extra for buffering -- this configuration supports a higher level of overall usage than a Web server alone. And when it's time to scale up and add hardware, it's easier to scale up by moving the RealAudio server to a different physical machine without having to restructure and split the Web site. This scalability enables support of hundreds, thousands, and soon, even hundreds of thousands of simultaneous listeners.

Web servers are designed to deliver large blocks a data as quickly, by contrast the RealAudio Server was designed to deliver streaming data in a paced fashion. This is conservative of system resources and commodity level computers such as a standard Pentium 100 PC can easily deliver several hundred concurrent streams.

Consumers want access to live programming on the Internet. A Web Server based solution has no way of delivering the dynamic data that a live broadcast requires. This requires a client/server architecture, such as the RealAudio System, that is designed to send such a dynamic stream. The nature of live programs encourages a large audience and thus scalability of the system is a key aspect of any product that addresses this market.

The appropriateness and scalability of the technical underpinnings of the RealAudio approach have been proven out since its introduction. Hundreds of thousands of RealAudio users enjoy global access to live and on-demand RealAudio content that's deployed in hundreds of server sites around the globe.

�

HTTP vs RA Servers

Comparison of HTTP and RA delivery mechanisms for Streaming Data

�
�
Topic�
HTTP�
RA Client/Server�
�
Delivery Protocol�
HTTP over TCP�
RealAudio Protocol over UDP or TCP�
�
Number of Concurrent Users�
low�
high�
�
Scalability�
limited�
very high�
�
Streaming Control Strategy�
Buffer locally�
Client/Server Feedback�
�
Delivery Performance�
Sent at client bandwidth (burst)�
Sent at playback rate (paced)�
�
Excess Bandwidth Consumption�
High�
Low�
�
Packet loss Handling�
Resend (TCP) with time delay�
Loss Correction�
�
Effect of packet loss on streaming�
disruption�
no disruption�
�
Live Event Capability�
no�
yes, large scale�
�
Background Playback�
no�
yes�
�
Synchronized Multimedia�
no�
yes�
�
Server Resources per stream�
high�
low�
�

A Proposed HTTP Streaming Mechanism

The following sections of the HTTP 1.1 RFC “RFC 2068” show a potential for a new streaming mechanism:

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

10.1.2 Switching Protocols

 The server understands and is willing to comply with the client's request, via the Upgrade message header field (section 14.41), for a change in the application protocol being used on this connection. The server will switch protocols to those defined by the response's Upgrade header field immediately after the empty line which terminates the 101 response.

 The protocol should only be switched when it is advantageous to do so. For example, switching to a newer version of HTTP is advantageous over older versions, and switching to a real-time, synchronous protocol may be advantageous when delivering resources that use such features.

14.41 Upgrade

 The Upgrade general-header allows the client to specify what additional communication protocols it supports and would like to use if the server finds it appropriate to switch protocols. The server MUST use the Upgrade header field within a 101 (Switching Protocols) response to indicate which protocol(s) are being switched.

 Upgrade = "Upgrade" ":" 1#product

 For example,

 Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

 The Upgrade header field is intended to provide a simple mechanism for transition from HTTP/1.1 to some other, incompatible protocol. It does so by allowing the client to advertise its desire to use another protocol, such as a later version of HTTP with a higher major version number, even though the current request has been made using HTTP/1.1.

 This eases the difficult transition between incompatible protocols by allowing the client to initiate a request in the more commonly supported protocol while indicating to the server that it would like to use a "better" protocol if available (where "better" is determined by the server, possibly according to the nature of the method and/or resource being requested).

 The Upgrade header field only applies to switching application-layer protocols upon the existing transport-layer connection. Upgrade cannot be used to insist on a protocol change; its acceptance and use by the server is optional. The capabilities and nature of the application-layer communication after the protocol change is entirely dependent upon the new protocol chosen, although the first action after changing the protocol MUST be a response to the initial HTTP request containing the Upgrade header field.

 The Upgrade header field only applies to the immediate connection. Therefore, the upgrade keyword MUST be supplied within a Connection header field (section 14.10) whenever Upgrade is present in an HTTP/1.1 message.

 The Upgrade header field cannot be used to indicate a switch to a protocol on a different connection. For that purpose, it is more appropriate to use a 301, 302, 303, or 305 redirection response.

 This specification only defines the protocol name "HTTP" for use by the family of Hypertext Transfer Protocols, as defined by the HTTP version rules of section 3.1 and future updates to this specification. Any token can be used as a protocol name; however, it will only be useful if both the client and server associate the name with the same protocol.

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TCP is a reliable protocol, but it is slower than UDP, which is not reliable. Http is usually implemented over TCP, but it can be implemented over any reliable transport protocol.

The new idea for streaming over HTTP depends on implementing HTTP over UDP since it is fast and can provide the required bandwidth for audio and video streams. However, UDP is not reliable and HTTP assumes a reliable transport protocol to be underneath. Hence, we have two choices:

Modify HTTP so it can create the required reliability.

Develop a new protocol that resides between UDP and HTTP. This protocol will give HTTP a virtually reliable data transfer. Virtually here means that this protocol will show the HTTP that it is running over a reliable protocol, while it is really the case. This protocol should be smart enough to know when HTTP needs reliable data transfer and when it does not. Audio and video streams are a type of data, which does not really require very high reliable communications; they can afford some dropped or lost packets. Let us call this protocol Virtual TCP or VTCP.

I think that the first choice is a little complex and may a rewrite for the whole HTTP protocol, which will lead into a new HTTP version.

The second choice seems to be feasible. That is, if we utilize the protocol switching capability in HTTP 1.1 and combine it with the idea of HTTP over VTCP. To achieve that, the following mechanism can be used:

The normal HTTP 1.1 server will be running over TCP and listing to port 80, for example.

When HTTP 1.1 client needs a video or audio steam, he should request an upgrade or protocol switching to the second HTTP protocol HTTP over VTCP. Let us call the HTTP over VTCP the VHTTP protocol.

NOTE: VHTTP should be operate on top of TCP in addition to VTCP, because it is required in the upgrade request that the protocol switch should be within the application layer and using the same TCP connection. This means the VHTTP should maintain the TCP connection. The idea of an application protocol using two transport protocols is not new in the TCP/IP suite, since DNS protocol is doing so.

The server accepts the upgrade to VHTTP.

Both server and client start communicating through VHTTP.

VHTTP will stream the required data over VTCP.

When the streamed data end, then another upgrade is issued to return back to the normal HTTP 1.1.

The following diagrams describe the above procedure.

�

�
�

IP

Network Interface

IP

Network Interface

Physical Net

UDP

TCP

UDP

TCP

VHTTP

HTTP

VHTTP

HTTP

Server

Client

Server

Client

URL request

Web Page Transferred

Video Stream request

Video stream display

 URL request

Web Page Found	

Upgrade Request Accepted

Start Sending Video stream

�

�

HTTP Connection Established

HTTP upgrade to VHTTP request

HTTP upgrade to VHTTP accept

TCP

TCP

TCP

TCP

UDP

Data Stream

Data Stream End

HTTP upgrade to VHTTP request

HTTP upgrade to VHTTP accept

TCP

TCP

