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Abstract Cloud computing has evolved as the next-
generation platform for hosting applications ranging from
engineering to sciences, and from social networking tomedia
content delivery. The numerous data centers, employed to
provide cloud services, consume large amounts of electrical
power, both for their functioning and their cooling. Improv-
ing power efficiency, that is, decreasing the total power
consumed, has become an increasingly important task for
many data centers for reasons such as cost, infrastructural
limits, and mitigating negative environmental impact. Power
management is a challenging optimization problemdue to the
scale of modern data centers. Most published work focuses
on power management in computing nodes and the cooling
facility in an isolated manner. In this paper, we use a com-
bination of server consolidation and thermal management to
optimize the total power consumed by the computing nodes
and the cooling facility. We describe the engineering of an
evolutionary non-deterministic iterative heuristic known as
simulated evolution to find the best location for each vir-
tual machine (VM) in a data center based on computational
power and data center heat recirculation model to optimize
total power consumption. A “goodness” function which is
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related to the target objectives of the problem is defined. It
guides the moves and helps traverse the search space using
artificial intelligence. In the process of evolution, VMs with
high goodness value have a smaller probability of getting
perturbed, while those with lower goodness value may be
reallocated via a compoundmove. Results are comparedwith
those published in previous studies, and it is found that the
proposed approach is efficient both in terms of solution qual-
ity and computational time.
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Resource provisioning · Virtual machine assignment ·
Combinatorial optimization · Simulated evolution ·
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1 Introduction

Cloud-based data centers have emerged as a popular comput-
ing paradigm. The IT industry is rapidly adopting cloud for
hosting and delivering Internet-based applications and ser-
vices (Systems IT Governance Research Team 2008). As a
result of such a proliferation, there has been an increase in
the power density and power consumption of data centers. In
2013, 91 Billion kWh of power was consumed by US data
centers. It is estimated to increase to approximately 140 Bil-
lion kWh by 2020, which is equivalent to $13Billion per year
in electricity bills, and emission of nearly 150 Million Met-
ric tons of annual carbon pollution (The Climate Group on
behalf of the Global eSustainability Initiative (GeSI) 2015).

In some cases, power supply available for data centers is
limited. For example, Wall Street bank Morgan Stanley was
not able to run a new data center inManhattan due to unavail-
ability of the power needed to operate the center (Brown
and Reams 2010). 30% of data center providers have identi-
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Fig. 1 a Applications running on individual servers, b applications running on individual VMs sharing physical resources

fied power availability as a key factor being limiting server
deployment (Filani et al. 2008). Power required by the com-
puting nodes and the cooling facility in a data center is a
crucial issue for data center providers since it dominates the
operational costs (Systems IT Governance Research Team
2008). For example, based on a 3-year amortization sched-
ule, Amazon estimated that cost and operation of the severs at
its data centers accounts for 53% of the total budget, and cost
related to power is 42% of the total, including infrastructure
for cooling and direct power consumption (Hamilton 2009).
Therefore, considerable amounts of power can be saved, and
significant contribution can be made to greater environmen-
tal sustainability by improving power efficiency in cloud data
centers.

A typical data center hosts number of servers correspond-
ing to maximum load, but the utilization invariably is around
30–70% (Barroso and Hölzle 2007; Bohrer et al. 2002).
Significant percentage of servers sits idle waiting for user
requests and consumes about 60–70% of the power required
when fully utilized (Basmadjian et al. 2012; Feng et al.
2005; Fu et al. 2010). This significant idle power not only
adds to the computational power but also to that consumed
by the cooling facility to remove heat. Server consolida-
tion has been proposed to reduce idle power by assigning
user requests to a subset of servers and powering-off the
rest (Chase et al. 2001; Pinheiro et al. 2001; Sait 2016). More
servers are powered-on as more user requests arrive. Server
consolidation makes use of virtualization, a prominent tech-
nology that makes cloud computing possible. Virtualization
allows resources of a single large server to be sliced into
multiple isolated execution environments so that multiple
operating systems can coexist on a single physical machine.
User requests are translated into computational requirements

that are mapped to VMs with desired characteristics. Mul-
tiple VMs are assigned to a single physical server, sharing
the same underlying machine’s computing resources, which
results in fewer physical servers (Barham et al. 2003). Figure
1 illustrates the benefits of virtualization and how it helps to
minimize the number of active servers.

As shown, five applications are running on five differ-
ent servers. This is a wastage of resources since all of the
servers are underutilized. With virtualization, we can trans-
late these applications into VMs, and those VMs can run on
fewer servers, as illustrated in Fig. 1b.

Server consolidation attempts to assign VMs to a mini-
mum number of servers and this results in high utilization
per server. Servers consume large amounts of computational
power because of higher utilization, and this power is dissi-
pated as heat. Consequently, the active servers reach higher
temperature due to the creation of hot spots by the heat dissi-
pation. This heat needs to be extracted to avoid overheating
and resultant failing of the servers (Wang et al. 2009). Com-
puter Room AC (CRAC) units provide cold air, which enters
the servers through the front air inlets in the cold aisle, picks
up heat from the circuitry, and exits via outlet to the hot
aisles. Accordingly, the outlet temperature rises compared to
the inlet temperature. Air conditioners positioned above the
hot aisle extract this hot air, but a large fraction of this heat
recirculates to the cold aisle increasing the inlet tempera-
ture. The temperature of supplied air is adjusted (reduced) so
that the inlet temperature is lower than the safe value to avoid
overheating of the servers. Cooling facilities exertmore effort
to provide cold air at lower temperature, i.e., more electric
power is required by the cooling facility at higher inlet tem-
perature. For the VM assignment shown in Fig. 1b, servers
reach high temperature due to hot spots; therefore, the CRAC
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unit will consume a large amount of power to supply cold
air to reduce the temperature of the servers to a safe limit.
Hence, minimizing the number of servers does not necessar-
ily minimize total power consumed. Computational power
and cooling power must be optimized in an integrated fash-
ion to minimize the total power consumption in data centers.

In this paper, we present a simulated evolution (SimE)-
based heuristic. We developed a goodness measure to intel-
ligently traverse the search space. Our approach finds a near-
optimalVMassignment by considering the trade-off between
computational power and cooling power in short amount of
time. Its performance is compared with that of two well-
known iterative heuristics, namely Simulated Annealing
(SA) andTabu search (TS), andwith twopopular constructive
algorithms, the improved versions of First Fit Decreas-
ing FFDimp and Least-Loaded algorithm LLimp. Results are
presented that demonstrate the effectiveness of the proposed
algorithm over a wide range of problem instances.

The remainder of this paper is organized as follows: Sect. 2
discusses related work in this area. Section 3 describes data
center configuration and power model. Section 4 formally
defines the problem, and Sect. 5 explains our proposed
approach. Experimental methodology and results are dis-
cussed in Sect. 6. Section 7 concludes this work and suggests
future work.

2 Related work

In the last few years, much work has been done for optimal
VM assignment with the objective of minimizing number
of active servers (PMs), thereby decreasing computational
power. Gao et al. (2013) proposed a modified ant colony
optimization algorithm thatminimizes total resourcewastage
and power consumption in physical machines. Xu et al.
(2015) proposed improved multi-objective particle swarm
optimization (IMOPSO) for reducing computational power
andmigration time. Kramer et al. (2012) used server consoli-
dationwith the concept of dynamicvoltage/frequency scaling
(DVFS) to improve the power efficiency. Wang et al. (2016)
used genetic algorithm based on the number of physical
machines and Service Level agreements to reduce compu-
tational power, but they did not consider cooling power.
Doddavula et al. (2011) proposed a Magnitude Classified
algorithmbased on First Fit Decreasing (FFD) for server con-
solidation. Ajiro andTanaka (2007) suggested improvements
to the classical FFD and Least-Loaded (LL) algorithms to
optimize computational power. All of these schemes attempt
to minimize computational power byminimizing the number
of active severs, but also ignore cooling infrastructure despite
it being a significant percentage of total power consumed.

Tominimize the power consumption of cooling infrastruc-
ture, Sullivan (2000) andPatel et al. (2003) optimized cooling

power by improving air flow. Moore et al. (2005) proposed
to predict heat profiles using software-based infrastructure.
Mukherjee et al. (2007) used a software-based infrastructure
to control resource management for thermal-aware alloca-
tion. These schemes only optimize cooling power.

Al-Qawasmeh et al. (2015) used nonlinear programming
technique to optimize cooling and idle power. Nonlinear pro-
gramming technique has poor scalability, and it may not be
suitable for practical scenarios.

In this work, we combine linear power model (Fan et al.
2007) and a heat recirculation model (Tang et al. 2006) to
address the problem of minimizing total power consump-
tion in data centers by considering the trade-off between
the computational power and the cooling power. We engi-
neer an evolutionary non-deterministic optimization heuris-
tic known as simulated evolution (SimE). Similar to other
non-deterministic search algorithms, SimE is based onmoves
and possesses hill-climbing capability. One key requirement
of SimE is to define an appropriate way to estimate the good-
ness of the current assignment of a movable element. In our
case, the movable elements are VMs and goodness measure
is based on server consolidation and thermal management.
The process of evolution, guided by goodness value, tends to
converge reasonably fast to a good quality solution by con-
sidering the trade-off between the computational power and
the cooling power. Many other non-deterministic heuristics,
such as Simulated Annealing (SA), Tabu Search (TS), lack
this domain knowledge feature and work mostly with ran-
dom moves. Further details of goodness function developed
for VM assignment are provided in Sect. 5.

3 Data center power model

This section provides the necessary preliminaries and system
models that are required to define the problem. Table 1 shows
the parameters and notations used throughout this paper.

3.1 A typical data center configuration

A typical data center is arranged in a hot-aisle/cold-aisle con-
figuration as shown in Fig. 2. Racks containing servers are
installed on a raised floor. All servers are connected to a high-
speed network, typically in star topology via central switch.
CRAC units extract hot air from the top and deliver cold air
through pressurized floor plenum.

3.2 Power consumption in data centers

The total power (Ptotal) demand of a data center is defined as a
sumof computational power (PCN) and cooling power (PAC).
For the sake simplicity we are not considering power con-
sumed by network devices; storage; lightning; humidifier;
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Table 1 Notations and definitions

Symbol Definition

VM Virtual machine

PM Physical machine

n Number of VMs

m Number of servers (PMs)

Ptotal Total power

PAC Cooling power

PCN Computational power

P idle
j Idle computational power of j th server

Pbusy
j Average busy computational power of j th server

U p
j CPU utilization of j th server

Um
j Memory utilization of j th server

xi j 1 if i th VM is assigned to j th server otherwise 0

y j 1 if j th server is ON otherwise 0

vci CPU requirement of i th VM

vmi Memory requirement of i th VM

COP Coefficient of performance

Tsup Temperature of air supplied by CRAC

Tred Maximum allowed inlet temperature

ρ Air density in kg/m3

f Air flow rate in m3/s

Q Heat rate in Watt (W)

cp Specific heat of air in kJ/kgK

A Heat cross-interference coefficient matrix

T i
out Inlet temperature of i th server

T i
in Outlet temperature of i th server

K Thermodynamic constant matrix, K = diag(Ki )
−→
Tin The vector {T i

in}n−→
Tout The vector {T i

out}n
D Distribution matrix

and losses due to distribution network consisting of switch
gear, conductors, DC–AC and AC–DC converters, and UPS
(uninterruptible power source).

Ptotal = PCN + PAC (1)

3.2.1 Computational power

Power consumption by computing nodes varieswith the com-
puting activity. Fan et al. (2007) proposed that computational
power consumption of servers can be accurately described by
a linear model. Power consumed by a server j can be express
as in Eq. 2 (Gao et al. 2013).

Pj =
{(

Pbusy
j − P idle

j

)
×U p

j + P idle
j : otherwise

0: if U p
j = 0

(2)

where U p
j is the CPU utilization of j th server, Pbusy

j is the
average power value when j th server is fully utilized, and
P idle
j is the average power value when the server is in idle

state.
Total power consumption of all computing nodes (PCN)

in a data center can be calculated as:

PCN =
m∑
j=1

Pj (3)

where vci is the CPU requirement of i th VM, and xi j is the
assignment variable, its value is 1 if i th VM is assigned to
the j th server otherwise its value is zero.

3.2.2 Cooling power

Power consumed by the cooling facility is defined as given
in Eq. 4 (Moore et al. 2005).

PAC = PCN
COP(Tsup)

(4)

where PCN is the power consumed by computing nodes.
PAC is inversely proportional to Coefficient of Performance
(COP).COPvarieswith temperature of the air supplied (Tsup)

Fig. 2 A typical data center
configuration
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a11

ACS1

S3S2

Tsup
Tin Tout

Recirculation

Fig. 3 Cross-interference among computational nodes. Exhaust hot
air from server S1 will be partially removed by AC and will partially
recirculate to other servers’ inlets. It is also affected by the hot air from
other servers

by theCRACunits.We are usingCOPmodel of chilled-water
CRAC units at the HP Labs Utility Data Center (Moore et al.
2005), which is defined by Eq. 5.

COP(Tsup) = 0.0068T 2
sup + 0.0008Tsup + 0.458 (5)

As temperature (Tsup) of the cold air supplied by CRAC
units air increases, COP increases, and CRAC units use less
cooling power (PAC) to remove the same amount of heat
(computational power).

3.2.3 Total power consumption

In this work, we combined linear power model (Eq. 3) pro-
posed in Fan et al. (2007) and cooling power model (Eq. 4)
proposed in Tang et al. (2006) to address the problem of
minimizing total power consumption in data centers by con-
sidering the trade-off between the computational power and
the cooling power. Using Eqs. 3 and 4, total power consump-
tion can be written as:

Ptotal =
(
1 + 1

COP(Tsup)

)
PCN

=
(
1 + 1

COP(Tsup)

) m∑
j=1

Pj (6)

3.3 Heat recirculation

Heat recirculation can be described as a phenomenon of a
server’s outlet heat recirculating and affecting the inlet tem-
perature of another server. Tang et al. (2006, 2008) showed
that a cross-interference matrix, obtained by computational
fluid dynamic simulation, can be used to define heat recircu-
lation. Cross-interference matrix is denoted as Am×m , where
each element ai j is the fraction of heat transferred from the
outlet of i th server to the inlet of j th server (Fig. 3).

The increase in the inlet temperature of the servers due to
heat recirculation is given as (Tang et al. 2006):

−→
Tin = −→

T inold + D × −→
P (7)

where
−→
Tin is the inlet temperature vector,

−→
P represents

computational-power-consumption vector of m servers, and−→
T inold is inlet temperature vector before loading. Distribu-
tion matrix D is defined as:

D = [(K − ATK)−1 − K−1] (8)

where K is a m ×m diagonal matrix whose entries are ther-
modynamic constants of the servers, i.e., Ki = ρ fi cp.

This means that each inlet temperature rises due to
heat from recirculation. The temperature of supplied air is
adjusted so that the inlet temperature is lower than a man-
ufacturer specified value (Tred). This is necessary to avoid
overheating and failing of the servers (Wang et al. 2009). In
this work, we use Tred = 25 ◦C (Tang et al. 2006).

Tsup = Tinold + Tadj (9)

where

Tadj = Tred − max(Tin) (10)

3.4 An illustrative example

Suppose the distribution vector D of the data center shown
in Fig. 1 is given as:

D =

⎡
⎢⎢⎣
0.0723 0.0252 0.0071 0.0097
0.0128 0.0463 0.0009 0.0092
0.0157 0.0025 0.0272 0.0139
0.0035 0.0009 0.0076 0.0455

⎤
⎥⎥⎦

The distribution vector is obtained through computational
fluid dynamic simulation of the given data center’s configu-
ration. Similarly, suppose Tsup = 25 ◦C, Pidle = 150W, and
Pbusy = 215W. The flow rate ( fi ) of each server’s fan is
assumed to be 8.0 m3/s. For the VMs assignment shown in
Fig. 1b, servers 1 and 2 consume 215W of power; whereas,
servers 3, 4, and 5 are turned off. Using Eq. 7, inlet temper-
ature (Tin) of these five servers is 46, 37, 29, 26, and 27 ◦C.
The temperature (Tsup) of air supplied by the CRAC units
must be 4 ◦C to ensure that Tin ≤ Tred. Total power (Ptotal)
consumed is given by Eq. 6

Ptotal =
(
1 + 1

COP(4)

)
(215 + 215 + 0 + 0 + 0)

= 1186.72Watts
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Fig. 4 VMs allocated to avoid hot spots

Now, consider the VM assignment shown in Fig. 4.
Servers 2,3, and 4 are consuming 198.75, 182.50, and
198.75W of power, respectively; whereas, servers 1 and 5
are turned off. Inlet temperature (Tin) of the five servers is
33, 36, 33, 35, 26 ◦C. The temperature (Tsup) of air supplied
by the CRAC units must be 14 ◦C to ensure that temperature
of the servers is within the safe limit.

Therefore,

Ptotal =
(
1 + 1

COP(14)

)
(0 + 198 + 182 + 198 + 0)

= 909.44Watts

This allocation of VMs is using more servers as compared
to the assignment shown in Fig. 1b, but it is consuming less
total power. Hence, minimizing the number of servers does
not necessarily minimize total power consumption. Compu-
tational power and cooling power must be optimized in an
integrated fashion to minimize the total power consumption
in data centers.

4 Problem formulation

In this section, we formally define the virtual machine place-
ment problem and discuss the cost function and constraints.

We consider two dimensions, CPU and memory to char-
acterize a VM and PM. Suppose there are n VMs to be
assigned. Every VM vi , i ∈ {1, 2, 3, . . . , n} is defined as
a two-dimensional requirement vector, vi = {vci , vmi } where
each dimension represents a normalized value of one type of
resource requested (CPU and memory). These VMs are to
be allocated to n PMs with the assumption that every VM
request can be satisfied by one sever. We assume a homo-
geneous data center, where all PMs have the same capacity.

Let T c
j and Tm

j be the threshold values of CPU and memory
resources, associatedwith each PM p j , j ∈ {1, 2, 3, . . . ,m},
respectively. The assignment solution is represented by a
m × n matrix X , where:

xi, j =
{
1: if i th VM is assigned to the j th PM
0: otherwise

(11)

In addition, we define the following binary decision variable:

y j =
{
1: if j th PM is in use
0: otherwise

(12)

The given problem can be formulated as:

minimize Ptotal =
(
1 + 1

COP(Tsup)

) m∑
j=1

Pj

subject to

n∑
i=1

vci × xi j ≤ T c
j × y j ∀ j ∈ J (13)

n∑
i=1

vmi × xi j ≤ Tm
j × y j ∀ j ∈ J (14)

m∑
j=1

xi, j = 1 ∀i ∈ I (15)

y j , xi j ∈ {0, 1} ∀i ∈ I and ∀ j ∈ J (16)

Tin ≤ Tred (17)

Constraints (13) and (14) guarantee that the threshold capac-
ity of each server is not exceeded. Moreover, constraint (15)
ensures that a VM is placed in exactly one server and con-
straint (16) represents the domain of variables xi, j and y j .
Finally, constraint (17) makes sure that temperature of the
servers is within the given safe limit.

5 Proposed approach

In this sectionwe describe the approach adopted to allocating
VMs while optimizing our objectives.

As mentioned earlier, minimizing the number of servers
does not necessarilyminimize total power consumption. This
was illustrated by an example in Sect. 3.4. There is a trade-off
between computational and cooling power. The implica-
tions of the hot spots on the cooling power are discussed in
Sect. 3.3. We are interested in the VM assignment problem
with objective of minimizing total power consumption using
our model. VM assignment problem is often formulated as
a vector bin packing problem (VBP), where the VMs that
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are treated as objects (n) are packed into servers that are
treated as bins (b). The computational complexity of VBP
is O(bn). Clearly, it is impractical to enumerate all possi-
ble assignments for a large number of VMs (objects). Even
the one-dimensional version of this problem is NP hard (Sait
and Shahid 2015; Sait 2016). Finding optimal assignment to
such problems is computationally infeasible for large prob-
lem sets. In this work, we engineered simulated evolution
(SimE) for optimal placement of VMs to minimize total
power consumption in data centers in minimal time.

SimE is a very popular heuristic which the authors have
used to solve many optimization problems (Khan et al.
2002; Youssef et al. 2002). Similar to other non-deterministic
search heuristics, SimE is also based onmoves and possesses
hill-climbing capability to find the solution with lowest costs
reasonably quickly. One major difference between SimE and
other heuristics is the goodness function. A key require-
ment of SimE is to come up with goodness function(s) that
play a key role in guiding the traversal of search space to
find optimal solution in lesser time. This goodness function
requires domain knowledge of the problem and cognition of
the designer of the heuristic.

In this section we describe our simulated evolution
(SimE)-based VM assignment algorithm. We begin with a
brief discussion of the basic SimE heuristic.

5.1 Simulated evolution algorithm

Simulated evolution (SimE) algorithm was proposed by
Kling and Banerjee (1987). The algorithm combines con-
structive perturbation and iterative improvement and saves
itself from getting stuck to the local minima by follow-
ing a stochastic approach. The core of the algorithm is the
goodness estimator. SimE assigns each moveable element a
goodness value. The goodness value indicates how well a
certain movable element is currently assigned. The more the
goodness value, the lesser is the probability of the element
being selected for re-allocation.

The flowof the proposed SimE-basedVMallocation algo-
rithm for total power minimization in data centers is shown
in Fig. 5. SimE starts with an initial solution Φ of a set V
containing nmovable elements (VMs). SimE then follows an
evolution-based approach to find better solutions from one
iteration to the next by perturbing some ill-assigned elements
(VMs) while retaining the near-optimal ones. The algorithm
consists of three sequential steps; evaluation, selection, and
allocation; that are executed in each iteration. The process of
iterative improvements continues until the solution average
goodness value reaches at its maximum, or no considerable
improvement in solution quality is observed after a given
number of iterations (Sait and Youssef 1999).

Start

Initialization
Generate ini�al placement

Evaluation
Evaluate goodness value of each VM 

in its current placement based on 
VM consolida�on and thermal model

Selection
Probabilis�cally select ill-assigned 

VMs based on their goodness value. 

Sorting
Sort the selected VMs and par�ally 

used PMs based on their request size

Allocation
Re-allocate the selected VMs 
using Greedy First Fit Strategy

Is stopping-criterion 
sa�sfied ?

Return the best solu�on 
seen so far

End

No

Yes

Fig. 5 Flowchart of SimE

5.1.1 Goodness evaluation

This step involves the evaluation of goodness (fitness) gi
of each VM vi assigned to PM pk in current solution Φ ′.
Effective goodness measures can be thought of based on the
domain knowledge of the optimization problem (Sait and
Youssef 1994, 1999). This goodness measure is expressed
as a single number in the range of zero to one. For our VM
assignment problem, we used a joint goodness function that
is based on our objective; i.e., to reduce computational and
cooling power.

Computational Power is directly proportional to the num-
ber of active severs as given by Eq. 3. We can save
computational power by assigning the given VMs to fewer
number of servers. We define a goodness value gs of i th VM
assigned to kth server as:

gsi = vci + vmi

pck + pmk
, gsi ∈ [0, 1] (18)

where vci and vmi are CPU and memory requirements of
VM vi , and pck and pmk are the available CPU and mem-
ory resources of partially used PM pk after removing VM vi
fromPM pk in the current solutionΦ ′. Equation (18) assumes
a minimization of resource wastage in PM pk (Fig. 6). The
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v1c

vi
mvi

c
p
k
c p

k
m

v2
c
v3c

v1m
v2
m

v3m

(a)

v1
c

vi

mvi

cp
k

c
p
k

m

v2
c

v3
c

v1
m

v2
m

v3
m

(b)

v1
c vi

m
vi

c

p
k

c p
k

m

v1
m

(c)

Fig. 6 a Goodness measure for minimizing number of servers gsi =
vci +vmi
pck+pmk

, b the 3rd VM has a goodness measure of 1 and it should not be

selected for re-allocation, c the 1st VM has a goodness value of 0, it is
ill-assigned and should be reallocated

objective of this goodnessmeasure is tominimize the number
of active servers (Sait and Shahid 2015).

Our other objective is to minimize cooling power con-
sumption. Hot spots are created in data centers due to heat
recirculation. Some of these recirculation effects can lead
to situations where the observed consequence of the ineffi-
ciency is spatially uncorrelatedwith its cause; in other words,
the heat vented by one machine may travel several meters
before arriving at the inlet of another server. From Eq. 7, we
can define increment in the inlet temperature (δ

−→
Tin) of the

severs due to heat recirculation as:

δ
−→
Tin = D × −→

P (19)

where δ
−→
Tin = {δT 1

in, δT
2
in, δT

3
in, . . . , δT

m
in } and D is given by

Eq. 8. Similarly, increment in the inlet temperature of the i th
server due to heat recirculation of j th server is given as:

δ
−→
T i
in( j) = −→

di, j × −→p j (20)

We define Recirculation Effect (RE) of j th server as:

RE j =
m∑
i=1

δ
−→
T i
in( j) =

m∑
i=1

−→
di, j (21)

RE indicates the contribution of a server to heat recirculation
and creation of hot spots (Fig. 7). In order to avoid hot spots
and to minimize cooling power (PAC) consumption, servers
with higher RE value must be avoided. RE value can be used
to define the goodness value of VMs assigned to a server. If
VMs are assigned to the servers with higher RE value, they
should have lower goodness value and should be considered
for re-allocation. Since the goodness measure must be a sin-
gle number expressible in the range [0, 1]. We translate RE
to a goodness measure gt as:

gti = 1 − RE j − min(RE)

max(RE)
, gti ∈ [0, 1] (22)

where gti is the goodness of i th VM assigned to j th server.
The goodness value gt focuses on inefficiencies; i.e., it will
lower the total amount of heat that recirculates within the
data center.

Overall goodness value used by our algorithm is defined
as:

gi = α × gsi + β × gti , gi ∈ [0, 1] (23)

where α and β are constant ranging from 0 to 1 and α +β =
1. The goodness function given in Eq. 23 strongly reflects
the target objectives of the given problem. The quality of a
solution can also be estimated by summing up the goodness
of all the VMs.

5.1.2 Selection

In this step, elements are selected for relocation. Elements
with lesser goodness values have a higher probability of get-
ting selected for re-allocation. This step divides Φ ′ into two
disjoint sets; a set Vs of selected elements and a partial solu-
tion Φp containing rest of the elements of the solution Φ ′.
The selection operator has a non-deterministic nature, i.e.,
an individual with a high goodness (close to one) still has
a nonzero probability of being assigned to the selection set
Vs . It is this element of non-determinism that makes SimE
capable of escaping local minima. The Bias value (B) is used
to deflate or inflate the goodness of elements. In many cases,
a value of B = 0 would be a reasonable choice, as in our
case (Sait and Youssef 1999).
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Fig. 7 aA sample distribution matrix for fifty servers, b a distribution
vector for 1st server, c recirculation effect (RE) values of 50 servers

ALGORITHM
Simulated Evolution (V, Stopping − criteria);
/* Φi: Initial Solution; */
/* Φp: Partial Solution; */
/* Φ : New Solution; */
/* V: Set of all VMs, where |V | = n; */
/* Vs: Selected VMs for re-allocation; */
/* Pa: Active PMs in Φp; */
/* B: Selection bias; */
/* maxSelection: Upper limit of the selection set size; */
INITIALIZATION ;

Φi = initial placement(V );
Φ = Φi;

Repeat
EV ALUATION :

ForEach vi ∈ V Do
gi = Evaluate(vi); /* Evaluate goodness value */

EndForEach;
SELECTION :

Φp = Φ ;
count = 0;
ForEach vi ∈ V Do
If (Random ≤ (1 − gi + B)) ∧ (count ≤ maxSelection)

Vs = Vs ∪ {vi};
Φp = Φp − {vi};
count = count + 1;

End If;
EndForEach;

ALLOCATION :
Sort the VMs in set Vs based on their resource demand ;

ForEach vi ∈ Vs Do
Allocate( vi , Φp); /* using F irst F it Strategy */

EndForEach;
Φ = Φp;

Until Stopping-criterion is satisfied;
Return (BestSolution);
End Simulated Evolution.

Fig. 8 Simulated evolution algorithm for VM assignment

5.1.3 Allocation

The allocation step takes the elements of set Vs and the partial
solution Φp and generates a complete new solution Φ ′ with
the elements of set Vs mutated according to allocation strat-
egy. The goal of Allocation strategy is to favor improvements
over the previous iteration, without being too greedy (Sait
and Youssef 1999). The design of allocation strategy is prob-
lem specific. Just like in the design of goodness function,
the choice of allocation strategy also requires ingenuity on
the part of the designer. In this work we adopted a variant of
FFD heuristic as our allocation strategy. The VMs selected
during the selection step are sorted in decreasing order of
their request sizes (Rvi ) computed using Eq. (24).

Rvi = (
vci

)2 + (
vmi

)2
. (24)
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Subsequently, First Fit algorithm is applied (Fig. 8) to
generate the new solution Φ ′. This algorithm attempts to
assign the selected VMs to the servers with low RE value.

6 Experimental results

In this section we provide performance evaluation of our
proposed approach with those in the literature. We com-
pare it with the well-known iterative heuristics, Simulated
Annealing (SA) and Tabu search (TS), and with two popular
constructive algorithms, improved version of classic First Fit
Decreasing (FFDimp) and Least-Loaded (LLimp) algorithms
proposed by Ajiro and Tanaka (2007).

6.1 Baseline algorithms

FFD and its variants are real-world VM allocation poli-
cies available in the literature. OpenNebula and Eucalyptus
are two popular cloud platforms. The allocation policies
available on these open platforms are Packing, Load-aware,
and GREEDY which are different variants of FFD (Helion
Eucalyptus Docs Team 2015; OpenNebula 2015). Ajiro and
Tanaka (2007) suggested improvements to the classical FFD
and Least-Loaded (LL) algorithms for reducing computa-
tional power by minimizing number of servers. Improved
FFD (FFDimp) and improved LL (LLimp) are different from
their conventional counterparts in the sense that they seek
near-optimal assignment in multiple passes. These improved
versions provide better quality assignments than that of their
single-pass implementations. This improvement, however,
comes at the expense of increased run time (Ajiro and Tanaka
2007).

Simulated Annealing (SA) and Tabu search (TS) are well-
established non-deterministic heuristics (Nahar et al. 1989).
They have been adopted to solve various combinatorial opti-
mization problems. SA is inspired from annealing of the
metalswhere good solutions are preferredwith time,whereas
TS uses adaptive (flexible) memory for hill climbing (Sait
and Youssef 1999).

Simulated Annealing (SA) is a well-established non-
deterministic heuristic (Nahar et al. 1989). It has been
adopted to solve various combinatorial optimization prob-
lems. One typical feature of SA is that it accepts all the
solutions with improved cost like a greedy algorithm, but
it also, to a limited extent, accepts changes which lead to
inferior solutions. This feature gives SA the hill climbing
capability that allows it to escape from the local opti-
mal solutions initially and reach a more optimal solution
at the end of the search. The odds of accepting inferior
rated solutions are large in the beginning; but as the search
progress, fewer bad solutions are accepted and finally only
solutionswith improved cost are accepted. SAproduces high-

quality solution regardless of the initial configuration. It is
robust, effective, and easy to implement (Sait and Youssef
1994, 1999). We are using a modified Simulated Annealing
called Simulated Quenching (SQ) (Ingber 1993). SQ solu-
tion methodology resembles the cooling process of molten
metals through annealing. The algorithm and the analogy of
the technique remain the same as that of SA except for the
annealing schedule. SQ uses an exponential schedule.

Tk+1 = αTk

where α is the cooling factor. The Metropolis routine
is invoked after updating (lowering) temperature T . The
annealing procedure halts when Time exceeds the allowed
time. TheNeighbor function perturbs the current assignment
by randomly assigning a VM to a server. It is ensured that
the new assignment is feasible.

Tabu search (TS) is a general iterative heuristic intro-
duced by Glover (1989, 1990) for solving combinatorial
optimization problems. Tabu search is a generalization of
local search. This scheme works by moving from one solu-
tion to another in a hill-climbing fashion. Unlike local search
which stops when no improved new solution is found in
the current neighborhood, Tabu search continues the search
from the best solution in the neighborhood even if it is worse
than the current solution. One of its features is its systematic
use of adaptive (flexible) memory. Tabu search differs from
genetic algorithm which are “memoryless,” and also from
branch-and-bound, A* search, etc., which are rigid memory
approaches. The initial assignment matrix X generated by
randomly assigning VMs to the servers using admission con-
trol. As search proceeds, neighbor assignments are generated
moving a VM to a server. The selection of VM and server
is done randomly. Maintaining a Tabu List is an important
step in TS. Each entry in the Tabu List contains the following
information or attributes:

– VM that was selected for the move,
– Server from where VM is being moved, and
– Server to where VM is being moved.

After a successful move, the inverse of the move is stored
in Tabu List. Every new move is checked against the moves
stored in the Tabu List to make sure no reverse moves are
being made, and heuristics can escape local optimal. How-
ever, Tabu List moves are ignored if the new assignment is
better than the best obtained thus far (aspiration criterion).

6.2 Simulation setup

Programs for the proposedSimE, SA,TS, FFDimp, andLLimp

heuristics are coded in MATLAB. The simulations are run
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on a computer equipped with Intel coreTM i3 with 2.4GHz
CPU and 6GB RAM.

For simplicity, we assume a homogeneous hardware envi-
ronment. All servers have the same power consumption and
computing capability. We are using p̄busy = 215W and
p̄idle = 162W as reported by Gao et al. (2013) through
experiments conducted on a DellTM server. We are using 150
servers and 1 CRAC unit. The flow rate ( fi ) of each server’s
fan is set to 8.0m3/s.

SA has four parameters which need to be tuned care-
fully (Sait and Youssef 1999). After trial runs, appropriate
values of these parameters are found to be T0 = 800, α =
.98, β = 1.1, and M = 9. Similarly, parameters of TS (Sait
and Youssef 1999) are set as TabuListSize = 10 and
MaxTrialAssignments = 15. SimE is set to stop after 30
iterations if there is no significant improvement in cost and
maxSelection is set to 40% of total VMs. For our goodness
estimator α and β both are set to 0.5.

6.2.1 Data for simulation

The problem instances were a set of two resource demand
vectors representing the CPU and memory utilization of
VMs. Servers were assumed to be identical, that is, all PMs
have the same resource capacity fixed at 90% although the
proposed approach is equally applicable for the heteroge-
neous case. Due to non-deterministic behavior, average of
results obtained from 20 independent runs is reported.

It was observed that for some types data (workloads) it is
easy to reach near-optimal solutions. This is similar to the
phase transitions observed in physical systems (Hartmann
and Weigt 2006). To cover a wide range of possible work-
loads, we generated problem instances with two different
average resource values and several correlations of CPU and
memoryutilization, employing themethodproposedbyAjiro
and Tanaka (2007). The pseudocode for this is given in Fig. 9.
In our experiment, we used two kinds of average values and
five different probabilities. We set both vc and vm to 25%,
and then to 45%. We set P to 0.00, 0.25, 0.50, 0.75, and 1.0
to get strong-negative, weak-negative, no,weak-positive, and
strong-positive correlations.We also tested for 50% loadings
as well as 70% loadings. Average resource value is related to
the size of a single request; whereas, loading is the ratio of
overall requirements of all VMs, which need to be assigned,
to the sum of all available resources. We define loading as:

Loading = 0.5 ×
∑n

i=1

(
vci + vmi

)
∑m

j=1

(
Mc

i + Mm
i

) (25)

where vci and vmi are the CPU and memory requirements
of i th VM, and Mc

i and Mm
i are the CPU and memory

capacities of i th server. The 0.5 factor is used because two
elements, CPU and memory, are considered. Please note that

for i = 1 to n
vc
i ← rand(2v̄c)

vm
i ← rand( ¯vm)

r = rand(0, 1)
if (r < P and vc

i ≥ v̄c) or (r ≥ P and vc
i < v̄c)

vm
i ← vm

i + ¯vm

end if
end for

Fig. 9 Pseudocode to generate different problem instanceswith certain
correlations

the requirements of the i th VM are fixed. In our work, it is
assumed that the loading is continuous and constant through-
out the assignment process. We are especially considering
environments, such asHPCdata centers, where tasks require-
ments remain almost fixed and take days to finish. Whenever
utilization (loading) is changed, VMs are removed and/or
introduced, and assignment algorithm needs to be run again.
Our approach is also applicable to situationswhen a data cen-
ter starts its operation after a maintenance state, or when a
data center optimizer/controller takes a decision at the back-
end.

6.3 Results

In this section we highlight and discuss the results of our
experiments.

From Table 2 the following observations can be made:

– For all algorithms, total power consumption decreases by
decreasing the loading from 70 to 50%. This is because
it is difficult to avoid hot spots with increased loading.

– Similarly, total power decreases by decreasing average
resource value from 45 to 25%.

– The timing performance of SA, FFDimp and LLimp

strongly depends on the correlation between CPU and
memory utilization. On the other hand, execution time of
SimE and TS varies slightly across different correlation.

– TS gives better results as compared to SA but requires
more CPU time.

– In each case, SimE outperforms other algorithms while
requiring less execution time.

Breakdowns of total power Ptotal into computational
power PCN and cooling power PAC at various correlations
are shown in Fig. 10. It can be observed that, for all cor-
relations, total power consumption of SimE is the lowest.
Similarly, CPU time at various correlation is illustrated in
Fig. 11.

SAandTSperformbetter thanFFDimp andLLimp. FFDimp

and LLimp attempt to assign VMs to a minimum number
of servers. They do not consider heat recirculation in the
data center; therefore, resultant assignment reduces compu-
tational power but creates hot spots due to higher utilization
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Table 2 Comparison of the SimE, SA, and TS with other techniques

Reference value Corr. Algorithm 50% Loading 70% Loading

Ptotal max(Tin) s T (s) Ptotal max(Tin) s T (s)

vc = vm = 25% Strong +ve FFDimp 43.09 43.68 89.00 28.80 59.20 43.69 122.00 33.52

LLimp 41.11 43.26 87.00 10.90 57.94 43.66 119.00 8.85

SA 33.53 37.28 102.75 215.31 55.51 41.28 137.10 80.88

TS 30.65 36.13 97.40 181.80 54.25 41.97 125.70 237.60

SimE 25.40 31.35 90.45 4.55 49.42 40.49 123.65 8.03

Weak +ve FFDimp 43.66 43.69 90.00 45.21 60.96 43.68 126.00 51.41

LLimp 41.07 43.45 85.00 6.91 58.53 43.75 119.00 6.97

SA 34.09 37.39 103.80 215.61 56.36 41.37 138.10 80.87

TS 30.80 36.09 97.80 178.92 53.52 41.50 127.50 381.23

SimE 24.24 30.57 87.85 3.93 44.69 39.44 118.70 7.31

Zero FFDimp 47.60 43.69 100.00 47.71 64.88 43.79 135.00 84.26

LLimp 42.71 43.20 91.00 10.52 59.68 43.64 123.00 14.54

SA 36.41 38.08 108.00 125.79 57.71 41.74 138.10 80.64

TS 32.46 36.43 102.20 183.50 55.43 41.90 129.00 228.70

SimE 23.98 30.51 87.15 3.69 43.83 39.08 117.95 6.94

Weak −ve FFDimp 48.47 43.68 102.00 33.14 67.70 43.75 143.00 121.74

LLimp 42.93 43.23 91.00 6.20 60.01 43.56 125.00 22.06

SA 36.69 38.08 108.55 78.06 56.28 41.30 138.70 83.62

TS 33.14 36.55 104.00 186.72 50.42 40.05 132.50 257.67

SimE 23.14 30.29 84.05 3.06 39.44 37.17 116.05 6.53

Strong −ve FFDimp 51.43 43.68 109.00 43.26 71.32 43.82 150.00 134.78

LLimp 44.02 43.26 93.00 4.94 61.62 43.71 126.00 9.89

SA 36.44 37.95 107.80 81.32 58.67 41.67 140.40 80.66

TS 33.14 36.55 104.00 186.72 52.02 40.18 135.00 259.56

SimE 23.36 30.28 85.55 3.02 39.82 37.39 116.70 6.57

vc = vm = 45% Strong +ve FFDimp 41.30 43.56 86.00 14.33 63.60 43.71 131.00 20.59

LLimp 39.84 43.17 85.00 6.86 62.42 43.61 129.00 7.37

SA 27.96 34.43 94.40 84.61 58.60 41.70 139.70 74.00

TS 27.18 33.65 93.90 168.99 51.74 40.19 133.80 197.60

SimE 26.54 32.47 90.9 2.28 50.27 39.82 133.0 2.63

Weak +ve FFDimp 46.56 43.57 98.00 25.74 67.94 43.33 145.00 35.36

LLimp 45.25 43.14 98.00 14.68 67.42 43.62 140.00 9.79

SA 32.61 35.80 105.70 84.22 65.49 42.58 147.40 75.16

TS 31.61 35.02 105.30 178.48 62.14 42.28 141.50 197.34

SimE 28.63 34.06 97.40 1.92 60.80 41.65 140.8 4.93

Zero FFDimp 47.92 43.57 100.00 19.24 69.75 43.63 145.00 23.11

LLimp 48.19 43.42 102.00 11.80 69.68 43.53 146.00 10.75

SA 34.77 36.47 109.25 81.48 67.27 42.76 149.10 75.40

TS 33.21 35.57 107.60 174.95 65.63 42.58 146.70 217.10

SimE 30.85 35.10 100.25 2.48 63.91 41.89 145.45 4.60

Weak −ve FFDimp 47.27 43.27 103.00 42.04 69.65 43.34 150.00 60.10

LLimp 46.77 43.47 100.00 17.05 70.07 43.63 147.00 17.46

SA 33.17 36.05 107.35 81.14 65.58 42.54 148.30 77.40

TS 32.29 35.44 106.80 168.61 64.74 42.45 147.10 194.34

SimE 29.05 34.40 97.25 2.46 61.37 42.22 139.85 5.67
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Table 2 continued

Reference value Corr. Algorithm 50% Loading 70% Loading

Ptotal max(Tin) s T (s) Ptotal max(Tin) s T (s)

Strong −ve FFDimp 49.75 43.26 108.00 45.59 69.48 43.25 150.00 60.33

LLimp 50.15 43.60 106.00 19.22 71.26 43.62 150.00 19.15

SA 35.72 36.59 112.75 88.22 67.51 42.87 149.40 87.72

TS 35.75 36.62 112.70 145.98 68.20 42.98 149.90 228.75

SimE 22.65 30.24 83.10 2.19 50.24 40.38 127.15 4.69

Fig. 10 Power breakdown for
different algorithms at various
correlations for cases
of vc = vm = 25%

per server. On the other hand, SA and TS optimize total
power by considering the trade-off between computational
and cooling power, but they require significant CPU time.
SimE is performingbetter thanTAandSAbecauseSimEuses
its goodness function to direct the search, whereas TS and
SA use hill climbing, memory, and other features to find the
optimal assignment, but they lack intelligent moves. The pre-
cise selection of ill-assigned VMs and proper re-allocation
plays a key role in improving the solution quality and reduc-
ing run time. Although SA, TA, and SimE all are iterative
non-deterministic heuristics, SimE is more intelligent and
thus requires fewer iterations to converge toward a desirable
solution.

Figure 12 shows total power consumption of various
schemes at different loadings of the data center. It is reported
for 25% reference value and strong-negative correlation. It
is evident that SimE is performing better than other schemes
for most of the loading span.

Change in total power, max inlet temperature, and num-
ber of active servers of SimE with iterations are illustrated
in Fig. 13. Without the loss of generality, the case reported
has the following values: 50% loading, Rc = Rm = 25%,
and strong-negative correlation. However, similar results are
obtained for other cases. From graphs in Fig. 13, it is evident
that SimE escapes local minima multiple times by making
intelligent moves and attempts to reduce total power.

Finally, Fig. 14 shows that the overall average goodness
of all movable elements increases with iterations indicating
that search in our engineered SimE implementation is intel-
ligently progressing toward a solution where each VM is
optimally assigned. Further indication of this is the reduc-
tion in the size of the selection set with iterations (Fig. 15).

7 Conclusions and discussion

Computational power and cooling power are significant parts
of a data center’s operational costs, and they need to be opti-
mize in an integrated fashion. In this work, we presented
the engineering of simulated evolution (SimE) for joint opti-
mization of cooling and computational power. We developed
a goodness measure that, based on our objectives, enables
SimE to intelligently find a near-optimal solution in a short
amount of time. We evaluated its performance for a wide
range of different problem instances. We showed that our
approach is performing better as compared to other schemes
published previously.

Modern evolutionary heuristics such as differential evolu-
tion (DE), particle swarm optimization (PSO), and Cuckoo
Search (CS) are powerful, but implementing them to solve
a particular combinatorial optimization problem is relatively
very tedious. Further, our initial experiments required larger
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Fig. 11 Run time of FFDimp,LLimp, SA, TS and SimEwith 50% load-
ing for cases of a vc = vm = 25% and b vc = vm = 45%
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Fig. 12 Comparison of Algorithms for various loadings for cases
of vc = vm = 25%

run times; particularly, in the case of DE due to a number
of infeasible and inferior solutions generated. The rate of
solution improvement is slower in DE due to larger focus
on exploration (Zheng et al. 2015). Also, these heuristics do
not have a feature that will enable the incorporation of the
domain knowledge of the problem being solved. PSO also
guides the solutions in search space. However, movements
of the solutions are guided by their own best known posi-
tion in the search space as well as the best known position of
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Fig. 13 Change in a Total Power consumption Ptotal, b max inlet
temperature Tin with iterations in SimE. a SimE: total power versus
iterations, b SimE: max inlet temperature versus iterations
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Fig. 14 SimE: change in the average goodness of VMs with iterations

other candidate solutions (Kennedy 1997). PSO does not use
domain knowledge to guide the search. It is this powerful
feature of SimE that steered the search to obtain excellent
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Fig. 15 SimE: change in the number of VMs selected for re-allocation
with iterations

solutions in minimal time. It was also shown that the per-
formance of SimE is independent of the correlation between
different dimensions of VMs. This feature makes this heuris-
tic desirable for all correlation scenarios.

In this work, we considered the case where all the VM
requests are known before placement and the controller
allocates them at once, trying to find the optimal allo-
cation in accordance with the objectives and constraints.
Such situations arise when a data center starts its operation
after a maintenance state or when the data center opti-
mizer/controller takes a decision at the back-end. However,
in operational data centers VM requests arrive incrementally
over time. In order to address this issue, it is recommended
that future studies look into modifications of the algorithm
that would work for an online scenario.
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