
US008390894.E.2

(12) United States Patent (10) Patent No.: US 8,390,894 B2
Sait et al. (45) Date of Patent: Mar. 5, 2013

(54) SYSTEMAND METHOD FOR INVERSE sº º º º al. 1 ailey et al.
HALFTONING 2007/0146796 A1 6/2007 Loce et al.

2007/0147699 A1 6/2007 L tal.
(75) Inventors: Sadiq Mohammed Sait, Dhahran (SA); *?. A. ºs ºji

Umair Farooq Siddiqi, Dhahran (SA)
FOREIGN PATENT DOCUMENTS

(73) Assignee: King Fahd University of Petroleum EP 0447245 9/1991

OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 Murat Mese and P.P. Vaidyanathan, “Look-Up Table (LUT) Method
U.S.C. 154(b) by 819 days. for Inverse Halftoning”, IEEE Transactions on Image Processing,

vol. 10, No. 10, Oct. 2001.
(21) Appl. No.: 12/585,049 - -

Primary Examiner — Thomas D Lee
(22) Filed: Sep. 1, 2009 Assistant Examiner – Stephen M Brinich

(74) Attorney, Agent, or Firm – Richard C. Litman
(65) Prior Publication Data

57 ABSTRACT
|US 2011/005.1198 A1 Mar. 3, 2011 (57) - - - -

The system and method for inverse halftoning using a parti
(51) Int. Cl. tioning look-up table (LUT) provides an improvement on a

H04N I/405 (2006.01) conventional LUT method for inverse halftoning, and a hard
- - ware implementation thereof. The method includes the par

(52) U.S. Cl. º 358/3.08; 358/1.16, 358/3.06 titioning of the single LUT into N smaller look-up tables
(58) Field of Classification Search 358/3.06–3.09, (s-LUTs). After partitioning, N s-LUTs are generated, which

358/1.9, 2.1, 3.13–3.15, 3.21, 3.26–3.27, can be stored in separate memory blocks, allowing parallel
- . - 358/1.1 6–1. 17, 1.13, 468 access to more than one s-LUT at any time. Such paralleliza

See application file for complete search history. tion is not possible with only one LUT stored in a single
(56) Ref Cited memory block. Additionally, two or more templates (repre

e1erences UILe

|U.S. PATENT DOCUMENTS

4,866,514 A 9/1989 Yeomans
6,223,320 B1 4/2001 Dubey et al.
6,356,654 B1 3/2002 Loce et al.
6,567,083 B1 5/2003 Baum et al.
6,683,994 B1 1/2004 de Queiroz et al.
6,801,337 B2 10/2004 Bhaskar et al.

r Refrieved
Templates Computational

Circuit to Send r
Templates to

Distinct s-LUTs

Block 0

sented as rtemplates) with different pixels at position 0 can be
retrieved from the halftone image concurrently. Further, the
contents of the single LUT are partitioned into Ns-LUTs, thus
the total entries in Ns-LUTs are equal to the entries in the
single LUT of the conventional LUT based method of inverse
halftoning.

5 Claims, 7 Drawing Sheets

Output Values
of r Templates Circuit to Assign

Output Values to
Dropped Templates

Block ºf

US 8,390,894 B2 Sheet 1 of 7 Mar. 5, 2013 U.S. Patent

92

W

WVO 0# LITT-s

O X10O18

U.S. Patent Mar. 5, 2013 Sheet 2 of 7 US 8,390,894 B2

START

100

PERFORM HALFTONING

102 TN_
PERFORM JBIG COMPRESSION w

104

TRANSMIT COMPRESSED BINARY IMAGE

106

PERFORM JBIG DECOMPRESSION

END

Fig. 2
PRIOR ART

U.S. Patent Mar. 5, 2013 Sheet 3 of 7 US 8,390,894 B2

START

108

PERFORM HALFTONING

110

PERFORM JBIG COMPRESSION

112

TRANSMIT COMPRESSED BINARY |MAGE

114

PERFORM JBIG DECOMPRESSION

116

PERFORM IMAGE PROCESS FOR
GRAY SCALE RESOLUTION IMPROVEMENT

END

Fig. 3
PRIOR ART

U.S. Patent Mar. 5, 2013 Sheet 4 of 7 US 8,390,894 B2

START

118

PERFORM HALFTONING

120 -

PERFORM JBIG COMPRESSION

122

TRANSMIT COMPRESSED BINARY IMAGE

124

PERFORM JBIG DECOMPRESSION

126

PERFORM IMAGE PROCESS FOR
SPATIAL RESOLUTION IMPROVEMENT

END

Fig. 4
PRIOR ART

U.S. Patent Mar. 5, 2013 Sheet 5 of 7 US 8,390,894 B2

130

INPUT BLOCK OF BINARY IMAGE

PERFORM IMAGE PROCESS BY
APPLYING LOOKUP TABLE

132

IS IMAGE PROCESS COMPLETED
FOR ALL BLOCKSTP

Fig. 5
PRIOR ART

US 8,390,894 B2 Sheet 6 of 7 Mar. 5, 2013 U.S. Patent

00Z

yndynO

9 '61-I

--~~~~~~ ~~~~.~~~~.~~~~);
|

US 8,390,894 B2

********?
§§§ 33§§§§

Sheet 7 of 7 Mar. 5, 2013 U.S. Patent

US 8,390,894 B2
1

SYSTEM AND METHOD FOR INVERSE
HALFTONING

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to inverse halftoning of digi

tal images, and particularly to a system and method of inverse
halftoning that utilizes a partitioned look-up table and a par
allel processing algorithm for concurrent look up of inverse
halftone values for more than one pixel from the smaller
look-up tables.

2. Description of the Related Art
In general, performance of an image forming apparatus,

such as a printer, a multifunction copier or the like, is deter
mined by factors such as print speed and image quality. Fac
tors affecting the print speed include print resolution, print
data transmission time from a host apparatus, such as a com
puter system, to the image forming apparatus, print data pro
cessing time in either the host apparatus and/or the image
forming apparatus, and printing time of a printer engine in the
image forming apparatus. Historically, printing speed has
been largely determined by various mechanical limitations of
the printer engine. In recent years, however, with improve
ments to increase the speed of the printerengine, the print data
transmission time and the print data processing time have
become the dominant factors in calculating overall print time.

The print data transmission time and the print data process
ing time are determined by a data exchange system between
the host apparatus and the image forming apparatus. For
example, if a printer driver executing in the host apparatus
employs a graphics device interface (GDI) system that per
forms color matching, image rendering, etc., print data may
be compressed by a compression algorithm in the host appa
ratus, such as the Joint Bi-level Image Expert Group (JBIG)
algorithm, in order to reduce transmission time for the data to
pass from the host apparatus to the image forming apparatus.
The transmitted print data are then decompressed and printed
in the image forming apparatus. On the other hand, if the
printer driver employs a page description language (PDL)
system, the print data are transmitted as, for example, descrip
tors that are processed entirely in the image forming appara
tus to render the image, unlike in the GDI system.

FIG. 2 is a flowchart illustrating an example of a conven
tional process of transmitting print data from a host apparatus
to an image forming apparatus. Referring to FIG. 2, at opera
tion 100, halftoning is performed in the host apparatus on, for
example, an 8-bit grayscale image having a resolution of
200×200 pixels, and the grayscale image is converted into a
one-bit binary image having resolution of 200×200 pixels.

Halftoning is a reprographic technique that simulates con
tinuoustone imagery through the use of dots, varying eitherin
size orin spacing. Whereas continuous tone imagery (such as
film photography, for example) contains a theoretically infi
nite range of colors or greys, the halftone process reduces
visual reproductions to a binary image that is printed with
only one color of ink. This binary reproduction relies on a
basic optical illusion; i.e., that these tiny halftone dots are
blended into smooth tones by the human eye.

Just as color photography evolved with the addition of
filters and film layers, color printing is made possible by
repeating the halftone process for each subtractive color, most
commonly using what is generally referred to as the “CMYK
color model” (the “cyan, magenta, yellow and black” model).
The semi-opaque property of ink allows halftone dots of
different colors to create another optical effect; i.e., full-color
imagery.

10

15

20

25

30

35

40

45

50

55

60

65

2
Digital halftoning typically uses a raster image or bitmap

within which each monochrome picture element or pixel may
be on or off, represented by ink or no ink. Consequently, to
emulate the photographic halftone cell, the digital halftone
cell must contain groups of monochrome pixels within the
same-sized cell area. The fixed location and size of these
monochrome pixels compromises the high frequency/low
frequency dichotomy of the photographic halftone method.
Clustered multi-pixel dots cannot “grow” incrementally, but
injumps of one whole pixel. In addition, the placement of that
pixel is slightly off-center. To minimize this compromise, the
digital halftone monochrome pixels must be quite small,
numbering from 600 to 2,540, or more, pixels per inch. How
ever, digital image processing has also enabled more sophis
ticated dithering algorithms to decide which pixels to turn
black or white, some of which yield better results than digital
halftoning.

Returning to FIG. 2, JBIG compression (JBIG is a lossless
image compression standard from the Joint Bi-level Image
Experts Group, standardized as ISO/IEC standard 11544 and
as ITU-T recommendation T.82.) is performed on the result
antbinary image at operation 102 and the compressed binary
image is transmitted from the host apparatus to an image
forming apparatus at operation 104. At operation 106, JBIG
decompression is performed on the binary image transmitted
to the image forming apparatus. In this case, a high-capacity
page memory is required to store the 200×200 one-bit image.
Additionally, a large quantity of data must be transmitted
since the compressed binary image also has a large quantity of
data. If a page memory has the capacity to store an image
transmitted from the host apparatus to the image forming
apparatus, i.e., there is a large quantity of transmission data, a
long time is required to transmit the data to fill the page
memory, prior to which no printing is performed.

FIGS. 3 and 4 are flowcharts illustrating other examples of
conventional processes to print data from a host apparatus to
an image forming apparatus. FIG. 3 illustrates a case where
the amount of data of an input image (hereinafter also referred
to as “information quantity”) is reduced. In this example,
operations 108, 110, 112 and 114 are similar to the operations
100, 102,104 and 106 in the example of FIG. 2. The example
of FIG. 3 additionally includes operation 116, where the
200×200 one-bit binary image decompressed in operation
114 is converted into a 200×2008-bit grayscale image. Con
sequently, operation 116 increases the information quantity.

FIG. 4 illustrates a case where the size of an input image is
reduced. In the example of FIG. 4, operations 120, 122, 124
and 126 are similar to operations 108, 110, 112 and 114 in the
example of FIG. 3. The example of FIG. 4 additionally
includes operation 118 where the size of an input image is
reduced from 200×200 pixels to 100×100 pixels. The process
of FIG. 4 further includes operation 128 to increase the spatial
resolution of the 100×100 one-bit binary image, decom
pressed in operation 126, to produce a 200×200 one-bit
binary image. The operation 128 expands the size of the
image using an interpolation method or the like.
Using the above-described processes to reduce the infor

mation quantity or the size of the image prior to the transmis
sion of the print data may result in a shortened transmission
time. Specifically, print data to fill a page memory reduced to
% its size otherwise can be transmitted in the example of FIG.
3 and print data to fill a page memory reduced to V4 its size
otherwise can be transmitted in the example of FIG. 4. Sub
sequent to print data transmission, the data to render the
image in a desired size and resolution can be obtained by
increasing the information quantity or the number of pixels in
the recovered image.

US 8,390,894 B2
3

FIG. 5 is a flowchart illustrating a conventional resolution
increasing method using a look-up table (LUT). As illustrated
in FIG. 5, at operation 130, a binary image is input, and an
image process at operation 132 is performed by accessing a
look-up table (not illustrated) to retrieve image data corre
sponding to an input block of the input binary image. When
the image process is performed on all input blocks constitut
ing the binary image at operation 134, the resolution increas
ing method is terminated.

In such a conventional method, the image process is per
formed using one predetermined look-up table respective of
characteristics of the input binary image. In the case where
the look-up table contains mean values of pixels obtained
from a representative training image, artifacts, such as blur
ring, may occur in a resultant image pattern after the image
processing of a specific input image.

In a wide variety of applications, the computations are
replaced by look-up tables, as in the above, resulting in sig
nificantly reduced computation times. One such application
is LUT-based inverse halftoning, in which the inverse half
toning of images is performed directly by accessing a LUT.
The LUT needs to be pre-computed from a training set of
images. The LUT operation begins with a p-bit vector (also
referred to as a “template”) being retrieved from the source
and being transmitted to the LUT that has already stored
output values corresponding to that template. In this way, all
templates are, one by one, retrieved from the halftone image
and go through the LUT operation to obtain their output
values of the inverse halftoning.

Digital halftoning has recently gained in popularity and
importance due to the availability and adoption of bi-level
devices, such as fax machines and plasma displays. The input
to a digital halftoning system is an image whose pixels have
more than two levels, for example 256, and the result of the
halftoning process is an image that has only two levels.

Inverse halftoning is an operation involving the conversion
of an image from its halftone version to a grey level image:
i.e., from a two level image to, for example, a 256-level
image. Inverse halftone operations have broad applications in
areas where processing is required on printed images. The
images are first scanned, then inverse halftoned, and then
operations such as zooming, rotation and transformation may
be applied. Standard compression techniques cannot process
halftones directly. Thus, inverse halftoning is required before
compression of printed images can be performed.
An exemplary look-up table method for inverse halftoning

is described in the article “Look-Up Table (LUT) Method for
Inverse Halftoning” by Murat Mese and P. P. Vaidyanathan,
published in IEEE Tran. Image Processing, Vol. 10, No. 10,
October 2001, which is hereinincorporated by reference in its
entirety.

This method represents a relatively fast and computation
free method of inverse halftoning, providing high quality
images. The LUT method for inverse halftoning generally
includes the following procedural steps. Using a template
(represented by t), which is a group of pixels consisting of the
pixel to be inverse halftoned and the pixels in its neighbor
hood. The LUT method for inverse halftoning uses four types
of templates, namely: “16pels”, “19pels”, and “Rect”. The
16pels have 16 pixels, 19pels have 19 pixels and Rect have 21
pixels. One pixel is equal to one bit because pixels have
bi-level values in halftone images. Each template has a pixel
0 that indicates the position of the pixel to be inverse half
toned, and the other neighborhood pixels are numbered from
1 to 18 (when the template type is 19pels).
The templates are retrieved from the halftone image fol

lowing a raster-scan style, i.e. from left to right in a row, and

10

15

20

25

30

35

40

45

50

55

60

65

4
from top to bottom of the image. A template is retrieved from
the halftone image and goes to the LUT. The LUT returns the
contone value that corresponds to the retrieved template. The
results from the LUT form the output image. One template is
retrieved and completes its inverse halftone operation using
the LUT before the next template is retrieved.
The contents of the LUT used in the above LUT methodare

generated by building a training set of images that includes
continuous-tone images and their respective halftone ver
sions. The templates are retrieved from the halftone images
and their contone level values are retrieved from the corre
sponding continuous-tone image. When a template occurs
more than once in the training set, then its contone value is the
mean of all contone values that corresponds to that template
in the training set.
The LUT method of inverse halftoning is completely com

putation free and requires only LUT access when the same
halftone algorithm (e.g., Floyd and Steinberg Error Diffu
sion) is used in the input halftone images and in the halftone
images of the training set for LUT generation.
The LUT method for inverse halftoning can also be applied

to color halftones. The color inverse halftoning includes three
color planes (R, G, B), and each plane has its independent
LUT. The templates, however, can contain pixels from differ
ent color plans.

Thus, a system and method for inverse halftoning using a
partitioning look-up table solving the aforementioned prob
lems is desired.

SUMMARY OF THE INVENTION

The system and method for inverse halftoning using a
partitioning look-up table provides an improvement on the
LUT method for inverse halftoning, and a hardware imple
mentation thereof. The method includes the partitioning of
the single LUT into N smaller look-up tables (s-LUTs). After
partitioning, NS-LUTs are generated, which can be stored in
separate memory blocks, allowing parallel access to more
than one s-LUT at any time. Such parallelization is not pos
sible with only one LUT stored in a single memory block.

Additionally, two or more templates (represented as r tem
plates) with different pixels at position 0 can be retrieved from
the halftone image concurrently. In the present method, risN.
ensuring high image quality. Further, the contents of the
single LUT are partitioned into N s-LUTs, thus the total
entries in N s-LUTs are equal to the entries in the single LUT
of the LUT based method of inverse halftoning.

In the present method, a p-bit vector (also referred to as a
“template”, where p-1, and p-r) is the input to the LUT. The
LUT is pre-computed using a training set, with the training set
containing possible inputs and their output values. It should
be noted that no relationship among the entries in the LUT is
assumed. The LUT then returns one output corresponding to
a given input template. The LUT does not store duplicate
values (i.e., entries that have the same input and output val
ues).
The present method uses the following basic steps: (a)

building a template training set including at least one con
tinuous-tone image and a corresponding halftone image; (b)
retrieving a full set of templates and a set of corresponding
output values from the template training set; (c) representing
each retrieved template as t and applying a partitioning func
tion to each template t, wherein the partitioning function
divides an initial look-up table into N smaller look-up tables,
wherein N is an integer; (d) storing each template t and the
corresponding output value in a corresponding one of the
smaller look-up tables, the selected one of the smaller look-up

US 8,390,894 B2
5

tables having a number equal to a result of the partitioning
function; (e) setting the output value stored in the selected
smaller look-up table equal to an averaged output value; and
(f) performing an inverse halftoning operation using N
smaller look-up tables on halftone images. N is an exponent
of 2 (i.e., N=2, 4, 8, etc.) and the same value of N is used in all
steps of the method.

These and other features of the present invention will
become readily apparent upon further review of the following
specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified schematic view of a system for
inverse halftoning using a partitioning look-up table accord
ing to the present invention.

FIGS. 2, 3, 4 and 5 are flowcharts illustrating prior art
methods for halftoning and image manipulation.

FIG. 6 is a simplified schematic view of a prior art system
for performing look-up table retrieval of image data.

FIG. 7 is a graph comparing image quality of a prior art
method compared with the present method for inverse half
toning using a partitioning look-up table.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The system and method for inverse halftoning using a
partitioning look-up table provides an improvement in LUT
methods for inverse halftoning, and a hardware implementa
tion thereof. The method includes the partitioning of the
single LUT into N smaller look-up tables (s-LUTs). After
partitioning, N s-LUTs are generated, which can be stored in
separate memory blocks, allowing parallel access to more
than one s-LUT at any time. Such parallelization is not pos
sible with only one LUT stored in a single memory block.

Additionally, two or more templates (represented as r tem
plates) with different pixels at position.0 can be retrieved from
the halftone image concurrently. In the method, räN, ensur
ing high image quality. Further, the contents of the single
LUT are partitioned into N s-LUTs, thus the total entries in N
s-LUTs are equal to the entries in the single LUT of the LUT
based method of inverse halftoning.
As described above, in the conventional prior art LUT

method for inverse halftoning, a template t is a group of pixels
consisting of a pixel to be inverse halftoned and the neigh
boring pixels. The LUT method uses three types oftemplates,
namely: 16pels, 19pels and Rect. The 16pels consist of
16-pixels, the 19pels consist of 19-pixels and Rect consists of
21 pixels. The templates are retrieved from the halftone image
following a raster scan; i.e., from left to right in a row, and
traveling over rows from top to bottom. One template t is
retrieved and inverse halftoned before the next template is
retrieved. The LUT method also incorporates an LUT that
stores pre-computed contone values of a large number of
templates. The templates for storage in the LUT are selected
from a training set of images that are formed of both halftone
images and their continuous tone versions before halftoning.
The templates are selected from the halftone images, and their
contone values are selected from the continuous tone ver
S1011S.

As will be described in greater detail below, when a tem
plate occurs more than once, its contone value is set to be the
mean of all contone values that correspond to that template.
The inverse halftone operation is performed in this way such
that a template t is retrieved from the halftone image and then
is sent to the LUT. If the LUT has the stored contone value for
the template t, then it returns this value, otherwise the tem
platetis transformed by either low pass filtering or best linear
estimation. The LUT method for inverse halftoning can also

10

15

20

25

30

35

40

45

50

55

60

65

6
be applied to color halftones. The color inverse halftoning
utilizes three color planes (R, G, B), and each plane has its
own independent LUT that stores contone values for its color
plane, although the templates may contain pixels from differ
ent color planes.

In order to parallelize the LUT method for inverse halfton
ing, more than one template must be retrieved from the half
tone image at the same time, with the inverse halftone opera
tion being performed on each template independent of the
others. In the present method, a p-bit vector (also referred to
as a “template”, where p-1, and p-r) is the input to the LUT.
The LUT is pre-computed using a training set, with the train
ing set containing possible inputs and their output values. It
should be noted that no relationship among the entries in the
LUT is assumed. The LUT then returns one output corre
sponding to a given input template. The LUT does not store
duplicate values (i.e., entries that have the same input and
output values).

FIG. 6 illustrates a simplified, exemplary hardware system
200 for implementing the use of a look-up table. The system
200 includes coupled Content Addressable Memory (CAM)
212 and Read Only Memory (ROM) 214. The template
retrieved for the LUT operation is first transmitted to the
CAM 212, which then returns the address of the ROM 214
where the output value corresponding to the template is
stored. The address retrieved from the CAM 212 is input to
the ROM 214, which returns the output value. Using such a
circuit, only one template can go through the LUT operation
at any given time. The system utilizes a programmable logic
device, such as a field programmable logic device or a com
plex programmable logic device, for example, in communi
cation with the memory.
The partitioning of the LUT into N s-LUTs modifies the

system 200 of FIG. 6. As shown in system 10 of FIG. 1, up to
r templates are retrieved concurrently for LUT operations,
and N s-LUTs are used instead of a single LUT (as in system
200 of FIG. 1). The N s-LUTs are stored in N CAM-ROM
pairs (with pairs 14, 16; 18, 20; and 22, 24 being shown). Each
CAM-ROM pair functions in a manner similar to the CAM
ROM pair 212, 214 in the system 200, using only the single
LUT.

System 10 further requires a computational block 12, used
before transmission of the templates to the s-LUTs, that com
putes which template among the r retrieved templates should
go to which particular, corresponding S-LUT. Computational
block 12 is referred to as “Block 0” in the following. FIG. 1
also shows a computational block 26, used after retrieval from
the s-LUTs, which is referred to as “Block 1" in the following.
Block 1 is necessary because Block 0 is typically unable to
send all r templates to a distinct N number of s-LUTs. This
may result in collisions, and, at most, the single-template per
s-LUT principle is applied, with the remaining templates
being discarded. Those discarded templates are assigned con
tone values in Block 1.
The method of partitioning and the hardware implementa

tion for post-partitioning both utilize a function, herein
referred to as “Blocked XOR” (BX). The Function BX has an
input oft(0... p-1) and N (where N is an even number), and
returns a log2N-bits vector. The BX function is defined as
follows.
The template represented by t|where t is a p-bit vector) is

divided into log2N (where N is even) blocks, so that each
block except the last block has a width equal to:

(1). size of blocks except last block = mood |is

US 8,390,894 B2
7

It should be noted that the function “floor” rounds the value to
an integer that is less than or equal to

For the last block:

(2). size of the last block = p — hood ×(log2 N - 1)bits; log, N

A bit-serial XOR operation is next applied to each block
independently. The operation is given by the following. Lett
(a p-bit vector) be represented by t|0 . . . p-1), then:

a(t)=t(j) & t?jæ1) & ... & t?jºb), (3)
where i-0 to log2(N)-1, b=size of the blocks except last
block when i-log2(N)-1 and b-size of the last_block when
i-log2(N)-1; and

X i.

The result of the BX Function is given as “result”:
result=a(0)||a|1)||... ||a(log2N–1)

where, in the above, & represents an XOR operation and ||
represents a concatenate operation.

The LUT is partitioned into N smaller look-up tables using
the BX function. The s-LUTs are numbered from 0 to N–1.
The steps required to accomplish this partitioning are given in
the following.

The process begins by first building a training set, which
contains possible patterns of inputs and their output values. In
inverse halftoning applications, the training set contains con
tinuous-tone images and their corresponding halftone
images. This is the same training set that is used to generate
entries for the conventional non-partitioned LUT.

Next, all templates in the training set are retrieved along
with their corresponding output values from the training set.
The following operations are then applied to each template:

i) Each retrieved template is represented by t.
ii) the function BX is then applied to the template t such

that the value of N is kept equal to the number of s-LUTs
that are desired to be pre-computed. In order to reduce
computation, values of N are required to be exponents of
2; i.e. 2, 4, 8, 16, etc.;

iii) the template t and its output value are then stored in the
s-LUT that has a number equal to the result of the BX
function;

(iv) for inverse halftoning applications, if the same tem
plate value occurs more than once in the training set,
then the output value stored in the s-LUT is defined as
the sum of the output values corresponding to the tem
plate value in the training set divided by the number of
times the template value has occurred. This output value
stored in the s-LUT is also equal to the averaged output
value; and

(v) all templates in the training set and their output values
are stored in their respective s-LUTs following the same
output value definition of step (iv).

In the above partitioning, each S-LUT stores a unique set of
templates, thus the number of entries in all Ns-LUTs remains

10

15

20

25

30

35

40

45

50

55

60

65

8
equal to the number of entries in the single LUT of the
conventional, prior non-partitioned LUT. The training set
used to generates-LUTs is the same as used for generating the
single LUT of the conventional non-partitioned method.
The computational steps required to perform the hardware

implementation of LUT operation (in the system of FIG. 1), in
which two or more templates can obtain their output simul
taneously using s-LUTs, is described in detail in the follow
ing. This process requires that the entries for N s-LUTs must
be pre-computed using the method described above. The
computational steps are as follows.
Up to r (where r is a positive integer) number of templates

are concurrently retrieved from the input source. The tem
plates are represented as to, ti, . . . , tº 1. The function BX is
then applied to each template concurrently. This operation is
represented symbolically using the following Equations (5)
(7):

Ro–BX FUNCTION(to); (5)

R1–BX FUNCTION(t); (6)

R, ? =BX FUNCTION(t_1), (7)

where each R represents the Result of the BX function (given
by equation (3)), and BX_FUNCTION represents the BX
function. It should be further noted that the tin equations (1),
(2) and (3) represented only a single template. In equations
(5), (6) and (7), r templates are used, thus the subscript-t
templates in equations (5), (6) and (7) represent r templates
from to to tº 1:
The templates are then sent to the s-LUTs corresponding to

(i.e., that have same number as) the result returned from the
BX function. If two or more templates among the templates
that are retrieved concurrently have the same result, then only
one template among them is sent to the corresponding s-LUT.
The other templates continue to go to their s-LUTs without
droppage. This dropping of some templates may cause some
degradation or loss in the output quality. The operations that
are performed in this step are shown symbolically using equa
tions in the following.
The numbers 1 to rare appended to r retrieved templates as

follows:

to'(0. . . p4-logor)=to&1)10; (8)

t, I'(0... p4-logor)=t, 1 &r)10; (10)

where the numbers 1 to r have log2(r)+1 bits. Each template
value is then demultiplexed (with the demultiplexing function
being represented in the following as DEMUX), with the
equations for r demultiplexers with N outputs being given by:

A,IO)=DEMUX(input=t,', select=R); (11)

A.I.1]=DEMUX(input=t,', select=R); (12)

where i-0 to r-1, and the numbers 0 to N-1 inside the square
brackets represent N outputs from each demultiplexer, and
the values A, are intermediate values to be used in the next
step or calculation purposes only. In the demultiplexer, each
output has a width equal to the width of the input. The func

US 8,390,894 B2
9

tion DEMUX performs the demultiplexing operation in
which the input is vectort, and the selected line input is R. As
a result of the DEMUX function, any one (for example, A[3])
among N output lines (i.e., A.I.0, 1, 2, ... N-1]) contains valid
output. The remaining outputs are held at a low level.
The A, values are next decoded (with the decoding function

being represented as DECODE in the following), with the
equations of N decoders being given by:

daDECODE(output)=0 when Ao?il; (14)

daDECODE(output)=1 when NOT (Ao?il) AND
Al?il;

daDECODE(output)=r-1 when NOT (Ao?il) AND
NOT (A?il) ... NOT (A, 2?i) AND A, ?il);

where i-0 to N-1, and d, is a temporary, calculated value to be
used in the following step. The DECODE function represents
the decoding operationin which the output is calculated using
the “when” conditions.

The temporary values of the calculated A, and d, are next
multiplexed (with the multiplexing function being repre
sented as MUX in the following), with the equations for
multiplexers having r inputs being given by:

where i-0 to N-1 and G, is another temporary, intermediate
value, to be used in the following step. The width of G, is equal
to the width of any one input. The MUX function performs the
multiplexeroperation in which there are rinputs and the input
to the select line is dy. The multiplexer operations have single
output that is also the output from the MUX function and
contains any one value among the r inputs. The output value
is according to the value present at the select line.
The equations corresponding to the s-LUTs are given by:

where i-0 to N-1, and c, represents the output from this step.
Next, the output values of the templates are ordered according
to the sequence numbers assigned to them above. This step is
required to ensure the correct order of outputs. The equations
representing these operations are given below:

c6 = co if Go?p ... p + log-r) = 1),0. (17)
= c if G1 (p ... p + logºr) = 1), o,

= CM-1 if GN-1(p ... p + log, r) = 1),0

cN–1 if GN-1(p ... p + log2 r) = 2) to

where co to c, I represents the output values oftemplates that
are appended with numbers 1 to r, respectively, in Equations
(8) to (10).

10

15

20

25

30

35

40

45

50

55

60

65

10
The templates that are discarded in the above procedure are

next assigned output values of their leftmost neighbors (rep
resented by the encoding function ENCODE in the follow
ing). This computation is performed as follows:

Result=ENCODE(Result, i WHEN Result, is null c,
OTHERWISE), (20)

where i-0 to r-1, and Result, represents the output values
obtained after the parallel LUT operation. The function
ENCODE performs the encoding operation in which the out
put is calculated using the “when” conditions.

All of the above steps can be pipelined, allowing each step
to be performed concurrently on different data items. The
calculation of clock cycles consumed when performing par
allel inverse halftoning of images using the above method is
given by the following.

Let the number of pixels in the halftone image=1xm. Then,
the clock cycles consumed in the LUT-based inverse
halftoning=lxm. Letting the number of templates which are
retrieved simultaneously be set as r, and letting the total
number of pipeline stages be set as p_stages, then the clock
cycles consumed in the parallel inverse halftone operation is
given by

lx m
2 × (p stages) + -.

The gain in clock cycles using the partitioning over the
non-partitioned LUT-based inverse halftoning is given by

2 × (p stages) + 1
lx m r

The quality of some images obtained from the partitioned
LUT method is illustrated in FIG. 7. The graph further shows
the image quality of the serial LUT method for comparison.

It is to be understood that the present invention is not
limited to the embodiments described above, but encom
passes any and all embodiments within the scope of the fol
lowing claims.
We claim:
1. A method for inversehalftoning, comprising the steps of:
a) building a template training set including at least one

continuous-tone image and a corresponding halftone
image:

b) retrieving a full set oftemplates and a set of correspond
ing output values from the template training set;

c) representing each of the retrieved templates as t and
applying a partitioning function to each of the templates
t, the partitioning function dividing an initial look-up
table into N smaller look-up tables, wherein N is an
integer,

d) storing each of the templates t and the corresponding
output values for the templates in a corresponding one of
the smaller look-up tables, the corresponding one of the
smaller look-up tables having a numerical value associ
ated therewith equal to a result of the partitioning func
tion;

e) setting the output value stored in the corresponding one
of the smaller look-up tables equal to an averaged output
value; and

f) defining an integer r as the number of the retrieved
templates and performing an inverse halftoning opera
tion having the steps of:

US 8,390,894 B2
11

retrieving the r retrieved templates simultaneously; and
inverse halftoning the r retrieved templates, the inverse

halftoning using the N smaller look-up tables, the
input to the inverse halftoning being a halftone image
and the output of the inverse halftoning being a con
tinuous-tone image.

2. The method for inverse halftoning as recited in claim 1,
wherein the step of applying the partitioning function com
prises the steps of:

a) establishing a variable p such that template t is a p-bit
vector;

b) dividing template t into log2 N blocks, such that each
said block except the last of said blocks has a width
represented by size of blocks excepts last_block;

c) establishing a function floor which rounds each said
width to an integer that is less than or equal to

|rºw log2N ||

d) calculating each said width size of a
blocks, sexcept slast_block as

size of blocks except last block = hood |is log2N

e) calculating a width of the last of said blocks as

size of the last block = p — mood log, N ×(log2 N - 1)bits;

and
f) establishing an intermediate set of variables a, b, i and j,

and applying a bit-serial XOR operation to each said

10

15

20

25

30

35

12
block independently as a?i)=t(j) & t|j+1) & . . . & t?j+
b), wherein i ranges between 0 and log, (N)-1, b =
size of the block except last_block when i <log2(N–
1) and b-size of the last block when i-log2(N-1),
and

X i.

3. The method for inverse halftoning as recited in claim 2,
wherein N is selected as an integral power of 2, and the
result of the partitioning function is given by result=
a(0)||a(1) || . . . |a(log2 N-1).

4. The method for inverse halftoning as recited in claim 3,
wherein the partitioning function is applied to each of the r
templates simultaneously, and if more than one of said r
templates return the same result from the partitioning func
tion, then a selected one of said templates is stored in the
corresponding smaller look-up table and the remaining tem
plates having the same result are discarded.

5. The method of inverse halftoning as recited in claim 4,
further comprising the steps of:

a) appending the numbers 1 to rto ther retrieved templates;
b) demultiplexing each template value to produce a demul

tiplexed value;
c) decoding each demultiplexed value to produce a

decoded value;
d) multiplexing each demultiplexed value and the corre

sponding decoded value;
e) ordering the respective output values of the templates

with respect to the number assigned to each output value
corresponding to the result of the partitioning function;
and

f) assigning output values to each discarded template equal
to the output value of the left-most neighbor of each
discarded template.

