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SYSTEM AND METHOD FOR INVERSE 
HALFTONING 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to inverse halftoning of digi 

tal images, and particularly to a system and method of inverse 
halftoning that utilizes a partitioned look-up table and a par 
allel processing algorithm for concurrent look up of inverse 
halftone values for more than one pixel from the smaller 
look-up tables. 

2. Description of the Related Art 
In general, performance of an image forming apparatus, 

such as a printer, a multifunction copier or the like, is deter 
mined by factors such as print speed and image quality. Fac 
tors affecting the print speed include print resolution, print 
data transmission time from a host apparatus, such as a com 
puter system, to the image forming apparatus, print data pro 
cessing time in either the host apparatus and/or the image 
forming apparatus, and printing time of a printer engine in the 
image forming apparatus. Historically, printing speed has 
been largely determined by various mechanical limitations of 
the printer engine. In recent years, however, with improve 
ments to increase the speed of the printerengine, the print data 
transmission time and the print data processing time have 
become the dominant factors in calculating overall print time. 

The print data transmission time and the print data process 
ing time are determined by a data exchange system between 
the host apparatus and the image forming apparatus. For 
example, if a printer driver executing in the host apparatus 
employs a graphics device interface (GDI) system that per 
forms color matching, image rendering, etc., print data may 
be compressed by a compression algorithm in the host appa 
ratus, such as the Joint Bi-level Image Expert Group (JBIG) 
algorithm, in order to reduce transmission time for the data to 
pass from the host apparatus to the image forming apparatus. 
The transmitted print data are then decompressed and printed 
in the image forming apparatus. On the other hand, if the 
printer driver employs a page description language (PDL) 
system, the print data are transmitted as, for example, descrip 
tors that are processed entirely in the image forming appara 
tus to render the image, unlike in the GDI system. 

FIG. 2 is a flowchart illustrating an example of a conven 
tional process of transmitting print data from a host apparatus 
to an image forming apparatus. Referring to FIG. 2, at opera 
tion 100, halftoning is performed in the host apparatus on, for 
example, an 8-bit grayscale image having a resolution of 
200×200 pixels, and the grayscale image is converted into a 
one-bit binary image having resolution of 200×200 pixels. 

Halftoning is a reprographic technique that simulates con 
tinuoustone imagery through the use of dots, varying eitherin 
size orin spacing. Whereas continuous tone imagery (such as 
film photography, for example) contains a theoretically infi 
nite range of colors or greys, the halftone process reduces 
visual reproductions to a binary image that is printed with 
only one color of ink. This binary reproduction relies on a 
basic optical illusion; i.e., that these tiny halftone dots are 
blended into smooth tones by the human eye. 

Just as color photography evolved with the addition of 
filters and film layers, color printing is made possible by 
repeating the halftone process for each subtractive color, most 
commonly using what is generally referred to as the “CMYK 
color model” (the “cyan, magenta, yellow and black” model). 
The semi-opaque property of ink allows halftone dots of 
different colors to create another optical effect; i.e., full-color 
imagery. 
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2 
Digital halftoning typically uses a raster image or bitmap 

within which each monochrome picture element or pixel may 
be on or off, represented by ink or no ink. Consequently, to 
emulate the photographic halftone cell, the digital halftone 
cell must contain groups of monochrome pixels within the 
same-sized cell area. The fixed location and size of these 
monochrome pixels compromises the high frequency/low 
frequency dichotomy of the photographic halftone method. 
Clustered multi-pixel dots cannot “grow” incrementally, but 
injumps of one whole pixel. In addition, the placement of that 
pixel is slightly off-center. To minimize this compromise, the 
digital halftone monochrome pixels must be quite small, 
numbering from 600 to 2,540, or more, pixels per inch. How 
ever, digital image processing has also enabled more sophis 
ticated dithering algorithms to decide which pixels to turn 
black or white, some of which yield better results than digital 
halftoning. 

Returning to FIG. 2, JBIG compression (JBIG is a lossless 
image compression standard from the Joint Bi-level Image 
Experts Group, standardized as ISO/IEC standard 11544 and 
as ITU-T recommendation T.82.) is performed on the result 
antbinary image at operation 102 and the compressed binary 
image is transmitted from the host apparatus to an image 
forming apparatus at operation 104. At operation 106, JBIG 
decompression is performed on the binary image transmitted 
to the image forming apparatus. In this case, a high-capacity 
page memory is required to store the 200×200 one-bit image. 
Additionally, a large quantity of data must be transmitted 
since the compressed binary image also has a large quantity of 
data. If a page memory has the capacity to store an image 
transmitted from the host apparatus to the image forming 
apparatus, i.e., there is a large quantity of transmission data, a 
long time is required to transmit the data to fill the page 
memory, prior to which no printing is performed. 

FIGS. 3 and 4 are flowcharts illustrating other examples of 
conventional processes to print data from a host apparatus to 
an image forming apparatus. FIG. 3 illustrates a case where 
the amount of data of an input image (hereinafter also referred 
to as “information quantity”) is reduced. In this example, 
operations 108, 110, 112 and 114 are similar to the operations 
100, 102,104 and 106 in the example of FIG. 2. The example 
of FIG. 3 additionally includes operation 116, where the 
200×200 one-bit binary image decompressed in operation 
114 is converted into a 200×2008-bit grayscale image. Con 
sequently, operation 116 increases the information quantity. 

FIG. 4 illustrates a case where the size of an input image is 
reduced. In the example of FIG. 4, operations 120, 122, 124 
and 126 are similar to operations 108, 110, 112 and 114 in the 
example of FIG. 3. The example of FIG. 4 additionally 
includes operation 118 where the size of an input image is 
reduced from 200×200 pixels to 100×100 pixels. The process 
of FIG. 4 further includes operation 128 to increase the spatial 
resolution of the 100×100 one-bit binary image, decom 
pressed in operation 126, to produce a 200×200 one-bit 
binary image. The operation 128 expands the size of the 
image using an interpolation method or the like. 
Using the above-described processes to reduce the infor 

mation quantity or the size of the image prior to the transmis 
sion of the print data may result in a shortened transmission 
time. Specifically, print data to fill a page memory reduced to 
% its size otherwise can be transmitted in the example of FIG. 
3 and print data to fill a page memory reduced to V4 its size 
otherwise can be transmitted in the example of FIG. 4. Sub 
sequent to print data transmission, the data to render the 
image in a desired size and resolution can be obtained by 
increasing the information quantity or the number of pixels in 
the recovered image. 
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FIG. 5 is a flowchart illustrating a conventional resolution 
increasing method using a look-up table (LUT). As illustrated 
in FIG. 5, at operation 130, a binary image is input, and an 
image process at operation 132 is performed by accessing a 
look-up table (not illustrated) to retrieve image data corre 
sponding to an input block of the input binary image. When 
the image process is performed on all input blocks constitut 
ing the binary image at operation 134, the resolution increas 
ing method is terminated. 

In such a conventional method, the image process is per 
formed using one predetermined look-up table respective of 
characteristics of the input binary image. In the case where 
the look-up table contains mean values of pixels obtained 
from a representative training image, artifacts, such as blur 
ring, may occur in a resultant image pattern after the image 
processing of a specific input image. 

In a wide variety of applications, the computations are 
replaced by look-up tables, as in the above, resulting in sig 
nificantly reduced computation times. One such application 
is LUT-based inverse halftoning, in which the inverse half 
toning of images is performed directly by accessing a LUT. 
The LUT needs to be pre-computed from a training set of 
images. The LUT operation begins with a p-bit vector (also 
referred to as a “template”) being retrieved from the source 
and being transmitted to the LUT that has already stored 
output values corresponding to that template. In this way, all 
templates are, one by one, retrieved from the halftone image 
and go through the LUT operation to obtain their output 
values of the inverse halftoning. 

Digital halftoning has recently gained in popularity and 
importance due to the availability and adoption of bi-level 
devices, such as fax machines and plasma displays. The input 
to a digital halftoning system is an image whose pixels have 
more than two levels, for example 256, and the result of the 
halftoning process is an image that has only two levels. 

Inverse halftoning is an operation involving the conversion 
of an image from its halftone version to a grey level image: 
i.e., from a two level image to, for example, a 256-level 
image. Inverse halftone operations have broad applications in 
areas where processing is required on printed images. The 
images are first scanned, then inverse halftoned, and then 
operations such as zooming, rotation and transformation may 
be applied. Standard compression techniques cannot process 
halftones directly. Thus, inverse halftoning is required before 
compression of printed images can be performed. 
An exemplary look-up table method for inverse halftoning 

is described in the article “Look-Up Table (LUT) Method for 
Inverse Halftoning” by Murat Mese and P. P. Vaidyanathan, 
published in IEEE Tran. Image Processing, Vol. 10, No. 10, 
October 2001, which is hereinincorporated by reference in its 
entirety. 

This method represents a relatively fast and computation 
free method of inverse halftoning, providing high quality 
images. The LUT method for inverse halftoning generally 
includes the following procedural steps. Using a template 
(represented by t), which is a group of pixels consisting of the 
pixel to be inverse halftoned and the pixels in its neighbor 
hood. The LUT method for inverse halftoning uses four types 
of templates, namely: “16pels”, “19pels”, and “Rect”. The 
16pels have 16 pixels, 19pels have 19 pixels and Rect have 21 
pixels. One pixel is equal to one bit because pixels have 
bi-level values in halftone images. Each template has a pixel 
0 that indicates the position of the pixel to be inverse half 
toned, and the other neighborhood pixels are numbered from 
1 to 18 (when the template type is 19pels). 
The templates are retrieved from the halftone image fol 

lowing a raster-scan style, i.e. from left to right in a row, and 
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4 
from top to bottom of the image. A template is retrieved from 
the halftone image and goes to the LUT. The LUT returns the 
contone value that corresponds to the retrieved template. The 
results from the LUT form the output image. One template is 
retrieved and completes its inverse halftone operation using 
the LUT before the next template is retrieved. 
The contents of the LUT used in the above LUT methodare 

generated by building a training set of images that includes 
continuous-tone images and their respective halftone ver 
sions. The templates are retrieved from the halftone images 
and their contone level values are retrieved from the corre 
sponding continuous-tone image. When a template occurs 
more than once in the training set, then its contone value is the 
mean of all contone values that corresponds to that template 
in the training set. 
The LUT method of inverse halftoning is completely com 

putation free and requires only LUT access when the same 
halftone algorithm (e.g., Floyd and Steinberg Error Diffu 
sion) is used in the input halftone images and in the halftone 
images of the training set for LUT generation. 
The LUT method for inverse halftoning can also be applied 

to color halftones. The color inverse halftoning includes three 
color planes (R, G, B), and each plane has its independent 
LUT. The templates, however, can contain pixels from differ 
ent color plans. 

Thus, a system and method for inverse halftoning using a 
partitioning look-up table solving the aforementioned prob 
lems is desired. 

SUMMARY OF THE INVENTION 

The system and method for inverse halftoning using a 
partitioning look-up table provides an improvement on the 
LUT method for inverse halftoning, and a hardware imple 
mentation thereof. The method includes the partitioning of 
the single LUT into N smaller look-up tables (s-LUTs). After 
partitioning, NS-LUTs are generated, which can be stored in 
separate memory blocks, allowing parallel access to more 
than one s-LUT at any time. Such parallelization is not pos 
sible with only one LUT stored in a single memory block. 

Additionally, two or more templates (represented as r tem 
plates) with different pixels at position 0 can be retrieved from 
the halftone image concurrently. In the present method, risN. 
ensuring high image quality. Further, the contents of the 
single LUT are partitioned into N s-LUTs, thus the total 
entries in N s-LUTs are equal to the entries in the single LUT 
of the LUT based method of inverse halftoning. 

In the present method, a p-bit vector (also referred to as a 
“template”, where p-1, and p-r) is the input to the LUT. The 
LUT is pre-computed using a training set, with the training set 
containing possible inputs and their output values. It should 
be noted that no relationship among the entries in the LUT is 
assumed. The LUT then returns one output corresponding to 
a given input template. The LUT does not store duplicate 
values (i.e., entries that have the same input and output val 
ues). 
The present method uses the following basic steps: (a) 

building a template training set including at least one con 
tinuous-tone image and a corresponding halftone image; (b) 
retrieving a full set of templates and a set of corresponding 
output values from the template training set; (c) representing 
each retrieved template as t and applying a partitioning func 
tion to each template t, wherein the partitioning function 
divides an initial look-up table into N smaller look-up tables, 
wherein N is an integer; (d) storing each template t and the 
corresponding output value in a corresponding one of the 
smaller look-up tables, the selected one of the smaller look-up 
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tables having a number equal to a result of the partitioning 
function; (e) setting the output value stored in the selected 
smaller look-up table equal to an averaged output value; and 
(f) performing an inverse halftoning operation using N 
smaller look-up tables on halftone images. N is an exponent 
of 2 (i.e., N=2, 4, 8, etc.) and the same value of N is used in all 
steps of the method. 

These and other features of the present invention will 
become readily apparent upon further review of the following 
specification. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a simplified schematic view of a system for 
inverse halftoning using a partitioning look-up table accord 
ing to the present invention. 

FIGS. 2, 3, 4 and 5 are flowcharts illustrating prior art 
methods for halftoning and image manipulation. 

FIG. 6 is a simplified schematic view of a prior art system 
for performing look-up table retrieval of image data. 

FIG. 7 is a graph comparing image quality of a prior art 
method compared with the present method for inverse half 
toning using a partitioning look-up table. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

The system and method for inverse halftoning using a 
partitioning look-up table provides an improvement in LUT 
methods for inverse halftoning, and a hardware implementa 
tion thereof. The method includes the partitioning of the 
single LUT into N smaller look-up tables (s-LUTs). After 
partitioning, N s-LUTs are generated, which can be stored in 
separate memory blocks, allowing parallel access to more 
than one s-LUT at any time. Such parallelization is not pos 
sible with only one LUT stored in a single memory block. 

Additionally, two or more templates (represented as r tem 
plates) with different pixels at position.0 can be retrieved from 
the halftone image concurrently. In the method, räN, ensur 
ing high image quality. Further, the contents of the single 
LUT are partitioned into N s-LUTs, thus the total entries in N 
s-LUTs are equal to the entries in the single LUT of the LUT 
based method of inverse halftoning. 
As described above, in the conventional prior art LUT 

method for inverse halftoning, a template t is a group of pixels 
consisting of a pixel to be inverse halftoned and the neigh 
boring pixels. The LUT method uses three types oftemplates, 
namely: 16pels, 19pels and Rect. The 16pels consist of 
16-pixels, the 19pels consist of 19-pixels and Rect consists of 
21 pixels. The templates are retrieved from the halftone image 
following a raster scan; i.e., from left to right in a row, and 
traveling over rows from top to bottom. One template t is 
retrieved and inverse halftoned before the next template is 
retrieved. The LUT method also incorporates an LUT that 
stores pre-computed contone values of a large number of 
templates. The templates for storage in the LUT are selected 
from a training set of images that are formed of both halftone 
images and their continuous tone versions before halftoning. 
The templates are selected from the halftone images, and their 
contone values are selected from the continuous tone ver 
S1011S. 

As will be described in greater detail below, when a tem 
plate occurs more than once, its contone value is set to be the 
mean of all contone values that correspond to that template. 
The inverse halftone operation is performed in this way such 
that a template t is retrieved from the halftone image and then 
is sent to the LUT. If the LUT has the stored contone value for 
the template t, then it returns this value, otherwise the tem 
platetis transformed by either low pass filtering or best linear 
estimation. The LUT method for inverse halftoning can also 
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6 
be applied to color halftones. The color inverse halftoning 
utilizes three color planes (R, G, B), and each plane has its 
own independent LUT that stores contone values for its color 
plane, although the templates may contain pixels from differ 
ent color planes. 

In order to parallelize the LUT method for inverse halfton 
ing, more than one template must be retrieved from the half 
tone image at the same time, with the inverse halftone opera 
tion being performed on each template independent of the 
others. In the present method, a p-bit vector (also referred to 
as a “template”, where p-1, and p-r) is the input to the LUT. 
The LUT is pre-computed using a training set, with the train 
ing set containing possible inputs and their output values. It 
should be noted that no relationship among the entries in the 
LUT is assumed. The LUT then returns one output corre 
sponding to a given input template. The LUT does not store 
duplicate values (i.e., entries that have the same input and 
output values). 

FIG. 6 illustrates a simplified, exemplary hardware system 
200 for implementing the use of a look-up table. The system 
200 includes coupled Content Addressable Memory (CAM) 
212 and Read Only Memory (ROM) 214. The template 
retrieved for the LUT operation is first transmitted to the 
CAM 212, which then returns the address of the ROM 214 
where the output value corresponding to the template is 
stored. The address retrieved from the CAM 212 is input to 
the ROM 214, which returns the output value. Using such a 
circuit, only one template can go through the LUT operation 
at any given time. The system utilizes a programmable logic 
device, such as a field programmable logic device or a com 
plex programmable logic device, for example, in communi 
cation with the memory. 
The partitioning of the LUT into N s-LUTs modifies the 

system 200 of FIG. 6. As shown in system 10 of FIG. 1, up to 
r templates are retrieved concurrently for LUT operations, 
and N s-LUTs are used instead of a single LUT (as in system 
200 of FIG. 1). The N s-LUTs are stored in N CAM-ROM 
pairs (with pairs 14, 16; 18, 20; and 22, 24 being shown). Each 
CAM-ROM pair functions in a manner similar to the CAM 
ROM pair 212, 214 in the system 200, using only the single 
LUT. 

System 10 further requires a computational block 12, used 
before transmission of the templates to the s-LUTs, that com 
putes which template among the r retrieved templates should 
go to which particular, corresponding S-LUT. Computational 
block 12 is referred to as “Block 0” in the following. FIG. 1 
also shows a computational block 26, used after retrieval from 
the s-LUTs, which is referred to as “Block 1" in the following. 
Block 1 is necessary because Block 0 is typically unable to 
send all r templates to a distinct N number of s-LUTs. This 
may result in collisions, and, at most, the single-template per 
s-LUT principle is applied, with the remaining templates 
being discarded. Those discarded templates are assigned con 
tone values in Block 1. 
The method of partitioning and the hardware implementa 

tion for post-partitioning both utilize a function, herein 
referred to as “Blocked XOR” (BX). The Function BX has an 
input oft(0... p-1) and N (where N is an even number), and 
returns a log2N-bits vector. The BX function is defined as 
follows. 
The template represented by t|where t is a p-bit vector) is 

divided into log2N (where N is even) blocks, so that each 
block except the last block has a width equal to: 

(1). size of blocks except last block = mood |is 
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It should be noted that the function “floor” rounds the value to 
an integer that is less than or equal to 

For the last block: 

(2). size of the last block = p — hood ×(log2 N - 1)bits; log, N 

A bit-serial XOR operation is next applied to each block 
independently. The operation is given by the following. Lett 
(a p-bit vector) be represented by t|0 . . . p-1), then: 

a(t)=t(j) & t?jæ1) & ... & t?jºb), (3) 
where i-0 to log2(N)-1, b=size of the blocks except last 
block when i-log2(N)-1 and b-size of the last_block when 
i-log2(N)-1; and 

X i. 

The result of the BX Function is given as “result”: 
result=a(0)||a|1)||... ||a(log2N–1) 

where, in the above, & represents an XOR operation and || 
represents a concatenate operation. 

The LUT is partitioned into N smaller look-up tables using 
the BX function. The s-LUTs are numbered from 0 to N–1. 
The steps required to accomplish this partitioning are given in 
the following. 

The process begins by first building a training set, which 
contains possible patterns of inputs and their output values. In 
inverse halftoning applications, the training set contains con 
tinuous-tone images and their corresponding halftone 
images. This is the same training set that is used to generate 
entries for the conventional non-partitioned LUT. 

Next, all templates in the training set are retrieved along 
with their corresponding output values from the training set. 
The following operations are then applied to each template: 

i) Each retrieved template is represented by t. 
ii) the function BX is then applied to the template t such 

that the value of N is kept equal to the number of s-LUTs 
that are desired to be pre-computed. In order to reduce 
computation, values of N are required to be exponents of 
2; i.e. 2, 4, 8, 16, etc.; 

iii) the template t and its output value are then stored in the 
s-LUT that has a number equal to the result of the BX 
function; 

(iv) for inverse halftoning applications, if the same tem 
plate value occurs more than once in the training set, 
then the output value stored in the s-LUT is defined as 
the sum of the output values corresponding to the tem 
plate value in the training set divided by the number of 
times the template value has occurred. This output value 
stored in the s-LUT is also equal to the averaged output 
value; and 

(v) all templates in the training set and their output values 
are stored in their respective s-LUTs following the same 
output value definition of step (iv). 

In the above partitioning, each S-LUT stores a unique set of 
templates, thus the number of entries in all Ns-LUTs remains 
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8 
equal to the number of entries in the single LUT of the 
conventional, prior non-partitioned LUT. The training set 
used to generates-LUTs is the same as used for generating the 
single LUT of the conventional non-partitioned method. 
The computational steps required to perform the hardware 

implementation of LUT operation (in the system of FIG. 1), in 
which two or more templates can obtain their output simul 
taneously using s-LUTs, is described in detail in the follow 
ing. This process requires that the entries for N s-LUTs must 
be pre-computed using the method described above. The 
computational steps are as follows. 
Up to r (where r is a positive integer) number of templates 

are concurrently retrieved from the input source. The tem 
plates are represented as to, ti, . . . , tº 1. The function BX is 
then applied to each template concurrently. This operation is 
represented symbolically using the following Equations (5) 
(7): 

Ro–BX FUNCTION(to); (5) 

R1–BX FUNCTION(t); (6) 

R, ? =BX FUNCTION(t_1), (7) 

where each R represents the Result of the BX function (given 
by equation (3)), and BX_FUNCTION represents the BX 
function. It should be further noted that the tin equations (1), 
(2) and (3) represented only a single template. In equations 
(5), (6) and (7), r templates are used, thus the subscript-t 
templates in equations (5), (6) and (7) represent r templates 
from to to tº 1: 
The templates are then sent to the s-LUTs corresponding to 

(i.e., that have same number as) the result returned from the 
BX function. If two or more templates among the templates 
that are retrieved concurrently have the same result, then only 
one template among them is sent to the corresponding s-LUT. 
The other templates continue to go to their s-LUTs without 
droppage. This dropping of some templates may cause some 
degradation or loss in the output quality. The operations that 
are performed in this step are shown symbolically using equa 
tions in the following. 
The numbers 1 to rare appended to r retrieved templates as 

follows: 

to'(0. . . p4-logor)=to&1)10; (8) 

t, I'(0... p4-logor)=t, 1 &r)10; (10) 

where the numbers 1 to r have log2(r)+1 bits. Each template 
value is then demultiplexed (with the demultiplexing function 
being represented in the following as DEMUX), with the 
equations for r demultiplexers with N outputs being given by: 

A,IO)=DEMUX(input=t,', select=R); (11) 

A.I.1]=DEMUX(input=t,', select=R); (12) 

where i-0 to r-1, and the numbers 0 to N-1 inside the square 
brackets represent N outputs from each demultiplexer, and 
the values A, are intermediate values to be used in the next 
step or calculation purposes only. In the demultiplexer, each 
output has a width equal to the width of the input. The func 
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tion DEMUX performs the demultiplexing operation in 
which the input is vectort, and the selected line input is R. As 
a result of the DEMUX function, any one (for example, A[3]) 
among N output lines (i.e., A.I.0, 1, 2, ... N-1]) contains valid 
output. The remaining outputs are held at a low level. 
The A, values are next decoded (with the decoding function 

being represented as DECODE in the following), with the 
equations of N decoders being given by: 

daDECODE(output)=0 when Ao?il; (14) 

daDECODE(output)=1 when NOT (Ao?il) AND 
Al?il; 

daDECODE(output)=r-1 when NOT (Ao?il) AND 
NOT (A?il) ... NOT (A, 2?i) AND A, ?il); 

where i-0 to N-1, and d, is a temporary, calculated value to be 
used in the following step. The DECODE function represents 
the decoding operationin which the output is calculated using 
the “when” conditions. 

The temporary values of the calculated A, and d, are next 
multiplexed (with the multiplexing function being repre 
sented as MUX in the following), with the equations for 
multiplexers having r inputs being given by: 

where i-0 to N-1 and G, is another temporary, intermediate 
value, to be used in the following step. The width of G, is equal 
to the width of any one input. The MUX function performs the 
multiplexeroperation in which there are rinputs and the input 
to the select line is dy. The multiplexer operations have single 
output that is also the output from the MUX function and 
contains any one value among the r inputs. The output value 
is according to the value present at the select line. 
The equations corresponding to the s-LUTs are given by: 

where i-0 to N-1, and c, represents the output from this step. 
Next, the output values of the templates are ordered according 
to the sequence numbers assigned to them above. This step is 
required to ensure the correct order of outputs. The equations 
representing these operations are given below: 

c6 = co if Go?p ... p + log-r) = 1),0. (17) 
= c if G1 (p ... p + logºr) = 1), o, 

= CM-1 if GN-1(p ... p + log, r) = 1),0 

cN–1 if GN-1(p ... p + log2 r) = 2) to 

where co to c, I represents the output values oftemplates that 
are appended with numbers 1 to r, respectively, in Equations 
(8) to (10). 
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10 
The templates that are discarded in the above procedure are 

next assigned output values of their leftmost neighbors (rep 
resented by the encoding function ENCODE in the follow 
ing). This computation is performed as follows: 

Result=ENCODE(Result, i WHEN Result, is null c, 
OTHERWISE), (20) 

where i-0 to r-1, and Result, represents the output values 
obtained after the parallel LUT operation. The function 
ENCODE performs the encoding operation in which the out 
put is calculated using the “when” conditions. 

All of the above steps can be pipelined, allowing each step 
to be performed concurrently on different data items. The 
calculation of clock cycles consumed when performing par 
allel inverse halftoning of images using the above method is 
given by the following. 

Let the number of pixels in the halftone image=1xm. Then, 
the clock cycles consumed in the LUT-based inverse 
halftoning=lxm. Letting the number of templates which are 
retrieved simultaneously be set as r, and letting the total 
number of pipeline stages be set as p_stages, then the clock 
cycles consumed in the parallel inverse halftone operation is 
given by 

lx m 
2 × (p stages) + -. 

The gain in clock cycles using the partitioning over the 
non-partitioned LUT-based inverse halftoning is given by 

2 × (p stages) + 1 
lx m r 

The quality of some images obtained from the partitioned 
LUT method is illustrated in FIG. 7. The graph further shows 
the image quality of the serial LUT method for comparison. 

It is to be understood that the present invention is not 
limited to the embodiments described above, but encom 
passes any and all embodiments within the scope of the fol 
lowing claims. 
We claim: 
1. A method for inversehalftoning, comprising the steps of: 
a) building a template training set including at least one 

continuous-tone image and a corresponding halftone 
image: 

b) retrieving a full set oftemplates and a set of correspond 
ing output values from the template training set; 

c) representing each of the retrieved templates as t and 
applying a partitioning function to each of the templates 
t, the partitioning function dividing an initial look-up 
table into N smaller look-up tables, wherein N is an 
integer, 

d) storing each of the templates t and the corresponding 
output values for the templates in a corresponding one of 
the smaller look-up tables, the corresponding one of the 
smaller look-up tables having a numerical value associ 
ated therewith equal to a result of the partitioning func 
tion; 

e) setting the output value stored in the corresponding one 
of the smaller look-up tables equal to an averaged output 
value; and 

f) defining an integer r as the number of the retrieved 
templates and performing an inverse halftoning opera 
tion having the steps of: 
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retrieving the r retrieved templates simultaneously; and 
inverse halftoning the r retrieved templates, the inverse 

halftoning using the N smaller look-up tables, the 
input to the inverse halftoning being a halftone image 
and the output of the inverse halftoning being a con 
tinuous-tone image. 

2. The method for inverse halftoning as recited in claim 1, 
wherein the step of applying the partitioning function com 
prises the steps of: 

a) establishing a variable p such that template t is a p-bit 
vector; 

b) dividing template t into log2 N blocks, such that each 
said block except the last of said blocks has a width 
represented by size of blocks excepts last_block; 

c) establishing a function floor which rounds each said 
width to an integer that is less than or equal to 

|rºw log2N || 

d) calculating each said width size of a 
blocks, sexcept slast_block as 

size of blocks except last block = hood |is log2N 

e) calculating a width of the last of said blocks as 

size of the last block = p — mood log, N ×(log2 N - 1)bits; 

and 
f) establishing an intermediate set of variables a, b, i and j, 

and applying a bit-serial XOR operation to each said 
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block independently as a?i)=t(j) & t|j+1) & . . . & t?j+ 
b), wherein i ranges between 0 and log, (N)-1, b = 
size of the block except last_block when i <log2(N– 
1) and b-size of the last block when i-log2(N-1), 
and 

X i. 

3. The method for inverse halftoning as recited in claim 2, 
wherein N is selected as an integral power of 2, and the 
result of the partitioning function is given by result= 
a(0)||a(1) || . . . |a(log2 N-1). 

4. The method for inverse halftoning as recited in claim 3, 
wherein the partitioning function is applied to each of the r 
templates simultaneously, and if more than one of said r 
templates return the same result from the partitioning func 
tion, then a selected one of said templates is stored in the 
corresponding smaller look-up table and the remaining tem 
plates having the same result are discarded. 

5. The method of inverse halftoning as recited in claim 4, 
further comprising the steps of: 

a) appending the numbers 1 to rto ther retrieved templates; 
b) demultiplexing each template value to produce a demul 

tiplexed value; 
c) decoding each demultiplexed value to produce a 

decoded value; 
d) multiplexing each demultiplexed value and the corre 

sponding decoded value; 
e) ordering the respective output values of the templates 

with respect to the number assigned to each output value 
corresponding to the result of the partitioning function; 
and 

f) assigning output values to each discarded template equal 
to the output value of the left-most neighbor of each 
discarded template. 


