
(12) United States Patent

USO0955831 3B1

(10) Patent No.: US 9,558,313 B1
Siddiqi et al. (45) Date of Patent: Jan. 31, 2017

(54) METHOD AND SYSTEM FOR PROVIDING A 2009 OO31275 A1 1/2009 Cho GO6F 17,5077
GAME THEORY BASED GLOBAL ROUTING T16,129

2009/014.4688 A1* 6/2009 Uchino GO6F 17,5077
T16,126

(71) Applicant: KING FAHD UNIVERSITY OF 2011 OO55790 A1* 3, 2011 Gao GO6F 17,5077
PETROLEUMAND MINERALS, T16, 130
Dhahran (SA) 2013,0031524 A1 1/2013. He et al.

2014/0157221 A1* 6/2014 Peyer GO6F 17,5077
(72) Inventors: Umair Farooq Siddiqi, Dhahran (SA); T16,129

Sadiq M. Sait, Dhahran (SA) 2014/0215426 A1* 7, 2014. He GO6F 17,5077
s T16,129

73) Assignee: King Fahd University of Petroleum 9. g ty
and Minerals, Dhahran (SA)

*) Notice: Subject to any disclaimer, the term of this y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/847,750

(22) Filed: Sep. 8, 2015

(51) Int. Cl.
G06F 7/50 (2006.01)

(52) U.S. Cl.
CPC G06F 17/5077 (2013.01)

(58) Field of Classification Search
CPC G06F 17/5077; G06F 17/5018; G06F 17/505;

G06F 1775072
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0098697 A1* 5, 2004 Frankle GO6F 17,5077
T16,129

2005/0138578 A1* 6/2005 Alpert GO6F 17,5077
716,114

2006/0288323 A1* 12, 2006 Birch GO6F 17,5077
T16,129

2007/O220522 A1
2008. O170514 A1

9, 2007 Coene et al.
7/2008 Hentschke et al.

OTHER PUBLICATIONS

John A. Nestor, “A New Look at Hardware Maze Routing” http://
www.researchgate.net/profile/John Nestor/publication/2871183
A New Look at Hardware Maze Routing/links/
00b7d53505831cb248000000.pdf, 2000, 6 pages.
Kei Suzuki, et al., “A Hardware Maze Router with Application to
Interactive Rip-Up and Reroute'. IEEE Transactions on Computer
Aided Design, vol. CAD-5, No. 4, Oct. 1986, pp. 466-476.

* cited by examiner

Primary Examiner — Nha Nguyen
(74) Attorney, Agent, or Firm — Oblon, McClelland,
Maier & Neustadt, L.L.P.

(57) ABSTRACT

A system and method for global routing that includes
receiving nets that need to be routed and capacity con
straints, ordering, using processing circuitry, the nets, rout
ing, using the processing circuitry, the nets based on a maze
routing with framing method, determining, using the pro
cessing circuitry, whether the routing is congestion free,
selecting, using the processing circuitry, a Subset of the nets
based on a game theory method when the routing is not
congestion free, applying a rip-up and re-route process on
the Subset of the nets, and repeating the selecting and
applying steps until the routing is congestion free.

16 Claims, 14 Drawing Sheets

initial Routing
3CO

Nets ordering
302

Nets routing
304.

R&R process
306

Nets selection
308

Parameter values piate
32

Game theory
34 R&R operation

30
Mixed strategy

316

Set SS preparation
38

U.S. Patent Jan. 31, 2017 Sheet 1 of 14 US 9,558,313 B1

s

N &

U.S. Patent Jan. 31, 2017 Sheet 2 of 14 US 9,558,313 B1

s

£ (9 IAI

US 9,558,313 B1 U.S. Patent

909 sseoold X!?!

809

U.S. Patent Jan. 31, 2017 Sheet 4 of 14 US 9,558,313 B1

Read input

Ordering and initial
routing

ls the Solution
congestion free? GT-based R&R

FIG. 4

U.S. Patent Jan. 31, 2017 Sheet S of 14 US 9,558,313 B1

83x Six Es &
M M M M M : . - - - - - - rior

: Y.

FIG. 5

U.S. Patent Jan. 31, 2017 Sheet 6 of 14 US 9,558,313 B1

S600
A net (n) with a set of pins (P)

S60
Determine the bounding region of ni

S604 Select any one pin of ni as the
starting pin

S606
ti covers all pins

S612

Finish
Filling process to discover a path to a
pin which currently is not covered by

S608 Filling is
t

S610 Retrace process to find a branch to
the newly discovered pin and add the

branch to ti

FIG. 6

U.S. Patent Jan. 31, 2017 Sheet 7 of 14 US 9,558,313 B1

S7OO

Update parameter values

S702

Determine the mixed strategies of the nets

S704

Build a selection set SS

Execute the R&R process

FIG. 7

U.S. Patent Jan. 31, 2017 Sheet 8 of 14 US 9,558,313 B1

Input: T: Spanning trees of all nets, N: set of all nets, Parameters: CT1 g Z, TP e
{Trie, False

Cutput: PR = P Ro, PR, ..., PRN-1}: mixed strategies of all nets
i: for each net is N do
2: Cf(n) = x - over flou (e;)
3: fl(;) - Y - full(e)
4: crea (r. :)= area bounded by the pins (pi) of n.
5 ller(s)= Number of iterations since r was ripped-up and re-routed last time.
6, end for

7: if , oft(n) > 0 then
8: Normalize values in of, fl. and ter.

for each net is g N do
ly if T P = 0, oft(n) > 0,

() otherwise
end for

12; Norilalize gy values
13: else
14: for i=() to W - 1 do
5: gy () see O
16; end for
17 end if
18; for i=() to N - do
19: PR = {ty (), 1 - py: (i)}
20: edfor
2 : return (PR)

FIG. 8

U.S. Patent Jan. 31, 2017 Sheet 9 of 14 US 9,558,313 B1

S900

Copy spanning trees

S902

Rip up existing tree

S904

S906

FIG. 9

U.S. Patent Jan. 31, 2017 Sheet 10 of 14 US 9,558,313 B1

Input: C(V, E), ti, t: , two spanning trees for a netti, NEC e Zh
(Output: Y true, false

Y = false
; A = Y t overflow (c.) tw: : -
B - Y - full(e) ... :

: C = |t;
l = Y - overflow (e.)
E - X e. e full(e)

; F = it;
8: rN E= a random integer between - NEC and ()
9: if D : A or (D - A) < r yig then
(): Y = true

1

akaw

w
y

11; else
12: if c = A and E -< B then
3. Y - true

14: else
15: if I) == A and B == Earld F < C then
1. Y c tre

end if
18; endif
19; end if
20: return Y

FIG. I.0

U.S. Patent Jan. 31, 2017 Sheet 11 of 14 US 9,558,313 B1

Input: i: current iteration. Overflow values of last CT2 iterations: {t of (T), to f(T: 1,
..., to f(T-CT2) }
i = the

2: RR1 - RF1, CI 1 - CT1, BC XSIZE - BOX SI Z.E., 3 = 3;
3: TP O
4; else
5: RRI = RR1 -- RR1
6. if R RI - RF21 then
ty. RR 1 - H.R.1
8: eclif

9: if to f(T) = to f(T-1) then
CT - CT -- CTL
IP so

12; endi

13, if CT1 - CT1 then
s: CT1 - CT1,
S: if

16: if to f(T,) < 1, then
7: BOX SIZE = BOX SIZE

18; else

19: if lof (T) = to f(T 1) = ... = lef (T. gig) then
C BOX SIZE - BOX SIZE - BOX SIZE
2. if BOX SIZE - B (XSIZEf then
22. BOX SIZE = BOX SIZE
3. entif

2 : fi - it -- it
25 if 3 > 3 then

: (3 = 3.
27; end if
8: end if
as: entif
30: edif

FIG. I. I

ZI ’5) IAI

US 9,558,313 B1 U.S. Patent

U.S. Patent Jan. 31, 2017 Sheet 13 of 14 US 9,558,313 B1

13OO

CPU / 1330

Graphics AGP Northbridgel Memory
Processor MCH

1350 1325 Bus

Internal
BuS

Graphics BIOS Southbridge ROM
Controller 1368 /CH 1356

1358 1320

System bus
1380

PC USB
1362 1364

I/O bus
1382

Key
Board My
1370

Parallel
Port
1378

FIG. I.3

U.S. Patent Jan. 31, 2017 Sheet 14 of 14 US 9,558,313 B1

Register
1432

instruction
Register
1438

Fast Memory
1440

FIG. I.4

US 9,558,313 B1
1.

METHOD AND SYSTEM FOR PROVIDING A
GAME THEORY BASED GLOBAL ROUTING

BACKGROUND

1. Technical Field
The present invention relates to global routing in printed

circuit board (PCB) routing and in physical design of
integrated VLSI circuits.

2. Description of Related Art
Global routing is a critical step in the physical design of

integrated circuits and is a NP-hard (Non-deterministic
Polynomial-time hard) problem as described in T. Langauer,
Combinational algorithms for integrated circuit and layout,
John Wiley & Sons, New York, 1990. Global routing lies
between placement and detailed-routing steps in the physical
design of VLSI (Very Large Scale Integration) chips. In
global routing, nets of wires are mapped to a coarse grid of
global routing cells (or gcells). Each gcell has a fixed
horizontal and vertical capacity. The objective of global
routing is to assign the nets while satisfying capacity con
straints (horizontal and vertical) of the gcells as described in
H. Y. Chen and Y. W. Chang, Electronic Design Automation:
Synthesis, Verification, and Testing, Elsevier Morgan Kauf
mann, pp. 687-749 (2009). Each net is routed by generating
a spanning tree for it that covers all of its pins. A solution of
the global routing problem that does not violate the capacity
constraints of the gcells is a valid solution. Routability
driven (RD) placement is a recent development that uses
global routing to guide the placement process. The RD
placement is described in X. He. T. Huang, L. Xiao, H. Tian,
and E. F. Y. Yong, Ripple: A robust and effective routabiltiy
driven placer, IEEE Trans. Computer Aided Design of
Integrated Circuits and Systems, 32, (10), pp. 1546-1556,
(2013) and M. Pan, and C. Chu, FastRoute: A Step to
Integrate Global Routing into Placement, IEEE/ACM Inter
national Conference on Computer-Aided design, San Jose,
Calif., November 2006, pp. 464–471. The RD placement
process needs to execute global routing several times. There
fore, global routers should have good solution quality and
runtime.
Among the methods of routing, maze routing is the only

method that guarantees to find a path between any two pins
if there exists one. Therefore, many global routers use maze
routing exclusively, or use other methods for initial routing
and use maze routing for difficult-to-route nets as described
in K. Suzuki, Y. Matsunaga, M. Tachibana, and T. Ohtsuki,
A hardware maze router with application to interactive
rip-up and reroute, IEEE Trans. Computer-Aided Design,
CAD, 5(4), 155-157 and M. Pan, U. Xu, X. Zhang, and C.
Chu, FastRoute: An efficient and high-quality global router,
VLSI design, Hindawi Publishing Corporation, (2012).
However, maze routing is slow and memory intensive. Maze
routing is generally used with a rip-up and re-route (R&R)
process to produce valid solutions. The main task of the
R&R process is to selectively rip-up and re-route a small
fraction of nets in order to eliminate congestion. Maze
routing with framing (MRF) is a modification of maze
routing in which a net determines its spanning tree within a
bounding box of the grid. The MRF method is described in
S. Sait and H. Youssef VLSI Physical Design and Automa
tion: Theory and Practice, World Scientific Publishers, 243
244, 1999. The MRF method is very fast as compared to
traditional maze routing and the size of the bounding box
can be increased or decreased. Lee algorithm is a popular
method of maze routing and has a breath-first behavior.
Recent research showed that Lee algorithm is highly suitable

10

15

25

30

35

40

45

50

55

60

65

2
for implementation using parallel computing platforms such
as graphics processor units (GPUs) because of its simple
data-structure and breath-first behavior which can be easily
implemented on parallel platforms. Lee algorithm is
described in in S. Sait and H. Youssef, VLSI Physical Design
and Automation: Theory and Practice, World Scientific
Publishers, 239-241, 1999.
GT based algorithms have been used in routing of com

munication networks, multi-agent optimization problem and
wireless networking as described in F. N. Pavlidou and G.
Koltisdas, Game theory for routing modeling in communi
cation networks, A Survey, Journal of Communications and
Networks, 10 (3) (2008), 268-286, A. Salhi and O. Toreyen,
Computational Intelligence in Optimization, Springer-Ver
lag Berlin, Heidelberg, (2010), pp. 211-232, and L. A.
DaSilva, H. Bogucka and A. MacKenzie, Game theory in
wireless networks, IEEE Communications Magazine, 49 (8),
(2011), 110-111.
The good performance of GT in Solving congestion prob

lems in computers and communication networks motivates
its use in solving the global routing problem of VLSI
physical design.
The foregoing “Background description is for the pur

pose of generally presenting the context of the disclosure.
Work of the inventor, to the extent it is described in this
background section, as well as aspects of the description
which may not otherwise qualify as prior art at the time of
filing, are neither expressly or impliedly admitted as prior art
against the present invention. The foregoing paragraphs
have been provided by way of general introduction, and are
not intended to limit the scope of the following claims. The
described embodiments, together with further advantages,
will be best understood by reference to the following
detailed description taken in conjunction with the accom
panying drawings.

SUMMARY

The present disclosure relates to a global routing method
that receives nets that need to be routed and capacity
constraints, orders, using processing circuitry, the nets,
routes, using the processing circuitry, the nets based on a
maze routing with framing method, determines, using the
processing circuitry, whether the routing is congestion free,
selects, using the processing circuitry, a Subset of the nets
based on a game theory method when the routing is not
congestion free, applies, using the processing circuitry, a
rip-up and re-route process on the Subset of the nets, and
repeats the selecting and applying steps until the routing is
congestion free.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the disclosure and many
of the attendant advantages thereof will be readily obtained
as the same becomes better understood by reference to the
following detailed description when considered in connec
tion with the accompanying drawings, wherein:

FIG. 1 is a schematic representation of a global routing
system according to one example;

FIG. 2 is a grid graph of the 2D global routing according
to one example:

FIG.3 is a block diagram representation of a global router
according to one example;

FIG. 4 is a flow chart showing the operation of the global
router according to one example:

US 9,558,313 B1
3

FIG. 5 is a schematic that shows an exemplary bounding
region of the Maze routing with framing (MRF) method for
a net according to one example;

FIG. 6 is a flow chart which shows the routing of the net
using the MRF method according to one example:

FIG. 7 is a flow chart that shows the Game theory
(GT)-based rip-up and re-route (R&R) process according to
one example;

FIG. 8 is an outline of an algorithm for determining mixed
strategies of the nets according to one example;

FIG. 9 is a flow chart that shows an R&R operation
according to one example;

FIG. 10 is an outline of a function for comparing two trees
according to one example;

FIG. 11 is an outline of an algorithm for updating the
parameter values:

FIG. 12 is an exemplary block diagram of a computer
according to one example;

FIG. 13 is an exemplary block diagram of a data process
ing system according to one example; and

FIG. 14 is an exemplary block diagram of a central
processing unit according to one example.

DETAILED DESCRIPTION

Referring now to the drawings, wherein like reference
numerals designate identical or corresponding parts
throughout several views, the following description relates
to an apparatus and associated methodology for global
routing based on game theory.
The method described herein provides a global router that

uses maze routing with framing (MRF) method. The method
also contains a rip-up and re-route (R&R) process whose
role is to eliminate congestion. The R&R is modeled using
game theory (GT). In the game theory model, nets (also
called “interconnections”) act as players that want to opti
mize their spanning trees in terms of congestion and wire
length. GT is a useful technique of decision making and
multi-agent optimization.

FIG. 1 is a schematic representation of a global routing
system. A user 104 may connect to a computer 100 to
perform global routing. The user 104 may use the graphical
user interface to input data and constraints for the global
routing problem. The computer 100 includes a CPU 1200
and a memory 1202 as shown in FIG. 12. The computer 100
may also receive data from host applications. The user 104
may use a flash drive to load data to the computer 100.

In one embodiment, the global routing problem is mod
eled using a 2D grid-graph G. The 2D grid-graph has a set
of vertices V and a set of edges E. Each vertex VeV
corresponds to a gcell, and each edge eleE corresponds to a
boundary between adjacent vertices V, and V. Each edge e.
has a capacity c, which is the maximum number of nets or
wires that can pass through it. The actual number of nets that
are passing through an edge e is called its demand and is
represented as u, FIG. 2 shows the grid graph according to
an example. The problem also contains a set of nets N, where
each net neN is composed of a set P, of pins (with each pin
corresponding to a vertex V.). Each net neN is routed by
finding a treet, that covers all its pins. Each tree teE a set
of edges without any cycles or repetition of edges to E. The
set T stores the spanning trees of all nets.
The objective of global routing is to route all the nets and

to make Sure that capacity constraints of the edges are not
violated, i.e. usc, VeeE. The edge e, is congested or have
an overflow when up-c. The CPU 1200 may compare the
demand of the edge and the capacity of the edge to deter

10

15

25

30

35

40

45

50

55

60

65

4
mine whether the edge is overflowed. The edges whose
demand is equal to their capacity are fully utilized. The fully
utilized and congested edges are considered important in
eliminating congestion. The congested edges contribute
directly to the total overflow. The fully utilized edges
although do not contribute directly to the congestion, but
they can contribute to blocking routing of other nets. The
amount of overflow associated with the edge e, i.e. over
flow (e) can be expressed as:

(1) utii - Cii if ulii > Cii
overflow(ei) = O otherwise

To determine whether the edge is fully utilized, i.e., full (e)
can be expressed using the following equation:

(2) 1 if iiii Ci
full(e) ={ y - up

0 otherwise

In one embodiment, the overflow and full of each edge may
be stored in the memory 1202.
The total overflow (tof) is equal to the total overflow of all

edges and can be calculated by the CPU 1200 using:

tof (T) = X overflow(e) (3)
eie E

The global router described herein executes three main
tasks: (a) ordering of nets, (b) initial routing of nets, and (c)
R&R process to eliminate congestion from the solution of
initial routing.

FIG. 3 is a block diagram representation of the global
router according to one example. The tasks are distributed
among several components or modules. Each of the modules
described herein may be implemented in circuitry that is
programmable (e.g. microprocessor-based circuits) or dedi
cated circuits such as application specific integrated circuits
(ASICS) or field programmable gate arrays (FPGAS). The
global router has three main modules: (i) initial routing
module 300, (ii) MRF module 320, and (iii) R&R process
module 306. These modules work together to accomplish
global routing. The initial routing module 300 includes a
nets ordering module 302 and a nets routing module 304.
The nets ordering module 302 and the nets routing module
304 executes the tasks of ordering and routing the nets
respectively. The initial routing module 300 uses the MRF
module 320 to route the nets using the MRF method. The
R&R process module includes a nets selection module 308,
a game theory module 314, a R&R operation module 310,
and a parameter values update 312.
The nets selection module 308 uses the game theory

module 314 to determine the nets. The game theory module
314 applies a GT based heuristic to determine the nets that
should be ripped-up and re-routed in-order to reduce the
congestion of the solution. The nets selected for the R&R
operation are the set SS. The R&R operation module 310
obtains the set SS from the nets selection module 308. The
parameter values update module 312 performs self-adjust
ment of parameters values based on the feedback of previous
iterations in-order to reduce the convergence time of the
R&R process. In one embodiment, the adjustment of the

US 9,558,313 B1
5

parameters values may be based on past routing data stored
in the memory 1202. The game theory module 314 may
include a mixed strategy module 316 and a set SS prepara
tion module 318.

FIG. 4 is a flow chart showing the operation of a global
router. At step S400, the CPU 1200 loads the 2D grid graph
(G(V,E)), set of all nets (N) and a plurality of parameters.
The 2D grid graph, the set of all nets, and the plurality of
parameters may be obtained from the user 104. In one
embodiment, the 2D grid graph, the set of all nets, and the
plurality of parameters may be obtained from other appli
cations such as a VLSI design application. A first parameter
NUM THREADS sets the number of concurrent threads in
the initial routing of nets. At step S402, the CPU 1200 sorts
the nets and performs an initial routing of the nets. The nets
are sorted in ascending order of the area bounded by their
pins. In this ordering, the nets whose pins are closer to each
other are routed first. The rationale behind this ordering is
that the nets whose pins are far from each other usually have
more number of possible trees (i.e. alternate choices) avail
able to them as compared to the nets whose pins are closer
to each other. The nets that have more alternate choices
available are less likely to be blocked from the routing of the
other nets. The routing of nets can be done sequentially or
concurrently. In one embodiment, the CPU 1200 may be a
multicore processor and multi-threading (MT) is possible.
The routing of nets can be parallelized by using the follow
ing steps: (i) dividing the sorted nets in N among No.N.
.NvA. Reups. Subsets, (ii) creating concurrent

threads trotr, Ditry rurers. Such that tr, routes the nets
in N, (where i=0 to NUM THREADS), and (iii) executing
the threads in parallel. The threads update the demand
information of the edges after routing each net. The paral
lelization causes some increase in the congestion of the
initial routing phase but that can be compensated in the
GT-based R&R process. The CPU 1200 routes a net by using
the MRF method of routing. After the completion of the
initial routing phase, the flow goes to step S404. At step
S404, the CPU 1200 may check whether the solution is
congestion free. In response to determining that the Solution
is congestion free, the process ends. In response to deter
mining that the Solution is not congestion free, the flow goes
to step S406. At step S406, the GT based R&R process is
executed. Step S406 is repeated until the solution is con
gestion free. In one embodiment, the CPU 1200 may check
whether the Solution is congestion free by determining the
total overflow by applying equation (3). When the total
overflow is equal to Zero, the CPU 1200 determines that the
Solution is congestion free.

FIG. 5 is a schematic that shows an exemplary bounding
region of the MRF method for a net according to one
example. FIG. 5 shows a bounding region of a net which has
three pins (pop. p.) 500,502,504 respectively. The size of
the bounding box can be increased or decreased using a
second parameter BOX SIZE. The routing region of each
net is restricted to a rectangular region that covers its pins
and some surrounding cells.

FIG. 6 shows the main steps in routing a net using the
MRF method according to an example. The variable t, stores
the spanning tree of net n. At step S600, the CPU 1200 loads
the input which is a net and its set of pins. The spanning tree
of n, is represented as t. This method generates a complete
spanning tree of n. At step S602, the CPU 1200 finds a
bounding box using all pins of n. At step S604, the CPU
1200 randomly selects any pin as the starting vertex of the
spanning tree. At step S606, the CPU 1200 checks whether
the spanning tree covers all pins of the net. In response to

10

15

25

30

35

40

45

50

55

60

65

6
determining that the spanning tree does cover all pins of the
net, the CPU 1200 outputs t, at step S612. In response to
determining that the spanning tree does not cover all pins of
the net, the flow goes to step S608. At step S608, the CPU
1200 performs a filling process to discover a path to a pin
which is currently not covered by t. At steps S608 and S610,
the filling and retracing processes use the Lee's algorithm on
a weighted grid. The weights of all vertices in t, are set to
Zero. The weights of the remaining cells in the bounding box
can be obtained as follows. For any cell VeV whose pre
ceding cell in the filling process is V, and the edge between
them is represented as e. The cost of V, can be calculated as
follows:

(4)

where u, and c, represent the demand and capacity of the
edge e, and the purpose of the exponential term is to avoid
selection of paths through congested edges. When
(u-(c-?3))<0, the role of congestion is very limited and the
CPU 1200 finds minimum length paths. However, when
(u-(c-?3)>0, then the role of congestion costs becomes
significant and the paths are determined with respect to
minimum length as well as minimum congestion. The value
of the second parameter B is initially set by the user 104 but
can be varied in the R&R process in order to build spanning
trees that have minimum length and/or minimum conges
tion. The filing process terminates when the CPU 1200
determines that at least one of the following conditions is
satisfied: (a) the weights are assigned to all cells in the
bounding box, or (b) a pin of the net which is not yet selected
in t, is found. At step S610, the CPU 1200 executes the
retracing process and forms a branch to a currently uncov
ered pin of the net from any one node (or cell) of t.
GT is used to solve the problem of deciding which nets

are selected to be ripped-up and re-routed in order to
eliminate congestion. The selection of nets in the R&R
process is modeled as a game in which nets act as players.
The set N becomes the set of players of the game. Each net
neN has two pure strategies S={Yes.No. The strategy Yes
means that n, attempts to improve its spanning tree and
strategy No means that n, should not attempt to improve its
spanning tree. The players use mixed strategies to select
their pure strategies. The mixed strategy of each player neN
is represented as PR, (p. 1-p), where p is the probability
of selecting the strategy Yes and 1-p is the probability of
selecting the strategy No. The Nash equilibrium (NE) of the
game is reached when the total overflow of the solution
becomes Zero and at that point all nets want to Stick to their
No strategy (pbecomes zero for all nets). The aim of the GT
based method described herein is to eliminate congestion,
however it has other advantages. The Nash equilibrium is
described in E. N. Barron, Game Theory: An introduction,
2" Edition, John Wiley & sons, 2013 and N. Nisan, T.
Roughgarden, E. Tardos, V. Vazirani, Algorithmic Game
Theory, Cambridge University Press, 2007.

Each player wants to achieve two goals: (i) its spanning
tree becomes congestion free, and (ii) its spanning tree
should not be blocking the routing of any other net. In any
iteration, the nets which are more likely to progress towards
achieving their goals have higher values of mixed strategies
and hence, are more likely to go through the R&R operation.

FIG. 7 is a flow chart that shows the GT-based R&R. The
R&R component executes the R&R process to eliminate
congestion from the solution of initial routing. At step S700,
the CPU 1200 updates the parameter values. In one embodi
ment, the parameter values are updated using the parameter
value update module 312. At step S702, the CPU 1200

US 9,558,313 B1
7

determines the mixed strategies of the nets. In one embodi
ment, the CPU 1200 may execute the algorithm shown and
described in FIG. 8. At step S704, a selection set is deter
mined using the set SS preparation module 318. At Step
S706, the R&R process is executed using the R&R operation
module 310. At step S708, the CPU 1200 calculates the total
overflow. The CPU 1200 may apply equation (3) to deter
mine the total overflow. Then, the CPU 1200 checks whether
the total overflow is greater than Zero. In response to
determining that the total overflow is greater than Zero, the
flow goes to step S700. In response to determining that the
total overflow is less than Zero, the process ends.

FIG. 8 is an outline of an algorithm for determining mixed
strategies of the nets according to one example. The input
contains two parameters (third parameter and fourth param
eter): CT1 and TP. The third parameter CT1 acts as the
weight of the term related to the overflow of the spanning
trees and the fourth parameter TP is used to select a method
to calculate the value of p. A first method assigns higher
values to the nets whose pins enclose a smaller area as
compared to the other nets and p of the nets, which have no
overflow, is zero. The benefit of the first method is that the
nets that have congestion as well as require less time in
re-routing are preferred for the R&R operation as compared
to others. The second method assigns values based on the
following: (i) the nets that have more overflow and fully
used edges have a higher p value, (ii) the weight of the
overflow value in p can be changed using the third param
eter CT1, and (iii) the nets that have not been ripped-up and
re-routed since many iterations have larger p-values. The p
values of the nets that have neither congested edges nor fully
used edges is Zero. The pseudo-code in FIG. 8 also shows
that if none of the nets has any overflow then p values of
all nets becomes zero. When the value of the third parameter
CT1>1, then the p-values rely more on the overflow of the
edges as compared to other factors. When CT's 1, then p
values rely equally on overflow and number of fully used
edges. When CT1<<1, then p values rely more on the
number of fully used edges. Next, the CPU 1200 prepares a
set SS that contains the nets whose spanning tree should be
rip-up and re-routed. In the selection of nets in SS, the p
values of nets act as their probabilities to be selected to the
SS by the CPU 1200.
The input of the R&R operation module 310 is the set SS.

Two types of R&R operations may be used: (i) R&R Type
A, and (ii) R&R Type B. The Type A operation rips-up and
re-routes one net at time, whereas, the Type B operation first
rips-up two nets and then re-routes them. In both type of
operations, the nets are ripped-up and re-routed completely.
The R&R process is executed sequentially. The nets in SS
are divided into two subsets SS and SS such that SS
contains RR1% nets of SS and SS-SS-SS. Furthermore,
the number of nets in SS should be even. The CPU 1200
may check whether the number of nets in SS is even. In
response to determining that the number of nets in SS is not
even, one element is moved from SS to SS. The nets in
SS go through the type A operation and the nets in SS go
through the Type B operation. The global router described
herein uses two types of R&R operations to reduce the
convergence time based on the experiments conducted.
The R&R process is executed as follows: A net n, is

fetched from SS. The CPU 1200 checks whether neSS. In
response to determining that neSS then type A operation is
applied to it. When neSS, then the CPU 1200 fetches
another net neSS from SS and Type B operation is applied
to the nets n, and n.

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 9 is a flow chart that shows an R&R operation

according to one example. The flowchart shows the main
steps in both types of R&R operations. At step S900, the
CPU 1200 copies the spanning tree(s) of the selected nets
into temporary variables. At step S902, the CPU 1200
deletes (rip-up) the existing spanning tree. At step S904, the
CPU 1200 creates a new tree using MRF method. At step
S906, the CPU 1200 compares the new tree with the existing
ones (the trees stored in temporary variables at step S900)
and keeps the better one(s). The comparison is required to
ensure that the R&R process is moving towards congestion
elimination with limited amount of hill-climbing.

FIG. 10 is an outline of a function for comparing two trees
according to one example. FIG. 10 shows the function that
compares two spanning treest, and t, of a net n, wheret,
is the new spanning tree and t, is the original spanning tree.
The function returns true, when t, is better than t- In the
comparison function, if the inferior Solution are always
rejected then there is a high chance that the R&R process
described herein can get stuck into a local optima because of
no hill-climbing. Therefore, the R&R operation occasionally
allows acceptance of inferior solutions whose difference in
the tof value with the original solution is not more
than -NEG, where NEG is a fourth parameter which can be
set by the user 104 and stored in the memory 1202.
The global router described herein has two types of

parameters: Static parameters and self-adjustable (adaptable)
parameters. The values of static parameters are set by the
user 104 and remains constant through out the execution.
The values of self-adjustable parameters change following
an arithmetic progression (APs) in the parameter values
update 312. The AP of any parameter can be completely
specified by three terms: (first term, last term, and differ
ence). The first term in its initial value, the last term is its
maximum value and the difference is the amount by which
its increments during self-adjustment. The user 104 may
specify the three terms of AP for each self-adjustable param
eter. During the execution of the global router, the parameter
values update module 312 updates the parameter value using
their APs. In most of self-adjusting parameters, when their
value becomes equal to the last term of their AP, then their
next value is the first term of their AP.

Table 1 shows all the parameters of the global router
described herein and classifies them as static or self-adjust
able. The parameter Tm represents a threshold value for tof
value of the current iteration such that if its value becomes
smaller than Tm, then the value of the second parameter
BOX SIZE is set equal to its last term. A fifth parameter
CT2 represents the number of preceding iterations whose tof
values are used in adjusting the parameters values.

TABLE 1.

List of all parameters

Parameters Type AP representation

RR1 Self-adjustable RR1 (RR1, RRf, RR)
CT1 Self-adjustable CT1 (CT1, CT1f, CT1)
TP1 One-time self-adjustable
B Self-adjustable B.B. B. f)

BOX SIZE Self-adjustable BOX SIZE(BOX SIZE,
BOX-SIZE BOX-SIZE)

CT2 Static
NEG Static
T Static

FIG. 11 is an outline of an algorithm for updating the
parameter values according to one example. The algorithm

US 9,558,313 B1
9

is applied, at step S700, at each iteration of the R&R process
in the parameter values update module 312 or the CPU 1200.
The inputs are: current iteration count and total overflow
values of the current iteration and that of last CT2 iterations.
In the first iteration (i-0), the values of parameters are
initialized and later on, the values of the parameters are
adjusted based on overflow value of its preceding iterations.
In the first iteration, the value of TP1 is assigned to zero,
however, it changes to one based on the conditions men
tioned in FIG. 11. The benefit of self-adjusting parameters is
that they can help in exploring unique spanning trees for the
nets. The global router described herein employs MRF
method of routing, and if a same method is applied to a net
multiple times with same parameters values then there is a
high probability that it return a same solution every time.
However, the chances of getting a different spanning tree for
a net increases significantly by using different parameter
values.

Next, a hardware description of the computer 100 accord
ing to exemplary embodiments is described with reference
to FIG. 12. In FIG. 12, the computer 100 includes a CPU
1200 which performs the processes described above/below.
The process data and instructions may be stored in memory
1202. These processes and instructions may also be stored
on a storage medium disk 1204 such as a hard drive (HDD)
or portable storage medium or may be stored remotely.
Further, the claimed advancements are not limited by the
form of the computer-readable media on which the instruc
tions of the inventive process are stored. For example, the
instructions may be stored on CDs, DVDs, in FLASH
memory, RAM, ROM, PROM, EPROM, EEPROM, hard
disk or any other information processing device with which
the computer 100 communicates, such as a server or com
puter.

Further, the claimed advancements may be provided as a
utility application, background daemon, or component of an
operating system, or combination thereof, executing in con
junction with CPU 1200 and an operating system such as
Microsoft Windows 7, UNIX, Solaris, LINUX, Apple MAC
OS and other systems known to those skilled in the art.

In order to achieve the computer 100, the hardware
elements may be realized by various circuitry elements,
known to those skilled in the art. For example, CPU 1200
may be a Xenon or Core processor from Intel of America or
an Opteron processor from AMD of America, or may be
other processor types that would be recognized by one of
ordinary skill in the art. Alternatively, the CPU 1200 may be
implemented on an FPGA, ASIC, PLD or using discrete
logic circuits, as one of ordinary skill in the art would
recognize. Further, CPU 1200 may be implemented as
multiple processors cooperatively working in parallel to
perform the instructions of the inventive processes described
above.
The computer 100 further includes a display controller

1208, such as a NVIDIA GeForce GTX or Quadrographics
adaptor from NVIDIA Corporation of America for interfac
ing with display 1210, such as a Hewlett Packard
HPL2445w LCD monitor. A general purpose I/O interface
1212 interfaces with a keyboard and/or mouse 1214 as well
as a touch screen panel 1216 on or separate from display
1210. General purpose I/O interface also connects to a
variety of peripherals 1218 including printers and scanners,
such as an OfficeJet or DeskJet from Hewlett Packard.
The general purpose storage controller 1224 connects the

storage medium disk 1204 with communication bus 1226,
which may be an ISA, EISA, VESA, PCI, or similar, for
interconnecting all of the components of the computer 100.

10

15

25

30

35

40

45

50

55

60

65

10
A description of the general features and functionality of the
display 1210, keyboard and/or mouse 1214, as well as the
display controller 1208, storage controller 1224 and general
purpose I/O interface 1212 is omitted herein for brevity as
these features are known.
The exemplary circuit elements described in the context

of the present disclosure may be replaced with other ele
ments and structured differently than the examples provided
herein. Moreover, circuitry configured to perform features
described herein may be implemented in multiple circuit
units (e.g., chips), or the features may be combined in the
circuitry on a single chipset, as shown on FIG. 13.

FIG. 13 shows a schematic diagram of a data processing
system, according to certain embodiments, for performing
global routing. The data processing system is an example of
a computer in which specific code or instructions imple
menting the processes of the illustrative embodiments may
be located to create a particular machine for implementing
the above-noted process.

In FIG. 13, data processing system 1300 employs a hub
architecture including a north bridge and memory controller
hub (NB/MCH) 1325 and a south bridge and input/output
(I/O) controller hub (SB/ICH) 1320. The central processing
unit (CPU) 1330 is connected to NB/MCH 1325. The
NB/MCH 1325 also connects to the memory 1345 via a
memory bus, and connects to the graphics processor 1350
via an accelerated graphics port (AGP). The NB/MCH 1325
also connects to the SB/ICH 1320 via an internal bus (e.g.,
a unified media interface or a direct media interface). The
CPU Processing unit 1330 may contain one or more pro
cessors and may even be implemented using one or more
heterogeneous processor systems. For example, FIG. 14
shows one implementation of CPU 1330.

Further, in the data processing system 1300 of FIG. 13,
SB/ICH 1320 is coupled through a system bus 1380 to an
I/O Bus 1382, a read only memory (ROM) 1356, an uni
versal serial bus (USB) port 1364, a flash binary input/output
system (BIOS) 1368, and a graphics controller 1358. In one
implementation, the I/O bus can include a super I/O (SIO)
device.

PCI/PCIe devices can also be coupled to SB/ICH 1320
through a PCI bus 1362. The PCI devices may include, for
example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. Further, the hard disk drive (HDD)
1360 and optical drive 1366 can also be coupled to the
SB/ICH 1320 through a system bus. The Hard disk drive
1360 and the optical drive or CD-ROM 1366 can use, for
example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface.

In one implementation, a keyboard 1370, a mouse 1372,
a serial port 1376, and a parallel port 1378 can be connected
to the system bus 1380 through the I/O bus 1382. Other
peripherals and devices that can be connected to the SB/ICH
1320 include a mass storage controller such as SATA or
PATA (Parallel Advanced Technology Attachment), an Eth
ernet port, an ISA bus, a LPC bridge, SMBus, a DMA
controller, and an Audio Codec (not shown).

In one implementation of CPU 1330, the instruction
register 1438 retrieves instructions from the fast memory
1440. At least part of these instructions are fetched from the
instruction register 1438 by the control logic 1436 and
interpreted according to the instruction set architecture of
the CPU 1330. Part of the instructions can also be directed
to the register 1432. In one implementation, the instructions
are decoded according to a hardwired method, and in
another implementation, the instructions are decoded
according a microprogram that translates instructions into

US 9,558,313 B1
11

sets of CPU configuration signals that are applied sequen
tially over multiple clock pulses. After fetching and decod
ing the instructions, the instructions are executed using the
arithmetic logic unit (ALU) 1434 that loads values from the
register 1432 and performs logical and mathematical opera
tions on the loaded values according to the instructions. The
results from these operations can be feedback into the
register and/or stored in the fast memory 1440. According to
certain implementations, the instruction set architecture of
the CPU 1330 can use a reduced instruction set architecture,
a complex instruction set architecture, a vector processor
architecture, a very large instruction word architecture.
Furthermore, the CPU 1330 can be based on the Von
Neuman model or the Harvard model. The CPU 1330 can be
a digital signal processor, an FPGA, an ASIC, a PLA, a PLD,
or a CPLD. Further, the CPU 1330 can be an x86 processor
by Intel or by AMD: an ARM processor, a Power architec
ture processor by, e.g., IBM; a SPARC architecture proces
sor by Sun Microsystems or by Oracle; or other known CPU
architecture.
The present disclosure is not limited to the specific circuit

elements described herein, nor is the present disclosure
limited to the specific sizing and classification of these
elements. For example, the skilled artisan will appreciate
that the circuitry described herein may be adapted based on
changes on battery sizing and chemistry, or based on the
requirements of the intended back-up load to be powered.
The functions and features described herein may also be

executed by various distributed components of a system. For
example, one or more processors may execute these system
functions, wherein the processors are distributed across
multiple components communicating in a network. The
distributed components may include one or more client and
server machines, which may share processing in addition to
various human interface and communication devices (e.g.,
display monitors, Smart phones, tablets, personal digital
assistants (PDAs)). The network may be a private network,
such as a LAN or WAN, or may be a public network, such
as the Internet. Input to the system may be received via
direct user input and received remotely either in real-time or
as a batch process. Additionally, some implementations may
be performed on modules or hardware not identical to those
described. Accordingly, other implementations are within
the scope that may be claimed.

The above-described hardware description is a non-lim
iting example of corresponding structure for performing the
functionality described herein.
The hardware description above, exemplified by any one

of the structure examples shown in FIG. 12, 13, or 14,
constitutes or includes specialized corresponding structure
that is programmed or configured to perform the algorithms
shown in FIGS. 4, 6, 7, 8, 9, 10 and 11. For example, the
algorithm shown in FIG. 4 may be completely performed by
the circuitry included in the single device shown in FIG. 12
or the chipset as shown in FIG. 13, or the algorithm may be
completely performed in a shared manner.
A system which includes the features in the foregoing

description provides numerous advantages to users. In par
ticular, the present disclosure provides an improvement to
the technical field by finding a routing solution while
minimizing computation. Thus, the present disclosure
improves the functioning of a router by increasing process
ing speed, decreasing power consumption and resulting in a
chip area reduction.

Obviously, numerous modifications and variations are
possible in light of the above teachings. It is therefore to be

10

15

25

30

35

40

45

50

55

60

65

12
understood that within the Scope of the appended claims, the
invention may be practiced otherwise than as specifically
described herein.

Thus, the foregoing discussion discloses and describes
merely exemplary embodiments of the present invention. As
will be understood by those skilled in the art, the present
invention may be embodied in other specific forms without
departing from the spirit or essential characteristics thereof.
Accordingly, the disclosure of the present invention is
intended to be illustrative, but not limiting of the scope of the
invention, as well as other claims. The disclosure, including
any readily discernible variants of the teachings herein,
defines, in part, the scope of the foregoing claim terminol
ogy Such that no inventive subject matter is dedicated to the
public.
The invention claimed is:
1. A method for global routing, the method comprising:
receiving nets that need to be routed and capacity con

straints of global routing cells;
ordering, using processing circuitry, the nets as a function

of an area bounded by pins of each net;
routing, using the processing circuitry, the ordered nets by

applying maze routing within a frame having a size as
a function of the pins of a net and a first predetermined
parameter,

determining, using the processing circuitry, whether the
routing is congestion free based on the capacity con
straints of the global routing cells;

selecting, using the processing circuitry, a Subset of the
nets based on a game theory method based on a
probability of attempting to improve the spanning tree
of the net when the routing is not congestion free, the
probability being calculated as a function of a plurality
of factors;

applying, using the processing circuitry, a rip-up and
re-route process on the Subset of the nets;

repeating the selecting and applying steps until the routing
is congestion free; and

implementing, using processing circuitry, a circuit based
on the routing.

2. The method of claim 1, wherein the determining step
comprises calculating a total overflow based on the overflow
of all edges.

3. The method of claim 1, wherein the rip-up and re-route
process is iteratively applied to the subset of nets.

4. The method of claim 3, wherein the rip-up and re-route
process rip-up and re-route one or two nets at each iteration.

5. The method of claim 3, further comprising:
copying an existing spanning tree of the net to a tempo

rary variable:
deleting the existing spanning tree;
creating a second spanning tree by applying maZe routing

within the frame, the frame having a size as a function
of the pins of the net and the first predetermined
parameter,

comparing the existing spanning tree stored in the tem
porary variable with the second spanning tree as a
function of the overflow of the existing spanning tree
stored in the temporary variable, the second spanning
tree, the number of edges having a demand equal to the
capacity in the existing spanning tree and the second
spanning tree, and a third predetermined parameter,

storing, in a memory, the second spanning tree or the
temporary variable based on the comparison; and

interleaving the copying, deleting, creating, comparing,
and storing steps between the two nets when the rip-up
and re-route process is for two nets.

US 9,558,313 B1
13

6. The method of claim 1, wherein the routing step further
comprises determining a cost based on an edge capacity, an
edge demand, and a cost of a preceding cell.

7. The method of claim 6, wherein determining the cost
includes applying

where V, is a cell with a preceding cell V, u is the demand
of an edge e, c, is a capacity of the edge e, wherein the
edge e represents the edge between V, and V, and f is
a predetermined parameter.

8. The method of claim 1, wherein the probability is a
function of the area enclosed by the pins of the net when the
value of a second predetermined parameter is Zero and the
overflow of the net is greater than Zero.

9. The method of claim 1, wherein the probability is a
function of an overflow of the net, the number of edges
whose demand is equal to capacity in the spanning tree of
the net, the number of iterations since the net was ripped-up
and re-routed, and the number of pins of the net when the
value of a second predetermined parameter is equal to one.

10. A system for global routing, the system comprising:
processing circuitry configured to

receive nets that need to be routed and capacity con
straints of global routing cells,

order the nets as a function of an area bounded by pins
of each net,

route the ordered nets by applying maze routing within
a frame having a size as a function of the pins of a
net and a first predetermined parameter,

determine whether the routing is congestion free based
on the capacity constraints of the global routing
cells,

Select a Subset of the nets based on a game theory
method based on a probability of attempting to
improve the spanning tree of a net when the routing
is not congestion free, the probability being calcu
lated as a function of a plurality of factors,

apply a rip-up and re-route process on the Subset of the
nets, and

10

15

25

30

35

40

14
repeat the selecting and applying steps until the routing

is congestion free, and
implement a circuit based on the routing.

11. The system of claim 10, wherein the processing
circuitry is further configured to calculate a total overflow
based on the overflow of all edges.

12. The system of claim 10, wherein the rip-up and
re-route process is iteratively applied to the subset of nets.

13. The system of claim 12, wherein the rip-up and
re-route process rip-up and re-route one or two nets at each
iteration.

14. The system of claim 13, wherein the processing
circuitry is further configured to:

copy an existing spanning tree of the net to a temporary
variable;

delete the existing spanning tree;
create a second spanning tree by applying maze routing

within the frame, the frame having a size as a function
of the pins of the net and the first predetermined
parameter,

compare the existing spanning tree stored in the tempo
rary variable with the second spanning tree as a func
tion of the overflow of the existing spanning tree stored
in the temporary variable, the second spanning tree, the
number of edges having a demand equal to the capacity
in the existing spanning tree and the second spanning
tree, and a third predetermined parameter;

store, in a memory, the second spanning tree or the
temporary variable based on the comparison; and

interleave the copying, deleting, creating, comparing, and
storing steps between the two nets when the rip-up and
re-route process is for two nets.

15. The system of claim 10, wherein the probability is a
function of the area enclosed by the pins of the net when the
value of a second predetermined parameter is Zero and the
overflow of the net is greater than Zero.

16. The system of claim 10, wherein the probability is a
function of an overflow of the net, the number of edges
whose demand is equal to capacity in the spanning tree of
the net, the number of iterations since the net was ripped-up
and re-routed, and the number of pins of the net when the
value of a second predetermined parameter is equal to one.

k k k k k

