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Abstract

Simulated Annealing (SA) is a popular iterative heuristic used to solve a wide
variety of combinatorial optimization problems. However, depending on the size
of the problem, it may have large run-time requirements. One practical approach to
speed up its execution is to parallelize it. In this paper, several parallel SA schemes
based on the Asynchronous Multiple-Markov Chain model are explored. We inves-
tigate the speedup and solution quality characteristics of each scheme when imple-
mented on an inexpensive cluster of workstations for solving a multi-objective cell
placement problem. This problem requires the optimization of conflicting objec-
tives (interconnect wire-length, power dissipation, and timing performance), and
Fuzzy logic is used to integrate the costs of these objectives. Our goal is to develop
several AMMC based parallel SA schemes and explore their suitability for differ-
ent objectives: achieving near linear speedups while still meeting solution quality
targets, and obtaining higher quality solutions in the least possible duration.

1 Introduction
There is a growing need for obtaining useful/acceptable solutions for combinatorial op-
timization problems in numerous areas of research and industry. Consequently, there
is considerable interest in utilizing iterative stochastic heuristics like Simulated An-
nealing, that are capable of delivering acceptable or near-optimal solutions to these
problems with reasonable runtimes [1]. This is especially true with the often conflict-
ing, multiple objectives that have to be addressed in such problems. However, despite
their potential, such heuristics (Simulated Annealing in particular) can still have ex-
tremely high runtime requirements if very high solution qualities are required, (or very
strong constraints are placed).

One way to adapt iterative techniques such as SA to solve large problems and tra-
verse larger search spaces in reasonable time is to parallelize them [2, 3], with the



eventual goal being to achieve either much lower run-times for same quality solutions,
or higher quality solutions in a fixed amount of time. From a computational point of
view, metaheuristics are algorithms from which functional and data parallelism can be
extracted. However, metaheuristics usually operate upon irregular data structures, such
as graphs, or upon data with strong dependencies among different operations and as
such remain difficult to parallelize using only data and functional parallelism [4]. Fur-
thermore, when parallelizing metaheuristics, not only speed-ups are important but also
the maximum achievable qualities. Therefore, to achieve any benefit from paralleliza-
tion requires not only a proper partitioning of the problem for a uniform distribution
of computationally intensive tasks, but more importantly, a thorough and intelligent
traversal of a complex search space for achieving good quality solutions. The tractabil-
ity of the former issue is largely dependent on parallelizability of both the cost compu-
tation and perturbation functions while the latter issue requires that the interaction of
parallelization strategy with the intelligence of the heuristic must be considered, as it
directly affects the final solution quality obtainable, and indirectly the runtime due to
its effect on algorithms convergence.

Simulated Annealing Parallelization Issues
The Simulated Annealing Algorithm has an inherent sequential nature since each iter-
ation (consisting of three phases: move, evaluate, decide) depends upon the previous
iteration [5, 6]. The decision phase determines what the current solution will be for
the start of the next move-evaluate-decide cycle. This inherent sequential nature makes
parallelization of this algorithm a non-trivial task.

Parallel Simulated Annealing has been the subject of intensive exploration since it
was first proposed. Virtually all known methods of parallelization for Simulated An-
nealing can be classified into one of two groups: Single Markov-chain and Multiple
Markov-chain methods [7]. Most Single Markov chain approaches attempt to exploit
parallelism between the three phases. They include move-acceleration, parallel-moves,
and speculative annealing and are generally more suitable for shared-memory environ-
ments. Approaches based on Multiple Markov chains call for the concurrent execution
of separate simulated annealing chains with periodic exchange of solutions [7, 8]. This
approach is particularly promising since it has the potential to use parallelism to in-
crease the quality of the solution rather than simply accelerate the algorithm. Theoreti-
cally, this approach is not intended to provide speedups since the same amount of work
is being done by each processor as in the serial version. However, since a higher fitness
solution can be reached in the same amount of time, speedup may be measured as the
difference in times taken to achieve the same quality as the serial version. Multiple
Markov Chain based parallelization is ideally suited for distributed memory systems,
considering that the need for communication between nodes is considerably reduced.

In our work, attempt to solve the multi-objective VLSI standard cell placement
problem. We experiment with different versions of the Asynchronous Multiple-Markov
Chain Parallel SA (or AMMC PSA) approach described in [7], as this scheme has
been found to be well suited to solving this problem in a distributed-memory environ-
ment [8]. Our goal is to develop parallel SA implementations that:
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1. solve a VLSI standard cell placement problem with multiple, potentially con-
flicting objectives,

2. are suited for an inexpensive, cluster-of-workstations environment, as opposed
to specialized HPC solutions like those utilized in the majority of prior work,

3. can achieve (a) improved quality solutions with runtimes equivalent to the serial
algorithm, and/or (b) near-linear speedups without compromising final solution
quality.

2 SA Parallelization Strategies in Literature
Several studies of parallelization strategies for meta-heuristics in general have been
reported in literature [9, 10]. For our discussion, we use the classification proposed by
Toulouse and Crainic [9], which broadly classifies all types of attempted techniques
according to how parallel nature is exploited. The three categories of parallel strategies
for heuristics are identified as:

1. Low-Level Parallelization (Type 1): The operations within an iteration of the
solution method can be parallelized. Such methods seek to divide the compu-
tational workload for each iteration across multiple processors, and as a conse-
quence, leave the algorithm characteristics unaffected.

2. Parallelization by Domain Decomposition (Type 2): The search space (problem
domain) is divided and assigned to different processors. For trajectory based
methods such as Simulated Evolution, Stochastic Evolution and Simulated An-
nealing, this may involve the partitioning of the solution across available pro-
cessors so that multiple perturbations/moves may be performed on the solution
in each iteration, instead of a single move. This usually implies a conspicuous
departure from the functionality and characteristics of the serial algorithm.

3. Multithreaded or Parallel Search (Type 3): Parallelism is implemented as a mul-
tiple concurrent exploration of the solution space using search threads with var-
ious degrees of synchronization or information exchange. Such approaches are
increasingly proving their worth. These methods allow for increasing the variety
of the search threads particularly by having different types of searches - same
method with different parameter settings or even different meta-heuristics - pro-
ceeding concurrently. Thus, a more thorough exploration of the solution space
of a given problem instance becomes possible. As an additional benefit, multi-
threaded methods appear more robust than their sequential counterparts relative
to the differences in problem types and characteristics. Such approaches also
offer a relatively easy way to harness the simple and cost effective parallelism
provided by an inexpensive network-of-workstations parallel environment.

In this section we discuss several notable parallelization approaches attempted for
Simulated Annealing in literature, as well as identify where each approach fits in the
above classification. We also identify the pitfalls as well as the potential associated
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with each technique with respect to our specific problem instance and parallelization
environment.

2.1 Move Acceleration
Several efforts to determine and exploit parallelism have focused on move computation,
as this is a fundamental component performed numerous times during each annealing
run. The underlying idea is to partition different, non-interacting portions of the move
evaluation task across several processors in parallel. Each individual move is evaluated
faster by breaking up the overall task into subtasks such as selecting a feasible move,
evaluating the cost changes, deciding to accept or reject, and perhaps updating a global
database. Concurrency is obtained by delegating these individual subtasks to different
processors.

Such a strategy, referred to as move-acceleration or move-decomposition is an ex-
ample of the Type 1, or low-level parallelization mentioned earlier. It involves a close
interaction between processors, and has less potential for parallelism in terms of the
amount of parallel work performed and the number of processors that can be employed.
Such methodologies are largely restricted to shared memory architectures [8] and pre-
serve all the properties of the serial algorithm. Kravitz and Rutenbar [11] implemented
this parallel SA method for cell placement on a shared memory multiprocessor, achiev-
ing a speedup of 2 on 4 processors.

2.2 Parallel Moves
An example of the Type 2 or domain decomposition parallelization scheme is the Par-
allel Moves strategy. In this method, moves are computed independently and in parallel
by several processors. Since the global system state is partitioned across the proces-
sors, the independent computation and subsequent state update of interacting moves
causes the locally held view of the global system state in each processor to become
inconsistent with the local views in other processors. Consequently, errors are in-
troduced in move evaluation. The impact of such errors may be kept at a minimum
through frequent exchanges of state-update information between processors. However,
this approach implies significantly increased inter-processor communication, thereby
restricting its application in a cluster-of-workstations environment.

One method to circumvent this problem is to accept a single move from among
the set of interacting moves computed in parallel, and discard the rest. This method
ensures that no errors are introduced in move evaluation although it is not very effi-
cient. Allowing errors in parallel moves calls for techniques to control their effect on
annealing. However, it has been observed that Simulated Annealing is largely error-
tolerant and the introduction of a limited amount of error does not drastically affect the
convergence properties of the algorithm [12].

Several methods to control the error have been proposed, while in other methods,
the algorithm is allowed to proceed with error though occasionally local views of the
global state are synchronized across all the processors. Such parallel moves techniques
in which error is introduced in a controlled manner create opportunities for exploiting
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coarse-grained parallelism, and show a greater potential for faster execution. It there-
fore, becomes very important to understand the nature of these errors and their effect
on the quality of the resulting solutions [12, 13].

Kravitz and Rutenbar [11] implemented this approach on a shared memory multi-
processor, achieving a speedup of 3.5 on 4 processors. Banerjee, Jones and Sargent [14]
used this approach for standard-cell placement on an iPSC/2 hypercube multiprocessor
and proposed several geographical partitioning strategies for the problem specific to
the hypercube topology. Speedups of 12 on 16 processors were reported. Casotto et
al. [15] worked on speeding up simulated annealing for the placement of macrocells,
and achieved speedups of 6 using 8 processors using this approach on a shared memory
multiprocessor. Sun and Sechen [16] have shown results achieving near linear speedup
on a network of workstations, also using this approach. Chandy and Bannerjee [8]
implemented this method for standard cell placement on both a shared-memory Sun
4/690MP as well as a distributed-memory Intel iPSC/860, with the former exhibiting
a speedup of approximately 2 on 4 processors, and the latter achieving a maximum
speedup of 3.75 on 8 processors. It is important to note at this point that virtually all
of the parallel methods listed above exhibited degradation of final solution quality as
more processors were added.

2.3 Speculative Execution
Speculative computation attempts to predict the execution behavior of the simulated
annealing schedule by speculatively executing future moves on parallel nodes. The
speedup is limited to the inverse of the acceptance rate, but being a form of Type 1 par-
allelization scheme, it does have the advantage of retaining the exact execution profile
of the sequential algorithm, and thus the convergence characteristics are maintained.

A sequential simulated annealing schedule is simply a series of move proposals
intended to reduce some cost function as related to the particular problem. Each move
consists of three parts - the proposal or perturbation, evaluation, and decision. Only af-
ter these three parts are completed is the next move started. Since the decision made by
the next move is dependent on the current state as determined by prior moves, simulated
annealing is almost inherently serial in nature. Consider the decision tree of moves in
Figure 1(a). The top node represents a move attempted in a simulated annealing pro-
cess. There are two possible decisions as a result of this move - acceptance or rejection.
Speculative computation will assign two different processors to speculatively work on
the two possibilities before the parent move has completed. The reject-processor can
start at the same time as the parent, since it will assume that the state has not changed.
After the parent has completed the move proposal, it can then relay the new state to the
accept-processor.

As the acceptance characteristics of the procedure varies, the shape of the tree
can also change. For example, if the acceptance rate is high, it would make sense
to generate a linear tree of only acceptance nodes, and on the other hand, a very low
acceptance rate would imply the creation of only rejection nodes [see Figure 1(b)].

Speculative computation seems to be a promising avenue to achieve at least some
speedup in the high temperature region. However, the work done by Chandy et al.,
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(a) (b)

Figure 1: (a) Possible Decision Tree for Speculative Parallel SA, (b) Decision Trees in
the Low-temperature and High-temperature regions.

shows that particularly for the standard cell placement problem, speculative execution
SA succumbs to a very high overhead and thus is not a feasible option [8].

2.4 Multiple Markov Chains
Multiple Markov chains call for the concurrent execution of separate simulated an-
nealing chains with periodic exchange of solutions [7]. This approach is particularly
promising since it has the potential to use parallelism to increase the quality of the
solution. All implementations based on this scheme fall under the Type 3 category of
parallelization.

Non-interacting Scheme

The algorithm can be understood if the sequential simulated annealing procedure is
considered as a search path where moves are proposed and either accepted or rejected
depending on particular cost evaluations and also a starting random seed. The search
path is essentially a Markov chain, and parallelization is accomplished by initiating
different chains (using different seeds) on each processor. Each chain then explores the
entire search space by independently performing the perturbation, evaluation, and de-
cision steps. After each processor has completed the annealing schedule, the solutions
are compared and the best is selected.

This differs from parallel moves in that each chain is allowed to perform moves
on the entire set of cells and not just a subset. Of course, there is no speedup in this
approach since each processor is individually performing the same amount of work as
the sequential algorithm. To achieve speedup, we must reduce the number of moves
evaluated in each chain by a factor of 1/N where N is the number of processors. Since
the number of moves determines the run time of the program, a reduction by a factor
of 1/N will cause a speedup of N. Obviously, such a reduction alone is not appropriate
since the quality will likely decrease accordingly. To take advantage of the fact that
multiple processors are being used, some means of interaction or information exchange
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between the various chains is necessary [8].

Periodic Exchange Scheme: Synchronous MMC

In this scheme, processing elements (PEs) exchange local information including the
intermediate solutions and their costs after a fixed time period. Then, each PE restarts
from the best of the intermediate solutions. Compared to the non-interacting scheme,
a communication overhead in this periodic exchange scheme would be introduced.
However, each PE can utilize the information from other nodes thereby reducing un-
productive computations and idle time. With such communication, these independent
Multiple Markov chains can collectively converge to a better solution.

Dynamic Exchange Scheme and the Asynchronous MMC Method

The statistical data collected during execution may be utilized to adaptively control the
SA process in each Markov Chain to further reduce the execution time. For example,
the acceptance rate which is closely related to the annealing state can control commu-
nication instances. The periodic exchanges that were discussed earlier may introduce
unnecessary and untimely communication, thereby wasting time. Moreover, an inter-
mediate solution derived at an insufficiently cooled state can hamper the convergence
of other communicating Markov chains.

Soo-Young and Kyung proposed an asynchronous MMC model, which adaptively
determines when information is to be exchanged [7]. Communication is permitted
based on satisfying certain conditions. First, a certain period of time has to elapse,
to allow each PE sufficient independent annealing. Second, these working nodes ex-
change information only when necessary, rather than at a fixed schedule, e.g., when
other PEs have arrived at a significantly better solution. In this way, these processing
elements can more efficiently guide each other to a higher quality solution. This is
known as the dynamic exchange scheme, and is an asynchronous MMC model.

In order to further improve the performance, asynchronous communication can be
centralized by having PEs access a global state repository to reduce overhead and idle
time. Each of these processing nodes follows a separate search path and whenever they
complete their individual annealing run, they access a global state which consists of
the current best solution and its cost. Using this method of managed communication,
overhead time can be further reduced substantially. However, an additional master node
that holds and communicates the global state is required.

The master PE does not perform any computation. When a working node has
completed an iteration, it sends its solution metric to the master and requests the best
solution available. The master PE, on receipt of this request, will determine if the
received solution is better than its local “best”. If it is, the master will ask the requestor
to send back its state. The requestor would then do so, and continue with the next set
of iterations. If instead, the master determines that the local best solution is better than
the one received then it would send this current best state to the requesting node. At the
cost of dedicating an extra processor for “master” usage, this asynchronous approach
can eliminate much of the idle time that was present in earlier schemes.
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Chandy and Bannerjee implemented the Asynchronous MMC method for solving
the standard-cell placement problem on both a shared-memory Sun 4/690MP as well
as a distributed-memory Intel iPSC/860. For the former, a maximum speedup of 2.53
was achieved on 4 processors, and a maximum speedup of 6.26 on 8 processors for the
second machine. Both implementations exhibited a mild degradation of final solution
quality as the number of processors increased.

The rest of this paper is organized as follows. In Section 3, a detailed description
of our Placement Optimization problem and Cost Functions is provided. Next, Sec-
tion 3.2 we present a brief overview of our experimental setup, followed by details of
the attempted parallelization strategies and their results, in Section 4. This is followed
by an analysis of these results in Section 5 and finally we conclude in Section 6.

3 The Optimization Problem, Cost Functions and Ex-
perimental Setup

Our placement optimization problem is of a multiobjective nature with three design
objectives namely, interconnect wire-length, power consumption, and timing perfor-
mance (delay). The layout width is taken as a constraint. In this section, we describe
the problem and the cost functions for the three objectives and the constraint. The
aggregate cost of the solution is computed using fuzzy rules.

3.1 Cost Functions
Wire length Cost:

Interconnect Wire length of each net in the circuit is estimated using Steiner tree ap-
proximation. Total wire length is computed by adding all these individual estimates:

Costwire =
∑

i∈M

li (1)

where li is the wire length estimation for net i and M denotes total number of nets in
circuit (which is the same as number of modules for single output cells).

Power Cost:

Power consumption pi of a net i in a circuit can be given as:

pi ' Ci · Si (2)

where Ci is total capacitance of net i, and Si is the switching probability of net i. Ci

depends on wire length of net i, so Equation 2 can be written as:

pi ' li · Si (3)

The cost function for total power consumption in the circuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si) (4)
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Delay Cost:

The delay of any given path is computed as the summation of the delays of the nets
belonging to that path and the switching delay of the cells driving these nets. The delay
Tπ of a path π consisting of k nets is expressed as:

Tπ =

k−1
∑

i=1

(CDi + IDi) (5)

where CDi is the switching delay of the cell driving net i and IDi is the interconnect
delay of net i. Delay cost is determined by the delay along the longest path in a circuit.

Costdelay = max{Tπ} (6)

Width Cost:

Width cost is given by the maximum of all the row widths in the layout. We have
constrained layout width not to exceed a certain positive ratio α to the average row
widthwavg , wherewavg is the minimum possible layout width obtained by dividing the
total width of all the cells in the layout by the number of rows in the layout. Formally,
we can express width constraint as below:

Width− wavg ≤ α× wavg (7)

Fuzzy Aggregate Cost Function:

We used fuzzy logic for designing an aggregating cost function, allowing us to describe
the objectives in terms of linguistic variables. Then, fuzzy rules are used to find the
overall cost of a placement solution. The following fuzzy rule is used:

Rule 1: IF a solution has SMALL wire length AND LOW power consumption AND SHORT
delay THEN it is a GOOD solution.

1.0
C i/O i

1.0

g i
* g i

i
cµ

C width/O width

1.0

gwidth

width
cµ

(b)
Figure 2: Membership functions
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The above rule is translated to and-like OWA fuzzy operator [17] and the member-
ship µ(x) of a solution x in fuzzy set GOOD solution is given as:

µ(x) =























β ·min
j=p,d,l

{µj(x)}+ (1− β) · 1

3

∑

j=p,d,l

µj(x);

if Width− wavg ≤ α · wavg,

0; otherwise.

(8)

Here µj(x) for j = p, d, l, width are the membership values in the fuzzy sets
LOW power consumption, SHORT delay, and SMALL wire length respectively. β is
the constant in the range [0, 1]. The solution that results in maximum value of µ(x) is
reported as the best solution found by the search heuristic. The membership functions
for fuzzy sets LOW power consumption, SHORT delay, and SMALL wire length are
shown in Figure 2.

3.2 Experimental Setup
The experimental setup consists of a dedicated, homogenous cluster of 8 x 2 GHz
Pentium-4 machines, and 256 MB of memory. These machines are connected by
1Gbit/s ethernet switch. Operating system used is Redhat Linux 7.3 (kernel 2.4.7-
10). The algorithms were implemented in C/C++, using MPICH ver. 1.2.4. In terms
of GFlops, the maximum performance of the cluster was found to be 1.6 GFlops using
NAS Parallel Benchmarks (NAS’s LU, Class A, for 8 processors). Using this same
benchmark for a single processor, the performance of a single machine was found to
be 0.3 GFlops. The maximum bandwidth that was achieved using PMB was 91.12
Mbits/sec, with an average latency of 68.69 µsec per message.

In the following section, we present a discussion of each attempted strategy along
with its associated results and speedup characteristics. A comparison and discussion of
the different strategies is provided in the Sections 4 and 5. ISCAS-89 circuits are used
as performance benchmarks for evaluating the parallel strategies. In the results tables
below, the target solution quality listed for each benchmark is the lowest common value
achieved by all the experimental runs for that benchmark. When generating the results
for each of the parallel strategies, at least five runs were made for each circuit and
number of processors. The median value of time from each set of five runs is reported.
All the runs for a given benchmark circuit had the same initial solution, but different
seed values to initialize the pseudo-random number generator.

4 Attempted Parallelization Strategies
Based on the literature studied, it can be concluded that the most promising scheme
for parallelization of Simulated Annealing in our inexpensive distributed memory en-
vironment is the Asynchronous MMC model [7, 8]. We developed and experimented
with several variations of this Type 3 parallel search approach. The primary goals of
these experiments were to explore the potential for improvements in both runtime and
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Algorithm Parallel Simulated Annealing(S0, T0, α, β,M,

Maxtime,my rank, p)
Notation

(* S0 is the initial solution. *)
(* BestS is the best solution. *)
(* T0 is the initial temperature. *)
(* α is the cooling rate. *)
(* M is the time until next parameter update. *)
(* Maxtime is the total allowed time for the annealing process. *)
(* my rank is rank of current process;0 for master,!0 for slaves. *)
(* p is the total number of running processes. *)

Begin
T = T0;
CurS = S0; // only master has the initial Solution
BestS = CurS;
CurCost = Cost(CurS);
BestCost = Cost(BestS);
Time = 0;
If (my rank == 0) // i.e. Master process

Broadcast(CurS);
Endif

(a)

If (my rank ! = 0) // i.e. Slave process
Repeat

Call Metropolis(CurS, CurCost, BestS, BestCost, T, M);
Time = Time + M;
T = α T;
M = β M;
Send to Master(BestCost);
Receive frm Master(verdict);
If (verdict == 1)

Send to Master (BestS);
Else

Receive frm Master(BestS);
EndIf

Until (Time ≥Maxtime);
EndIf
If (my rank == 0) // i.e. Master process

Repeat
Receive frm Slave(BestCost);
Send to Slave(verdict);
If (verdict == 1)

Receive frm Slave(BestS);
Else

Send to Slave (BestS);
EndIf

Until (All Slaves are done);
Return(BestS);

EndIf
End. (*Parallel Simulated Annealing*)

(b)

Figure 3: (a) Procedure for Parallel Simulated Annealing using Asynchronous MMC
(b) Metropolis Criterion
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achievable solution quality by making the most effective utilization of the parallel en-
vironment. Each successive parallel strategy attempts to incrementally build upon the
knowledge gathered from the previous schemes in order to improve upon their charac-
teristics in terms of runtime and solution quality.

The basic structure of our AMMC PSA implementation is given in Figure 3 below.
It is similar to the scheme described in [8]. On each available processing element, an
SA operation is initiated with the same starting solution, but with different seeds for
pseudo-randomization. The specifications of our AMMC parallel search implementa-
tion of SA are given below:

1. The Information Exchanged: The entire recent best solution is communicated to
slave processes.

2. Connection Topology: The parallel processes communicate via a central solution
storage area, where the best solution found so far is kept. The master process is
reserved for this purpose.

3. Communication Mode: Communication is asynchronous. Thus communication
time is minimized since there are no synchronization barriers. Each process
communicates with the master independently and compares its own best solution
with the solution residing at the master. If the master owns the better solution, the
slave starts its next Metropolis loop with this solution, while the master’s copy
remains unchanged. Conversely, if the slave has the better solution, it continues
its work after the master has received this latest best solution, which is then
available for comparison by the other slave processes.

4. Time to Exchange Information: Each process works on a recent best solution
retrieved from the central store for the duration of its Metropolis loop.

We implement four distinct versions of the Asynchronous Multiple Markov Chains
approach.

4.1 Asynchronous MMC Parallel SA Strategy 1
For Strategy 1, aside from the above points, there is no difference between the serial
version and each of the parallel search processes. This approach is not tuned to pro-
vide improved speedup characteristics. Instead, it has been found to improve solution
qualities in a fixed amount of time [7], and our results corroborate this fact.

Table 1 shows the results obtained from experiments with Strategy 1 for the bench-
mark circuits listed in column 1. The third column lists the highest quality achieved
by the serial version of the algorithm. The remaining columns list the time taken to
achieve the specified quality, with the given number of processors. Using Strategy 1,
we were always able to exceed the quality achieved by the serial version. Figure 4
shows the speedups achieved by Strategy 1, for the same quality, with different number
of processors and for different circuits. Here we see that speedup achieved using Strat-
egy 1 is sub-linear. Even with 8 processors, we are unable to even achieve a speedup
of 3.
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Table 1: Results for Strategy 1
Circuit # of µ(s) Serial Time for Parallel SA Strategy 1
Name Cells SA Time p=3 p=4 p=5 p=6 p=7 p=8
s1196 561 0.675340 190 145.98 130.95 110.31 96.98 98.24 94.89
s1238 540 0.699469 212 183.91 130.32 127.55 117.12 114.66 111.58
s1488 667 0.650381 275 151.46 118.44 112.59 98.94 94.04 92.65
s1494 661 0.647920 214 131.40 116.27 101.89 98.13 92.26 89.10

4.2 Asynchronous MMC Parallel SA Strategy 2
While Strategy 1 is able to meet and even surpass the qualities achieved by the serial
algorithm, its runtime characteristics leave something to be desired. Strategy 2 is an
attempt to provide near linear speedup over the serial version. This is accomplished
by dividing the amount of work done at each of the individual processes by the total
number of processes. Specifically, the number of Metropolis iterations at each process
is divided by the total number of processes.

Table 2 shows the results obtained from experiments with Strategy 2. Unlike the
previous table, the third column here shows the highest common quality that could be
achieved by multiple runs of Strategy 2 for every number of processors. Comparing
with column 3 of Table 1, we can easily note that there is an average drop in achievable
solution quality of approximately 9% with this scheme. Figure 5 shows the speedups
achieved by Strategy 2 as the number of processors is varied. In this case we see that
speedup is almost linear.

Similar trends are reported in [8] when their AMMC parallel SA is implemented
on the distributed-memory Intel iPSC/860. Their results are somewhat different in
that they only show a 4% average loss in solution quality instead of 9% for 8 proces-
sors. However, our speedup characteristics are slightly better: we achieve an average
speedup (over our 4 benchmark circuits) of 6.84 for 8 processors as opposed to their
5.9.

Table 2: Results for Strategy 2
Circuit Number µ(s) Serial Time for Parallel SA Strategy 2
Name of Cells SA SA Time p=3 p=4 p=5 p=6 p=7 p=8
s1196 561 0.630367 103 44.67 31.32 22.81 18.47 16.46 14.42
s1238 540 0.630573 117 58.03 39.21 26.31 22.31 19.73 15.83
s1488 667 0.582884 101 42.67 25.59 18.77 16.61 15.85 13.88
s1494 661 0.591114 75 51.11 30.79 22.32 15.82 14.9 13.52

4.3 Asynchronous MMC Parallel SA Strategy 3
With Strategy 2, we were able to address the runtime limitations of Strategy 1 in a lim-
ited manner. However, this was achieved only with a 9% reduction in solution quality.
We see that although a division of the workload has a positive impact on runtime, there
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Strategy 1 Speedup vs Number of Processors
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Strategy 3 Speedup vs Number of Processors
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Figure 6: Speedup versus number of machines for Parallel SA AMMC Strategy 3

is an adverse impact on achievable quality. The loss in achievable quality in Strategy
2 can be understood by looking at how the intelligence of the algorithm is affected by
division of the factor ‘M’. All of the parameters of the cooling schedule were origi-
nally optimized for the serial Simulated Annealing. Since SA convergence is highly
sensitive to the cooling schedule, it is understandable that such a drastic change to one
of its parameters would result in lower quality solutions. Division of ‘M’ reduces the
amount of time each processor spends searching for a better solution in the vicinity of
a previous good solution, resulting in a less thorough parallel search of the neighboring
solution space.

In Strategy 3, we attempted to offset the negative impact on algorithmic intelligence
by introducing other enhancements to the parallel algorithm. This was done by imple-
menting different cooling schedules on each processor in such a way that some of the
processors are searching for new solutions in a greedy manner, while others are still in
the high temperature region. We essentially aim to counterbalance the impact of short-
ened Markov-chains on achievable quality by making intelligent use of the interaction
between chains that occurs after every Metropolis loop.

This is different from the Temperature Parallel Simulated Annealing (TPSA) ap-
proach described in [18], which maintains all the parallel processes at constant but
different temperatures. Whereas in Strategy 3, the values of alpha is different on dif-
ferent processors, thus the rate of temperature change is varied across processors. This
is because our intended goals are different from those of TPSA. Whereas our primary
aim is to achieve serial-equivalent qualities while achieving near-linear runtimes, the
aim of TPSA was primarily to enhance the robustness of Parallel SA, and minimize the
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amount of effort required in parameter setting.
However, we find that even this proposed enhancement of varying alpha is insuf-

ficient to counteract the impact of divided ‘M’. Our results for Strategy 3, shown in
Table 3 and Figure 6 show no improvement over the results obtained for Strategy 2 -
for some circuits (e.g. s1196), there is even a drop in achievable speedup and quality.

Thus a more insightful and intelligent parallel cooling schedule will be required to
achieve the target qualities.

Table 3: Results for Strategy 3
Circuit Number µ(s) Serial Time for Parallel SA Strategy 3
Name of Cells SA SA Time p=3 p=4 p=5 p=6 p=7 p=8
s1196 561 0.606818 64 38.85 29.03 20.40 18.68 15.41 13.55
s1238 540 0.630573 117 65.36 45.97 26.65 22.65 19.39 18.04
s1488 667 0.582884 101 43.71 21.68 18.46 15.96 14.49 13.29
s1494 661 0.591114 75 42.89 27.95 20.05 17.92 13.86 13.67

4.4 Asynchronous MMC Parallel SA Strategy 4 - Adaptive Cooling
Schedule

From the results of the previous three strategies, it became evident that for parallel
SA, if any progress is to be made towards achieving our goals of near-linear run times
with sustained quality, an in depth study of the impact of parameter M on achievable
solution quality is required. To this end, we ran several experiments on both the serial
and parallel (7 processor) versions, keeping all things constant except M, which was
divided by 9, 17, 25, and 57 respectively for each new run. Results of the Serial version
are given in Figure 7(a), with a close up of the top left region of this graph shown in
Figure 7(b). The Quality vs. Runtime results for similar runs of the Type 3 parallel
SA on 7 processors are given in Figure 8, with a closeup of the active region given in
Figure 8(b).

From these results, we can see that division of M by a larger number increases
the rate at which new solutions are found initially, but the system stagnates at a lower
final solution quality. Intuitively this would suggest that the M factor should start at a
small value, and then should increase as solution quality rises. However, a balance is
necessary: if M increases too fast, runtime is compromised; if M increases too slowly,
achievable solution quality is affected. The key to this dilemma of approximating the
appropriate value of M comes from an interesting observation made during these runs:
during the steep improvement phase the rate of improvements to solution quality is
constant per metropolis call - meaning that during the initial phase, the high rate of
climb is primarily due to the short time spent in each metropolis call.

Based on what we have learned from these experiments, we proposed certain mod-
ifications to the cooling schedule of our basic, serial Simulated Annealing algorithm.
This adaptive cooling schedule, when implemented for the parallel AMMC scheme,
yielded our 4th parallel search SA strategy. A brief description of the adaptive cooling
schedule is given below:
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Figure 7: Quality vs. Runtime results for Serial SA, with different values for M
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Parallel Run Characteristics for Different Division Factors
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Figure 8: Quality vs. Runtime results for AMMC Parallel SA (7 processors), with
different values for M

18



1. For the first 100 or so Annealing iterations, accumulate an average of the quality
improvement per Metropolis function call. This average rate of improvement
will serve as a threshold that needs to be maintained per Metropolis Function
call.

2. Initially, the value of ‘M’ is set to a very small value - the value used in the basic
algorithm is divided by 25 to provide the initial M in the adaptive version.

3. After the initial average accumulation iterations, adaptivity is initiated. If rate of
improvement drops below a certain threshold, increase M incrementally, since
not enough time is being spent at each temperature level.

4. If rate of improvement is constantly more than the threshold value, decrease M,
since an unnecessary amount of time is being spent at the given quality level.

5. The value of the M parameter is not allowed to exceed twice the value used
in the original basic version, until significant stagnation is detected (e.g.: no
improvement in solution quality for the past 25 Metropolis calls).

The application of the last condition was empirically found to dramatically improve
algorithm run times, without sacrificing final quality achieved.

The run times for Serial and Parallel versions of Simulated Annealing with the
adaptive cooling schedule are given in Table 4 for the solution qualities achieved by
Strategy 1. Table 5 shows the run times of the adaptive serial and parallel schemes
for achieving the quality targets set by Strategy 2. As can be seen, both the serial
and parallel run times have improved dramatically over Strategy 1, while the parallel
runtimes are largely equivalent to those of Strategy 2.

Table 4: Results for Adaptive Strategy 4 (Strategy 1 Qualities)
Circuit Number µ(s) Serial Time for Parallel SA Strategy 4
Name of Cells SA SA Time p=3 p=4 p=5 p=6 p=7 p=8
s1196 561 0.675340 75.4 60.31 47.87 47.34 46.25 42.44 39.89
s1238 540 0.699469 115.9 96.45 84.21 67.59 63.05 53.79 47.68
s1488 667 0.650381 106.6 77.84 70.62 59.92 51.80 43.38 37.28
s1494 661 0.647920 139.7 101.1 77.38 76.68 59.68 50.12 48.44

Table 5: Results for Adaptive Strategy 4 (Strategy 2 Qualities)
Circuit Number µ(s) Serial Time for Parallel SA Strategy 4
Name of Cells SA SA Time p=3 p=4 p=5 p=6 p=7 p=8
s1196 561 0.630367 37.35 23.71 23.24 21.74 20.57 17.95 17.13
s1238 540 0.630573 45.85 33.76 24.52 19.65 23.53 15.03 16.12
s1488 667 0.582884 29.59 21.35 18.26 13.36 13.46 12.84 11.38
s1494 661 0.591114 46.92 27.78 20.09 20.14 17.68 18.16 16.55

Furthermore, for all runs and all circuits on any number of processors, Strategy
4 manages to achieve significantly higher solution qualities than either Strategy 1 or
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Strategy 2 before reaching saturation. For instance, Strategy 4 achieved solution quali-
ties of 0.728082 for circuit s1196 on 7 processors, 0.764924 for s1238 on 8 processors,
0.708843 for s1488 on 6 processors, and 0.704714 for s1494 on 8 processors, ex-
hibiting an approximate solution quality improvement of 9% over the basic serial SA,
although requiring much longer runtimes than the latter.

Note however, that the speedup characteristics of Strategy 4 are very similar to
those of Strategy 1: for the given quality values, speedup never exceeds 3 (Figure 9(a)).

Even for the lower qualities achieved by Strategy 2, the speedup characteristics of
Strategy 4 do not improve, as seen in Figure 9(b). In fact it is evident from Tables 2
and 5 that for 6 processors and above, Strategy 2 is often able to achieve its target
solution qualities sooner than Strategy 4, particularly with 8 processors.

5 Discussion and Analysis
For effective parallelization of an iterative heuristic, such that the goals of paralleliza-
tion are achieved, it is essential to take into account the interaction of the paralleliza-
tion scheme with: 1) Parallelizability of the solution perturbation operation 2) Paral-
lelizability of the solution quality/cost computation function 3) Characteristics of the
parallel environment, and most importantly 4) The intelligence of the heuristic. In
this section, we present an analysis of all the results generated from our parallel SA
implementations with respect to the above factors.

5.1 Cost Computation Function
For the multi-objective VLSI standard-cell placement problem, computation of solu-
tion quality involves individual computation of overall wire-length, delay, and power
metrics, followed by their combination using a fuzzy operation. Computing this multi-
objective cost function requires the most recent state of the solution to be accurate.
As such, partitioning of a single solution over different processes would be infeasible
due to interdependencies between cells in the netlist. This is specially true for delay
computation which takes place on long paths that can span across row boundaries.

The Type 3 Parallel Search strategies described so far are immune to this issue,
since aside from the sparse solution exchanges, each processing element is undertaking
an independent but complete search operation. This means that the cost computation
functions remain undivided and operate on largely distinct solutions on different pro-
cessors, and thus give equivalent performance to the serial algorithm. This assessment
is verified from experimental results for all Type 3 versions of parallel SA.

5.2 Parallelization Environment
In our cluster-of-workstations operating environment, it is essential to minimize the
amount of communication in relation to the computation. The periodic, asynchronous
communication model used for the Type 3 parallel strategies ensures that communica-
tion delays are minimized, and occur only when necessary. Thus the impact of com-
munication delays on the runtime performance of these approaches is minimal. This
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Strategy 4 Adaptive SA - Speedup Characteristics for Strategy 1 Qualities
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Strategy 4 Adaptive SA - Speedup Characteristics for Strategy 2 Qualities
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Figure 9: Speedup Characteristics of Parallel Adaptive Simulated Annealing (Strat-
egy 4) for solution qualities of (a) Strategy 1, (b) Strategy 2
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can be verified from Figure 10, which shows the ratio of communication time to com-
putation time for our parallel SA Strategy 2, when run on seven processors for circuit
s1196.

5.3 Solution Perturbation and Algorithmic Intelligence
The solution perturbation and next-state selection operators are where the intelligence
of virtually all stochastic heuristics lies. The solution perturbation operation in SA is
inherently sequential and in the chosen parallelization schemes it is left undivided.

The intelligence of SA lies in its cooling-schedule. In Type 3 parallel SA, each
independent parallel search chain periodically starts its search from the best available
solution at the time. This, coupled with the ability of SA to escape local minima,
allows the parallel search to be focused around a recent best solution, which would be
the logical place to look for an even better solution. Thus not only does the algorithmic
intelligence remain undivided, it is further enhanced using the Asynchronous MMC
approach, allowing the achievement of better solutions in the same or lesser amount of
time, as is the case for Strategies 1 and 4.

As for Strategies 2 and 3, we see that although a division of the workload has a
positive impact on runtime, there is an adverse impact on achievable quality. This can
be understood by looking at how the intelligence of the algorithm is affected by such a
division (achieved simply by dividing the cooling-schedule parameter M by the num-
ber of processors). Since SA convergence is highly sensitive to the cooling schedule,
it is understandable that such a drastic change to one of its parameters would result
in lower quality solutions. Division of M reduces the amount of time each processor
spends searching for a better solution in the vicinity of a previous good solution, re-
sulting in a less thorough parallel search of the neighboring solution space. Even the
proposed enhancement of varying other parameters across other processors, as done in
Strategy 3, is insufficient to counteract the impact of dividing the parameter ‘M’.

6 Conclusion
In this paper, we have presented 4 distinct implementations of AMMC PSA. Strategy 1
provides significantly better solution qualities than the serial algorithm, but only mod-
est speedup. Strategies 2 and 3 suffer a quality loss of at least 9%, but provide near
linear speedups for the achieved qualities. Our best parallel implementation in terms of
both solution quality achievable and run time was Strategy 4 - a new implementation
of Simulated Annealing utilizing an adaptive cooling schedule.

This cooling schedule was devised after a careful study of the impact of varying
M on achievable solution quality. The adaptive nature of the cooling schedule allows
this technique to achieve high quality results in significantly reduced runtimes, when
compared with earlier parallel strategies. However, compared to the serial version of
SA with an Adaptive cooling schedule, the speedup benefits of parallelization appear
less significant. They are in fact similar to the runtime characteristics seen between
Strategy 1 and the original Serial SA - achieving the same quality solution in slightly
lesser time. The speedup with even eight processors remains less than three.
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Figure 10: (a) Communication versus Computation traces for all processors for Type-3
Parallel SA (b) Ratio of Communication to Computation for each processor for Type-3
Parallel SA.
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Our results for the above strategies show that we have been partially successful in
achieving our goals. We succeeded in developing viable parallel Simulated Annealing
implementations for solving a multi-objective VLSI standard-cell placement on an in-
expensive cluster of workstations. We were also able to improve the solution qualities
achieved over the serial algorithm in the same amount of time (Strategies 1 and 4). We
were, however, unable to achieve near-linear speedups without sacrificing final solution
quality (Strategies 2 and 3).

Despite this, it should be noted that the speedup-oriented strategies, particularly
Strategy 2 may prove useful in scenarios where speedup is a more urgent requirement
than solution quality. It is evident from Tables 2 and 5 that if solution quality may
be compromised, the runtime characteristics of Strategy 2 can can compete even with
those of Strategy 4 as the number of processors is increased. In fact, for 8 processors
(at the lower solution qualities), the former has better runtime results than the latter.

In the future, we aim to explore in greater detail the characteristics of our adaptive
cooling schedule, as well as other derivatives of Simulated Annealing such as Very-fast
Simulated Re-Annealing, Simulated Quenching, and Mean-Field Annealing etc. [19].
In particular, we aim to focus on the suitability of these approaches for parallelization.
It is hoped that a thorough study of these methods will allow us to develop a parallel
SA scheme that can provide an improvement on our speedup characteristics without
sacrificing final solution quality.
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