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(57) ABSTRACT 

A system and method for global routing that includes 
receiving nets that need to be routed and capacity con 
straints, ordering, using processing circuitry, the nets, rout 
ing, using the processing circuitry, the nets based on a maze 
routing with framing method, determining, using the pro 
cessing circuitry, whether the routing is congestion free, 
selecting, using the processing circuitry, a Subset of the nets 
based on a game theory method when the routing is not 
congestion free, applying a rip-up and re-route process on 
the Subset of the nets, and repeating the selecting and 
applying steps until the routing is congestion free. 

16 Claims, 14 Drawing Sheets 
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Input: T: Spanning trees of all nets, N: set of all nets, Parameters: CT1 g Z, TP e 
{Trie, False 

Cutput: PR = P Ro, PR, ..., PRN-1}: mixed strategies of all nets 
i: for each net is N do 
2: Cf(n) = x - over flou (e;) 
3: fl( ;) - Y - full(e) 
4: crea (r. :)= area bounded by the pins (pi) of n. 
5 ller(s)= Number of iterations since r was ripped-up and re-routed last time. 
6, end for 

7: if , oft(n) > 0 then 
8: Normalize values in of, fl. and ter. 

for each net is g N do 
ly if T P = 0, oft(n) > 0, 

() otherwise 
end for 

12; Norilalize gy values 
13: else 
14: for i=() to W - 1 do 
5: gy () see O 
16; end for 
17 end if 
18; for i=() to N - do 
19: PR = {ty (), 1 - py: (i)} 
20: edfor 
2 : return (PR) 

FIG. 8 
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Input: C(V, E), ti, t: , two spanning trees for a netti, NEC e Zh 
(Output: Y true, false 

Y = false 
; A = Y t overflow (c.) tw: : - 
B - Y - full(e) ... : 

: C = |t; 
l = Y - overflow (e.) 
E - X e. e full(e) 

; F = it; 
8: rN E= a random integer between - NEC and () 
9: if D : A or (D - A) < r yig then 
(): Y = true 

1 

akaw 

w 
y 

11; else 
12: if c = A and E -< B then 
3. Y - true 

14: else 
15: if I) == A and B == Earld F < C then 
1. Y c tre 

end if 
18; endif 
19; end if 
20: return Y 

FIG. I.0 



U.S. Patent Jan. 31, 2017 Sheet 11 of 14 US 9,558,313 B1 

Input: i: current iteration. Overflow values of last CT2 iterations: {t of (T), to f(T: 1, 
..., to f(T-CT2) } 
i = the 

2: RR1 - RF1, CI 1 - CT1, BC XSIZE - BOX SI Z.E., 3 = 3; 
3: TP O 
4; else 
5: RRI = RR1 -- RR1 
6. if R RI - RF21 then 
ty. RR 1 - H.R.1 
8: eclif 

9: if to f(T) = to f(T-1) then 
CT - CT -- CTL 
IP so 

12; endi 

13, if CT1 - CT1 then 
s: CT1 - CT1, 
S: if 

16: if to f(T,) < 1, then 
7: BOX SIZE = BOX SIZE 

18; else 

19: if lof (T) = to f(T 1) = ... = lef (T. gig) then 
C BOX SIZE - BOX SIZE - BOX SIZE 
2. if BOX SIZE - B (XSIZEf then 
22. BOX SIZE = BOX SIZE 
3. entif 

2 : fi - it -- it 
25 if 3 > 3 then 

: (3 = 3. 
27; end if 
8: end if 
as: entif 
30: edif 

FIG. I. I 
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METHOD AND SYSTEM FOR PROVIDING A 
GAME THEORY BASED GLOBAL ROUTING 

BACKGROUND 

1. Technical Field 
The present invention relates to global routing in printed 

circuit board (PCB) routing and in physical design of 
integrated VLSI circuits. 

2. Description of Related Art 
Global routing is a critical step in the physical design of 

integrated circuits and is a NP-hard (Non-deterministic 
Polynomial-time hard) problem as described in T. Langauer, 
Combinational algorithms for integrated circuit and layout, 
John Wiley & Sons, New York, 1990. Global routing lies 
between placement and detailed-routing steps in the physical 
design of VLSI (Very Large Scale Integration) chips. In 
global routing, nets of wires are mapped to a coarse grid of 
global routing cells (or gcells). Each gcell has a fixed 
horizontal and vertical capacity. The objective of global 
routing is to assign the nets while satisfying capacity con 
straints (horizontal and vertical) of the gcells as described in 
H. Y. Chen and Y. W. Chang, Electronic Design Automation: 
Synthesis, Verification, and Testing, Elsevier Morgan Kauf 
mann, pp. 687-749 (2009). Each net is routed by generating 
a spanning tree for it that covers all of its pins. A solution of 
the global routing problem that does not violate the capacity 
constraints of the gcells is a valid solution. Routability 
driven (RD) placement is a recent development that uses 
global routing to guide the placement process. The RD 
placement is described in X. He. T. Huang, L. Xiao, H. Tian, 
and E. F. Y. Yong, Ripple: A robust and effective routabiltiy 
driven placer, IEEE Trans. Computer Aided Design of 
Integrated Circuits and Systems, 32, (10), pp. 1546-1556, 
(2013) and M. Pan, and C. Chu, FastRoute: A Step to 
Integrate Global Routing into Placement, IEEE/ACM Inter 
national Conference on Computer-Aided design, San Jose, 
Calif., November 2006, pp. 464–471. The RD placement 
process needs to execute global routing several times. There 
fore, global routers should have good solution quality and 
runtime. 
Among the methods of routing, maze routing is the only 

method that guarantees to find a path between any two pins 
if there exists one. Therefore, many global routers use maze 
routing exclusively, or use other methods for initial routing 
and use maze routing for difficult-to-route nets as described 
in K. Suzuki, Y. Matsunaga, M. Tachibana, and T. Ohtsuki, 
A hardware maze router with application to interactive 
rip-up and reroute, IEEE Trans. Computer-Aided Design, 
CAD, 5(4), 155-157 and M. Pan, U. Xu, X. Zhang, and C. 
Chu, FastRoute: An efficient and high-quality global router, 
VLSI design, Hindawi Publishing Corporation, (2012). 
However, maze routing is slow and memory intensive. Maze 
routing is generally used with a rip-up and re-route (R&R) 
process to produce valid solutions. The main task of the 
R&R process is to selectively rip-up and re-route a small 
fraction of nets in order to eliminate congestion. Maze 
routing with framing (MRF) is a modification of maze 
routing in which a net determines its spanning tree within a 
bounding box of the grid. The MRF method is described in 
S. Sait and H. Youssef VLSI Physical Design and Automa 
tion: Theory and Practice, World Scientific Publishers, 243 
244, 1999. The MRF method is very fast as compared to 
traditional maze routing and the size of the bounding box 
can be increased or decreased. Lee algorithm is a popular 
method of maze routing and has a breath-first behavior. 
Recent research showed that Lee algorithm is highly suitable 
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2 
for implementation using parallel computing platforms such 
as graphics processor units (GPUs) because of its simple 
data-structure and breath-first behavior which can be easily 
implemented on parallel platforms. Lee algorithm is 
described in in S. Sait and H. Youssef, VLSI Physical Design 
and Automation: Theory and Practice, World Scientific 
Publishers, 239-241, 1999. 
GT based algorithms have been used in routing of com 

munication networks, multi-agent optimization problem and 
wireless networking as described in F. N. Pavlidou and G. 
Koltisdas, Game theory for routing modeling in communi 
cation networks, A Survey, Journal of Communications and 
Networks, 10 (3) (2008), 268-286, A. Salhi and O. Toreyen, 
Computational Intelligence in Optimization, Springer-Ver 
lag Berlin, Heidelberg, (2010), pp. 211-232, and L. A. 
DaSilva, H. Bogucka and A. MacKenzie, Game theory in 
wireless networks, IEEE Communications Magazine, 49 (8), 
(2011), 110-111. 
The good performance of GT in Solving congestion prob 

lems in computers and communication networks motivates 
its use in solving the global routing problem of VLSI 
physical design. 
The foregoing “Background description is for the pur 

pose of generally presenting the context of the disclosure. 
Work of the inventor, to the extent it is described in this 
background section, as well as aspects of the description 
which may not otherwise qualify as prior art at the time of 
filing, are neither expressly or impliedly admitted as prior art 
against the present invention. The foregoing paragraphs 
have been provided by way of general introduction, and are 
not intended to limit the scope of the following claims. The 
described embodiments, together with further advantages, 
will be best understood by reference to the following 
detailed description taken in conjunction with the accom 
panying drawings. 

SUMMARY 

The present disclosure relates to a global routing method 
that receives nets that need to be routed and capacity 
constraints, orders, using processing circuitry, the nets, 
routes, using the processing circuitry, the nets based on a 
maze routing with framing method, determines, using the 
processing circuitry, whether the routing is congestion free, 
selects, using the processing circuitry, a Subset of the nets 
based on a game theory method when the routing is not 
congestion free, applies, using the processing circuitry, a 
rip-up and re-route process on the Subset of the nets, and 
repeats the selecting and applying steps until the routing is 
congestion free. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete appreciation of the disclosure and many 
of the attendant advantages thereof will be readily obtained 
as the same becomes better understood by reference to the 
following detailed description when considered in connec 
tion with the accompanying drawings, wherein: 

FIG. 1 is a schematic representation of a global routing 
system according to one example; 

FIG. 2 is a grid graph of the 2D global routing according 
to one example: 

FIG.3 is a block diagram representation of a global router 
according to one example; 

FIG. 4 is a flow chart showing the operation of the global 
router according to one example: 
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FIG. 5 is a schematic that shows an exemplary bounding 
region of the Maze routing with framing (MRF) method for 
a net according to one example; 

FIG. 6 is a flow chart which shows the routing of the net 
using the MRF method according to one example: 

FIG. 7 is a flow chart that shows the Game theory 
(GT)-based rip-up and re-route (R&R) process according to 
one example; 

FIG. 8 is an outline of an algorithm for determining mixed 
strategies of the nets according to one example; 

FIG. 9 is a flow chart that shows an R&R operation 
according to one example; 

FIG. 10 is an outline of a function for comparing two trees 
according to one example; 

FIG. 11 is an outline of an algorithm for updating the 
parameter values: 

FIG. 12 is an exemplary block diagram of a computer 
according to one example; 

FIG. 13 is an exemplary block diagram of a data process 
ing system according to one example; and 

FIG. 14 is an exemplary block diagram of a central 
processing unit according to one example. 

DETAILED DESCRIPTION 

Referring now to the drawings, wherein like reference 
numerals designate identical or corresponding parts 
throughout several views, the following description relates 
to an apparatus and associated methodology for global 
routing based on game theory. 
The method described herein provides a global router that 

uses maze routing with framing (MRF) method. The method 
also contains a rip-up and re-route (R&R) process whose 
role is to eliminate congestion. The R&R is modeled using 
game theory (GT). In the game theory model, nets (also 
called “interconnections”) act as players that want to opti 
mize their spanning trees in terms of congestion and wire 
length. GT is a useful technique of decision making and 
multi-agent optimization. 

FIG. 1 is a schematic representation of a global routing 
system. A user 104 may connect to a computer 100 to 
perform global routing. The user 104 may use the graphical 
user interface to input data and constraints for the global 
routing problem. The computer 100 includes a CPU 1200 
and a memory 1202 as shown in FIG. 12. The computer 100 
may also receive data from host applications. The user 104 
may use a flash drive to load data to the computer 100. 

In one embodiment, the global routing problem is mod 
eled using a 2D grid-graph G. The 2D grid-graph has a set 
of vertices V and a set of edges E. Each vertex VeV 
corresponds to a gcell, and each edge eleE corresponds to a 
boundary between adjacent vertices V, and V. Each edge e. 
has a capacity c, which is the maximum number of nets or 
wires that can pass through it. The actual number of nets that 
are passing through an edge e is called its demand and is 
represented as u, FIG. 2 shows the grid graph according to 
an example. The problem also contains a set of nets N, where 
each net neN is composed of a set P, of pins (with each pin 
corresponding to a vertex V.). Each net neN is routed by 
finding a treet, that covers all its pins. Each tree teE a set 
of edges without any cycles or repetition of edges to E. The 
set T stores the spanning trees of all nets. 
The objective of global routing is to route all the nets and 

to make Sure that capacity constraints of the edges are not 
violated, i.e. usc, VeeE. The edge e, is congested or have 
an overflow when up-c. The CPU 1200 may compare the 
demand of the edge and the capacity of the edge to deter 
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4 
mine whether the edge is overflowed. The edges whose 
demand is equal to their capacity are fully utilized. The fully 
utilized and congested edges are considered important in 
eliminating congestion. The congested edges contribute 
directly to the total overflow. The fully utilized edges 
although do not contribute directly to the congestion, but 
they can contribute to blocking routing of other nets. The 
amount of overflow associated with the edge e, i.e. over 
flow (e) can be expressed as: 

(1) utii - Cii if ulii > Cii 
overflow(ei) = O otherwise 

To determine whether the edge is fully utilized, i.e., full (e) 
can be expressed using the following equation: 

(2) 1 if iiii Ci 
full(e) ={ y - up 

0 otherwise 

In one embodiment, the overflow and full of each edge may 
be stored in the memory 1202. 
The total overflow (tof) is equal to the total overflow of all 

edges and can be calculated by the CPU 1200 using: 

tof (T) = X overflow(e) (3) 
eie E 

The global router described herein executes three main 
tasks: (a) ordering of nets, (b) initial routing of nets, and (c) 
R&R process to eliminate congestion from the solution of 
initial routing. 

FIG. 3 is a block diagram representation of the global 
router according to one example. The tasks are distributed 
among several components or modules. Each of the modules 
described herein may be implemented in circuitry that is 
programmable (e.g. microprocessor-based circuits) or dedi 
cated circuits such as application specific integrated circuits 
(ASICS) or field programmable gate arrays (FPGAS). The 
global router has three main modules: (i) initial routing 
module 300, (ii) MRF module 320, and (iii) R&R process 
module 306. These modules work together to accomplish 
global routing. The initial routing module 300 includes a 
nets ordering module 302 and a nets routing module 304. 
The nets ordering module 302 and the nets routing module 
304 executes the tasks of ordering and routing the nets 
respectively. The initial routing module 300 uses the MRF 
module 320 to route the nets using the MRF method. The 
R&R process module includes a nets selection module 308, 
a game theory module 314, a R&R operation module 310, 
and a parameter values update 312. 
The nets selection module 308 uses the game theory 

module 314 to determine the nets. The game theory module 
314 applies a GT based heuristic to determine the nets that 
should be ripped-up and re-routed in-order to reduce the 
congestion of the solution. The nets selected for the R&R 
operation are the set SS. The R&R operation module 310 
obtains the set SS from the nets selection module 308. The 
parameter values update module 312 performs self-adjust 
ment of parameters values based on the feedback of previous 
iterations in-order to reduce the convergence time of the 
R&R process. In one embodiment, the adjustment of the 
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parameters values may be based on past routing data stored 
in the memory 1202. The game theory module 314 may 
include a mixed strategy module 316 and a set SS prepara 
tion module 318. 

FIG. 4 is a flow chart showing the operation of a global 
router. At step S400, the CPU 1200 loads the 2D grid graph 
(G(V,E)), set of all nets (N) and a plurality of parameters. 
The 2D grid graph, the set of all nets, and the plurality of 
parameters may be obtained from the user 104. In one 
embodiment, the 2D grid graph, the set of all nets, and the 
plurality of parameters may be obtained from other appli 
cations such as a VLSI design application. A first parameter 
NUM THREADS sets the number of concurrent threads in 
the initial routing of nets. At step S402, the CPU 1200 sorts 
the nets and performs an initial routing of the nets. The nets 
are sorted in ascending order of the area bounded by their 
pins. In this ordering, the nets whose pins are closer to each 
other are routed first. The rationale behind this ordering is 
that the nets whose pins are far from each other usually have 
more number of possible trees (i.e. alternate choices) avail 
able to them as compared to the nets whose pins are closer 
to each other. The nets that have more alternate choices 
available are less likely to be blocked from the routing of the 
other nets. The routing of nets can be done sequentially or 
concurrently. In one embodiment, the CPU 1200 may be a 
multicore processor and multi-threading (MT) is possible. 
The routing of nets can be parallelized by using the follow 
ing steps: (i) dividing the sorted nets in N among No.N. 
.NvA. Reups. Subsets, (ii) creating concurrent 

threads trotr, Ditry rurers. Such that tr, routes the nets 
in N, (where i=0 to NUM THREADS), and (iii) executing 
the threads in parallel. The threads update the demand 
information of the edges after routing each net. The paral 
lelization causes some increase in the congestion of the 
initial routing phase but that can be compensated in the 
GT-based R&R process. The CPU 1200 routes a net by using 
the MRF method of routing. After the completion of the 
initial routing phase, the flow goes to step S404. At step 
S404, the CPU 1200 may check whether the solution is 
congestion free. In response to determining that the Solution 
is congestion free, the process ends. In response to deter 
mining that the Solution is not congestion free, the flow goes 
to step S406. At step S406, the GT based R&R process is 
executed. Step S406 is repeated until the solution is con 
gestion free. In one embodiment, the CPU 1200 may check 
whether the Solution is congestion free by determining the 
total overflow by applying equation (3). When the total 
overflow is equal to Zero, the CPU 1200 determines that the 
Solution is congestion free. 

FIG. 5 is a schematic that shows an exemplary bounding 
region of the MRF method for a net according to one 
example. FIG. 5 shows a bounding region of a net which has 
three pins (pop. p.) 500,502,504 respectively. The size of 
the bounding box can be increased or decreased using a 
second parameter BOX SIZE. The routing region of each 
net is restricted to a rectangular region that covers its pins 
and some surrounding cells. 

FIG. 6 shows the main steps in routing a net using the 
MRF method according to an example. The variable t, stores 
the spanning tree of net n. At step S600, the CPU 1200 loads 
the input which is a net and its set of pins. The spanning tree 
of n, is represented as t. This method generates a complete 
spanning tree of n. At step S602, the CPU 1200 finds a 
bounding box using all pins of n. At step S604, the CPU 
1200 randomly selects any pin as the starting vertex of the 
spanning tree. At step S606, the CPU 1200 checks whether 
the spanning tree covers all pins of the net. In response to 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
determining that the spanning tree does cover all pins of the 
net, the CPU 1200 outputs t, at step S612. In response to 
determining that the spanning tree does not cover all pins of 
the net, the flow goes to step S608. At step S608, the CPU 
1200 performs a filling process to discover a path to a pin 
which is currently not covered by t. At steps S608 and S610, 
the filling and retracing processes use the Lee's algorithm on 
a weighted grid. The weights of all vertices in t, are set to 
Zero. The weights of the remaining cells in the bounding box 
can be obtained as follows. For any cell VeV whose pre 
ceding cell in the filling process is V, and the edge between 
them is represented as e. The cost of V, can be calculated as 
follows: 

(4) 

where u, and c, represent the demand and capacity of the 
edge e, and the purpose of the exponential term is to avoid 
selection of paths through congested edges. When 
(u-(c-?3))<0, the role of congestion is very limited and the 
CPU 1200 finds minimum length paths. However, when 
(u-(c-?3)>0, then the role of congestion costs becomes 
significant and the paths are determined with respect to 
minimum length as well as minimum congestion. The value 
of the second parameter B is initially set by the user 104 but 
can be varied in the R&R process in order to build spanning 
trees that have minimum length and/or minimum conges 
tion. The filing process terminates when the CPU 1200 
determines that at least one of the following conditions is 
satisfied: (a) the weights are assigned to all cells in the 
bounding box, or (b) a pin of the net which is not yet selected 
in t, is found. At step S610, the CPU 1200 executes the 
retracing process and forms a branch to a currently uncov 
ered pin of the net from any one node (or cell) of t. 
GT is used to solve the problem of deciding which nets 

are selected to be ripped-up and re-routed in order to 
eliminate congestion. The selection of nets in the R&R 
process is modeled as a game in which nets act as players. 
The set N becomes the set of players of the game. Each net 
neN has two pure strategies S={Yes.No. The strategy Yes 
means that n, attempts to improve its spanning tree and 
strategy No means that n, should not attempt to improve its 
spanning tree. The players use mixed strategies to select 
their pure strategies. The mixed strategy of each player neN 
is represented as PR, (p. 1-p), where p is the probability 
of selecting the strategy Yes and 1-p is the probability of 
selecting the strategy No. The Nash equilibrium (NE) of the 
game is reached when the total overflow of the solution 
becomes Zero and at that point all nets want to Stick to their 
No strategy (pbecomes zero for all nets). The aim of the GT 
based method described herein is to eliminate congestion, 
however it has other advantages. The Nash equilibrium is 
described in E. N. Barron, Game Theory: An introduction, 
2" Edition, John Wiley & sons, 2013 and N. Nisan, T. 
Roughgarden, E. Tardos, V. Vazirani, Algorithmic Game 
Theory, Cambridge University Press, 2007. 

Each player wants to achieve two goals: (i) its spanning 
tree becomes congestion free, and (ii) its spanning tree 
should not be blocking the routing of any other net. In any 
iteration, the nets which are more likely to progress towards 
achieving their goals have higher values of mixed strategies 
and hence, are more likely to go through the R&R operation. 

FIG. 7 is a flow chart that shows the GT-based R&R. The 
R&R component executes the R&R process to eliminate 
congestion from the solution of initial routing. At step S700, 
the CPU 1200 updates the parameter values. In one embodi 
ment, the parameter values are updated using the parameter 
value update module 312. At step S702, the CPU 1200 



US 9,558,313 B1 
7 

determines the mixed strategies of the nets. In one embodi 
ment, the CPU 1200 may execute the algorithm shown and 
described in FIG. 8. At step S704, a selection set is deter 
mined using the set SS preparation module 318. At Step 
S706, the R&R process is executed using the R&R operation 
module 310. At step S708, the CPU 1200 calculates the total 
overflow. The CPU 1200 may apply equation (3) to deter 
mine the total overflow. Then, the CPU 1200 checks whether 
the total overflow is greater than Zero. In response to 
determining that the total overflow is greater than Zero, the 
flow goes to step S700. In response to determining that the 
total overflow is less than Zero, the process ends. 

FIG. 8 is an outline of an algorithm for determining mixed 
strategies of the nets according to one example. The input 
contains two parameters (third parameter and fourth param 
eter): CT1 and TP. The third parameter CT1 acts as the 
weight of the term related to the overflow of the spanning 
trees and the fourth parameter TP is used to select a method 
to calculate the value of p. A first method assigns higher 
values to the nets whose pins enclose a smaller area as 
compared to the other nets and p of the nets, which have no 
overflow, is zero. The benefit of the first method is that the 
nets that have congestion as well as require less time in 
re-routing are preferred for the R&R operation as compared 
to others. The second method assigns values based on the 
following: (i) the nets that have more overflow and fully 
used edges have a higher p value, (ii) the weight of the 
overflow value in p can be changed using the third param 
eter CT1, and (iii) the nets that have not been ripped-up and 
re-routed since many iterations have larger p-values. The p 
values of the nets that have neither congested edges nor fully 
used edges is Zero. The pseudo-code in FIG. 8 also shows 
that if none of the nets has any overflow then p values of 
all nets becomes zero. When the value of the third parameter 
CT1>1, then the p-values rely more on the overflow of the 
edges as compared to other factors. When CT's 1, then p 
values rely equally on overflow and number of fully used 
edges. When CT1<<1, then p values rely more on the 
number of fully used edges. Next, the CPU 1200 prepares a 
set SS that contains the nets whose spanning tree should be 
rip-up and re-routed. In the selection of nets in SS, the p 
values of nets act as their probabilities to be selected to the 
SS by the CPU 1200. 
The input of the R&R operation module 310 is the set SS. 

Two types of R&R operations may be used: (i) R&R Type 
A, and (ii) R&R Type B. The Type A operation rips-up and 
re-routes one net at time, whereas, the Type B operation first 
rips-up two nets and then re-routes them. In both type of 
operations, the nets are ripped-up and re-routed completely. 
The R&R process is executed sequentially. The nets in SS 
are divided into two subsets SS and SS such that SS 
contains RR1% nets of SS and SS-SS-SS. Furthermore, 
the number of nets in SS should be even. The CPU 1200 
may check whether the number of nets in SS is even. In 
response to determining that the number of nets in SS is not 
even, one element is moved from SS to SS. The nets in 
SS go through the type A operation and the nets in SS go 
through the Type B operation. The global router described 
herein uses two types of R&R operations to reduce the 
convergence time based on the experiments conducted. 
The R&R process is executed as follows: A net n, is 

fetched from SS. The CPU 1200 checks whether neSS. In 
response to determining that neSS then type A operation is 
applied to it. When neSS, then the CPU 1200 fetches 
another net neSS from SS and Type B operation is applied 
to the nets n, and n. 
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8 
FIG. 9 is a flow chart that shows an R&R operation 

according to one example. The flowchart shows the main 
steps in both types of R&R operations. At step S900, the 
CPU 1200 copies the spanning tree(s) of the selected nets 
into temporary variables. At step S902, the CPU 1200 
deletes (rip-up) the existing spanning tree. At step S904, the 
CPU 1200 creates a new tree using MRF method. At step 
S906, the CPU 1200 compares the new tree with the existing 
ones (the trees stored in temporary variables at step S900) 
and keeps the better one(s). The comparison is required to 
ensure that the R&R process is moving towards congestion 
elimination with limited amount of hill-climbing. 

FIG. 10 is an outline of a function for comparing two trees 
according to one example. FIG. 10 shows the function that 
compares two spanning treest, and t, of a net n, wheret, 
is the new spanning tree and t, is the original spanning tree. 
The function returns true, when t, is better than t- In the 
comparison function, if the inferior Solution are always 
rejected then there is a high chance that the R&R process 
described herein can get stuck into a local optima because of 
no hill-climbing. Therefore, the R&R operation occasionally 
allows acceptance of inferior solutions whose difference in 
the tof value with the original solution is not more 
than -NEG, where NEG is a fourth parameter which can be 
set by the user 104 and stored in the memory 1202. 
The global router described herein has two types of 

parameters: Static parameters and self-adjustable (adaptable) 
parameters. The values of static parameters are set by the 
user 104 and remains constant through out the execution. 
The values of self-adjustable parameters change following 
an arithmetic progression (APs) in the parameter values 
update 312. The AP of any parameter can be completely 
specified by three terms: (first term, last term, and differ 
ence). The first term in its initial value, the last term is its 
maximum value and the difference is the amount by which 
its increments during self-adjustment. The user 104 may 
specify the three terms of AP for each self-adjustable param 
eter. During the execution of the global router, the parameter 
values update module 312 updates the parameter value using 
their APs. In most of self-adjusting parameters, when their 
value becomes equal to the last term of their AP, then their 
next value is the first term of their AP. 

Table 1 shows all the parameters of the global router 
described herein and classifies them as static or self-adjust 
able. The parameter Tm represents a threshold value for tof 
value of the current iteration such that if its value becomes 
smaller than Tm, then the value of the second parameter 
BOX SIZE is set equal to its last term. A fifth parameter 
CT2 represents the number of preceding iterations whose tof 
values are used in adjusting the parameters values. 

TABLE 1. 

List of all parameters 

Parameters Type AP representation 

RR1 Self-adjustable RR1 (RR1, RRf, RR) 
CT1 Self-adjustable CT1 (CT1, CT1f, CT1) 
TP1 One-time self-adjustable 
B Self-adjustable B.B. B. f) 

BOX SIZE Self-adjustable BOX SIZE(BOX SIZE, 
BOX-SIZE BOX-SIZE) 

CT2 Static 
NEG Static 
T Static 

FIG. 11 is an outline of an algorithm for updating the 
parameter values according to one example. The algorithm 
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is applied, at step S700, at each iteration of the R&R process 
in the parameter values update module 312 or the CPU 1200. 
The inputs are: current iteration count and total overflow 
values of the current iteration and that of last CT2 iterations. 
In the first iteration (i-0), the values of parameters are 
initialized and later on, the values of the parameters are 
adjusted based on overflow value of its preceding iterations. 
In the first iteration, the value of TP1 is assigned to zero, 
however, it changes to one based on the conditions men 
tioned in FIG. 11. The benefit of self-adjusting parameters is 
that they can help in exploring unique spanning trees for the 
nets. The global router described herein employs MRF 
method of routing, and if a same method is applied to a net 
multiple times with same parameters values then there is a 
high probability that it return a same solution every time. 
However, the chances of getting a different spanning tree for 
a net increases significantly by using different parameter 
values. 

Next, a hardware description of the computer 100 accord 
ing to exemplary embodiments is described with reference 
to FIG. 12. In FIG. 12, the computer 100 includes a CPU 
1200 which performs the processes described above/below. 
The process data and instructions may be stored in memory 
1202. These processes and instructions may also be stored 
on a storage medium disk 1204 such as a hard drive (HDD) 
or portable storage medium or may be stored remotely. 
Further, the claimed advancements are not limited by the 
form of the computer-readable media on which the instruc 
tions of the inventive process are stored. For example, the 
instructions may be stored on CDs, DVDs, in FLASH 
memory, RAM, ROM, PROM, EPROM, EEPROM, hard 
disk or any other information processing device with which 
the computer 100 communicates, such as a server or com 
puter. 

Further, the claimed advancements may be provided as a 
utility application, background daemon, or component of an 
operating system, or combination thereof, executing in con 
junction with CPU 1200 and an operating system such as 
Microsoft Windows 7, UNIX, Solaris, LINUX, Apple MAC 
OS and other systems known to those skilled in the art. 

In order to achieve the computer 100, the hardware 
elements may be realized by various circuitry elements, 
known to those skilled in the art. For example, CPU 1200 
may be a Xenon or Core processor from Intel of America or 
an Opteron processor from AMD of America, or may be 
other processor types that would be recognized by one of 
ordinary skill in the art. Alternatively, the CPU 1200 may be 
implemented on an FPGA, ASIC, PLD or using discrete 
logic circuits, as one of ordinary skill in the art would 
recognize. Further, CPU 1200 may be implemented as 
multiple processors cooperatively working in parallel to 
perform the instructions of the inventive processes described 
above. 
The computer 100 further includes a display controller 

1208, such as a NVIDIA GeForce GTX or Quadrographics 
adaptor from NVIDIA Corporation of America for interfac 
ing with display 1210, such as a Hewlett Packard 
HPL2445w LCD monitor. A general purpose I/O interface 
1212 interfaces with a keyboard and/or mouse 1214 as well 
as a touch screen panel 1216 on or separate from display 
1210. General purpose I/O interface also connects to a 
variety of peripherals 1218 including printers and scanners, 
such as an OfficeJet or DeskJet from Hewlett Packard. 
The general purpose storage controller 1224 connects the 

storage medium disk 1204 with communication bus 1226, 
which may be an ISA, EISA, VESA, PCI, or similar, for 
interconnecting all of the components of the computer 100. 
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10 
A description of the general features and functionality of the 
display 1210, keyboard and/or mouse 1214, as well as the 
display controller 1208, storage controller 1224 and general 
purpose I/O interface 1212 is omitted herein for brevity as 
these features are known. 
The exemplary circuit elements described in the context 

of the present disclosure may be replaced with other ele 
ments and structured differently than the examples provided 
herein. Moreover, circuitry configured to perform features 
described herein may be implemented in multiple circuit 
units (e.g., chips), or the features may be combined in the 
circuitry on a single chipset, as shown on FIG. 13. 

FIG. 13 shows a schematic diagram of a data processing 
system, according to certain embodiments, for performing 
global routing. The data processing system is an example of 
a computer in which specific code or instructions imple 
menting the processes of the illustrative embodiments may 
be located to create a particular machine for implementing 
the above-noted process. 

In FIG. 13, data processing system 1300 employs a hub 
architecture including a north bridge and memory controller 
hub (NB/MCH) 1325 and a south bridge and input/output 
(I/O) controller hub (SB/ICH) 1320. The central processing 
unit (CPU) 1330 is connected to NB/MCH 1325. The 
NB/MCH 1325 also connects to the memory 1345 via a 
memory bus, and connects to the graphics processor 1350 
via an accelerated graphics port (AGP). The NB/MCH 1325 
also connects to the SB/ICH 1320 via an internal bus (e.g., 
a unified media interface or a direct media interface). The 
CPU Processing unit 1330 may contain one or more pro 
cessors and may even be implemented using one or more 
heterogeneous processor systems. For example, FIG. 14 
shows one implementation of CPU 1330. 

Further, in the data processing system 1300 of FIG. 13, 
SB/ICH 1320 is coupled through a system bus 1380 to an 
I/O Bus 1382, a read only memory (ROM) 1356, an uni 
versal serial bus (USB) port 1364, a flash binary input/output 
system (BIOS) 1368, and a graphics controller 1358. In one 
implementation, the I/O bus can include a super I/O (SIO) 
device. 

PCI/PCIe devices can also be coupled to SB/ICH 1320 
through a PCI bus 1362. The PCI devices may include, for 
example, Ethernet adapters, add-in cards, and PC cards for 
notebook computers. Further, the hard disk drive (HDD) 
1360 and optical drive 1366 can also be coupled to the 
SB/ICH 1320 through a system bus. The Hard disk drive 
1360 and the optical drive or CD-ROM 1366 can use, for 
example, an integrated drive electronics (IDE) or serial 
advanced technology attachment (SATA) interface. 

In one implementation, a keyboard 1370, a mouse 1372, 
a serial port 1376, and a parallel port 1378 can be connected 
to the system bus 1380 through the I/O bus 1382. Other 
peripherals and devices that can be connected to the SB/ICH 
1320 include a mass storage controller such as SATA or 
PATA (Parallel Advanced Technology Attachment), an Eth 
ernet port, an ISA bus, a LPC bridge, SMBus, a DMA 
controller, and an Audio Codec (not shown). 

In one implementation of CPU 1330, the instruction 
register 1438 retrieves instructions from the fast memory 
1440. At least part of these instructions are fetched from the 
instruction register 1438 by the control logic 1436 and 
interpreted according to the instruction set architecture of 
the CPU 1330. Part of the instructions can also be directed 
to the register 1432. In one implementation, the instructions 
are decoded according to a hardwired method, and in 
another implementation, the instructions are decoded 
according a microprogram that translates instructions into 
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sets of CPU configuration signals that are applied sequen 
tially over multiple clock pulses. After fetching and decod 
ing the instructions, the instructions are executed using the 
arithmetic logic unit (ALU) 1434 that loads values from the 
register 1432 and performs logical and mathematical opera 
tions on the loaded values according to the instructions. The 
results from these operations can be feedback into the 
register and/or stored in the fast memory 1440. According to 
certain implementations, the instruction set architecture of 
the CPU 1330 can use a reduced instruction set architecture, 
a complex instruction set architecture, a vector processor 
architecture, a very large instruction word architecture. 
Furthermore, the CPU 1330 can be based on the Von 
Neuman model or the Harvard model. The CPU 1330 can be 
a digital signal processor, an FPGA, an ASIC, a PLA, a PLD, 
or a CPLD. Further, the CPU 1330 can be an x86 processor 
by Intel or by AMD: an ARM processor, a Power architec 
ture processor by, e.g., IBM; a SPARC architecture proces 
sor by Sun Microsystems or by Oracle; or other known CPU 
architecture. 
The present disclosure is not limited to the specific circuit 

elements described herein, nor is the present disclosure 
limited to the specific sizing and classification of these 
elements. For example, the skilled artisan will appreciate 
that the circuitry described herein may be adapted based on 
changes on battery sizing and chemistry, or based on the 
requirements of the intended back-up load to be powered. 
The functions and features described herein may also be 

executed by various distributed components of a system. For 
example, one or more processors may execute these system 
functions, wherein the processors are distributed across 
multiple components communicating in a network. The 
distributed components may include one or more client and 
server machines, which may share processing in addition to 
various human interface and communication devices (e.g., 
display monitors, Smart phones, tablets, personal digital 
assistants (PDAs)). The network may be a private network, 
such as a LAN or WAN, or may be a public network, such 
as the Internet. Input to the system may be received via 
direct user input and received remotely either in real-time or 
as a batch process. Additionally, some implementations may 
be performed on modules or hardware not identical to those 
described. Accordingly, other implementations are within 
the scope that may be claimed. 

The above-described hardware description is a non-lim 
iting example of corresponding structure for performing the 
functionality described herein. 
The hardware description above, exemplified by any one 

of the structure examples shown in FIG. 12, 13, or 14, 
constitutes or includes specialized corresponding structure 
that is programmed or configured to perform the algorithms 
shown in FIGS. 4, 6, 7, 8, 9, 10 and 11. For example, the 
algorithm shown in FIG. 4 may be completely performed by 
the circuitry included in the single device shown in FIG. 12 
or the chipset as shown in FIG. 13, or the algorithm may be 
completely performed in a shared manner. 
A system which includes the features in the foregoing 

description provides numerous advantages to users. In par 
ticular, the present disclosure provides an improvement to 
the technical field by finding a routing solution while 
minimizing computation. Thus, the present disclosure 
improves the functioning of a router by increasing process 
ing speed, decreasing power consumption and resulting in a 
chip area reduction. 

Obviously, numerous modifications and variations are 
possible in light of the above teachings. It is therefore to be 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
understood that within the Scope of the appended claims, the 
invention may be practiced otherwise than as specifically 
described herein. 

Thus, the foregoing discussion discloses and describes 
merely exemplary embodiments of the present invention. As 
will be understood by those skilled in the art, the present 
invention may be embodied in other specific forms without 
departing from the spirit or essential characteristics thereof. 
Accordingly, the disclosure of the present invention is 
intended to be illustrative, but not limiting of the scope of the 
invention, as well as other claims. The disclosure, including 
any readily discernible variants of the teachings herein, 
defines, in part, the scope of the foregoing claim terminol 
ogy Such that no inventive subject matter is dedicated to the 
public. 
The invention claimed is: 
1. A method for global routing, the method comprising: 
receiving nets that need to be routed and capacity con 

straints of global routing cells; 
ordering, using processing circuitry, the nets as a function 

of an area bounded by pins of each net; 
routing, using the processing circuitry, the ordered nets by 

applying maze routing within a frame having a size as 
a function of the pins of a net and a first predetermined 
parameter, 

determining, using the processing circuitry, whether the 
routing is congestion free based on the capacity con 
straints of the global routing cells; 

selecting, using the processing circuitry, a Subset of the 
nets based on a game theory method based on a 
probability of attempting to improve the spanning tree 
of the net when the routing is not congestion free, the 
probability being calculated as a function of a plurality 
of factors; 

applying, using the processing circuitry, a rip-up and 
re-route process on the Subset of the nets; 

repeating the selecting and applying steps until the routing 
is congestion free; and 

implementing, using processing circuitry, a circuit based 
on the routing. 

2. The method of claim 1, wherein the determining step 
comprises calculating a total overflow based on the overflow 
of all edges. 

3. The method of claim 1, wherein the rip-up and re-route 
process is iteratively applied to the subset of nets. 

4. The method of claim 3, wherein the rip-up and re-route 
process rip-up and re-route one or two nets at each iteration. 

5. The method of claim 3, further comprising: 
copying an existing spanning tree of the net to a tempo 

rary variable: 
deleting the existing spanning tree; 
creating a second spanning tree by applying maZe routing 

within the frame, the frame having a size as a function 
of the pins of the net and the first predetermined 
parameter, 

comparing the existing spanning tree stored in the tem 
porary variable with the second spanning tree as a 
function of the overflow of the existing spanning tree 
stored in the temporary variable, the second spanning 
tree, the number of edges having a demand equal to the 
capacity in the existing spanning tree and the second 
spanning tree, and a third predetermined parameter, 

storing, in a memory, the second spanning tree or the 
temporary variable based on the comparison; and 

interleaving the copying, deleting, creating, comparing, 
and storing steps between the two nets when the rip-up 
and re-route process is for two nets. 
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6. The method of claim 1, wherein the routing step further 
comprises determining a cost based on an edge capacity, an 
edge demand, and a cost of a preceding cell. 

7. The method of claim 6, wherein determining the cost 
includes applying 

where V, is a cell with a preceding cell V, u is the demand 
of an edge e, c, is a capacity of the edge e, wherein the 
edge e represents the edge between V, and V, and f is 
a predetermined parameter. 

8. The method of claim 1, wherein the probability is a 
function of the area enclosed by the pins of the net when the 
value of a second predetermined parameter is Zero and the 
overflow of the net is greater than Zero. 

9. The method of claim 1, wherein the probability is a 
function of an overflow of the net, the number of edges 
whose demand is equal to capacity in the spanning tree of 
the net, the number of iterations since the net was ripped-up 
and re-routed, and the number of pins of the net when the 
value of a second predetermined parameter is equal to one. 

10. A system for global routing, the system comprising: 
processing circuitry configured to 

receive nets that need to be routed and capacity con 
straints of global routing cells, 

order the nets as a function of an area bounded by pins 
of each net, 

route the ordered nets by applying maze routing within 
a frame having a size as a function of the pins of a 
net and a first predetermined parameter, 

determine whether the routing is congestion free based 
on the capacity constraints of the global routing 
cells, 

Select a Subset of the nets based on a game theory 
method based on a probability of attempting to 
improve the spanning tree of a net when the routing 
is not congestion free, the probability being calcu 
lated as a function of a plurality of factors, 

apply a rip-up and re-route process on the Subset of the 
nets, and 
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repeat the selecting and applying steps until the routing 

is congestion free, and 
implement a circuit based on the routing. 

11. The system of claim 10, wherein the processing 
circuitry is further configured to calculate a total overflow 
based on the overflow of all edges. 

12. The system of claim 10, wherein the rip-up and 
re-route process is iteratively applied to the subset of nets. 

13. The system of claim 12, wherein the rip-up and 
re-route process rip-up and re-route one or two nets at each 
iteration. 

14. The system of claim 13, wherein the processing 
circuitry is further configured to: 

copy an existing spanning tree of the net to a temporary 
variable; 

delete the existing spanning tree; 
create a second spanning tree by applying maze routing 

within the frame, the frame having a size as a function 
of the pins of the net and the first predetermined 
parameter, 

compare the existing spanning tree stored in the tempo 
rary variable with the second spanning tree as a func 
tion of the overflow of the existing spanning tree stored 
in the temporary variable, the second spanning tree, the 
number of edges having a demand equal to the capacity 
in the existing spanning tree and the second spanning 
tree, and a third predetermined parameter; 

store, in a memory, the second spanning tree or the 
temporary variable based on the comparison; and 

interleave the copying, deleting, creating, comparing, and 
storing steps between the two nets when the rip-up and 
re-route process is for two nets. 

15. The system of claim 10, wherein the probability is a 
function of the area enclosed by the pins of the net when the 
value of a second predetermined parameter is Zero and the 
overflow of the net is greater than Zero. 

16. The system of claim 10, wherein the probability is a 
function of an overflow of the net, the number of edges 
whose demand is equal to capacity in the spanning tree of 
the net, the number of iterations since the net was ripped-up 
and re-routed, and the number of pins of the net when the 
value of a second predetermined parameter is equal to one. 

k k k k k 


