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Abstract
This article proposes a heuristic for the fixed spectrum frequency assignment (FS-FA) problem of telecommunications net-
works. A network composes of many connections, and each connection needs a frequency from the spectrum. The assignment
of frequencies to the transmitters should satisfy a set of constraints. The constraints specify the separation which is nec-
essary between frequencies of different transmitters. Violation of constraints creates interference. The goal of the FS-FA
problem is to find an assignment of frequencies for the transmitters, which has minimum interference. The proposed heuristic
has two main components: a local search heuristic and a compound move. The local search heuristic employs one-change
moves (i.e., a move that changes the frequency of one transmitter at a time). It also employs a lookup table that classifies
all possible one-change moves as positive or negative. The local search heuristic chooses positive/negative moves until it
traps in a locally minimal solution. The compound-move operation shifts the local search to a new location in the search
space. We can repeatedly apply the local search and compound move for many iterations. The proposed heuristic has been
evaluated on the same benchmarks as used by others in the recently published literature. We have compared our algorithm
with two existing tabu-search-based algorithms: dynamic-list-based tabu search (DTS) (Montemanni et al. in IEEE Trans
Veh Technol 52(4):891–901, 2003. https://doi.org/10.1109/TVT.2003.810976) and heuristic manipulation technique-based
TS (Montemanni and Smith in Comput Oper Res 37(3):543–551, 2010. https://doi.org/10.1016/j.cor.2008.08.006) (HMT).
The solution quality of the proposed algorithm is found to be better than or equal to the HMT and DTS in 88% and 79% of
test problems, respectively.

Keywords Frequency assignment problem · Graph coloring problem · Heuristics

1 Introduction

Frequency assignment is an important problem in wireless
communication networks. It occurs in many different types
ofwireless communication systems such as satellites and cel-
lular networks. This article proposes a heuristic for the fixed
spectrum frequency assignment (FS-FA) problem. The input
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to an FS-FA problem is a fixed spectrum of frequencies, a
set of transmitters, and a set of constraints. The constraints
specify the minimum separation necessary between frequen-
cies assigned to different transmitters. When frequencies of
any two transmitters have separation lesser than the amount
specified in a constraint, then they create interference [1].
The FS-FA problem can be converted to the classic graph
coloring problem and is therefore an NP-hard problem [2–
4]. The goal of any heuristic designed to solve the FS-FA
problem must be to determine an assignment of frequencies
for the transmitters that can minimize the total interference
that could occur due to the violation of constraints.

Optimization heuristics are frequently used to solve the
FS-FA problem. We can classify the optimization heuristics
as neighborhood search and global search. The neighborhood
search heuristics (also known as local search heuristics) aim
to find an optimal solution within a smaller region around
the initial solution. The global search heuristics, on the other
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hand explore a larger region of the solution space in search
of an optimal solution. The FS-FA problem has been mostly
solved using neighborhood search heuristics. The global
search heuristics also repeatedly apply local search heuris-
tics at different places in the search space to find the optimal
solution. Therefore, the local search heuristics are critical in
solving the FS-FA problem.

The classification of heuristics is not only based on their
region of search (local search or global search), but they can
also be classified based on other properties. Some popular
classifications of heuristics are as follows: (i) population-
based and single-solution-based heuristics, and (ii) memory-
less andmemory-based heuristics. The single-solution-based
heuristics use less memory and computational resources as
compared to the population-based heuristics. Examples of
population-based heuristics include the genetic algorithm
(GA) [5–7] and particle swarm optimization. The memory-
less heuristics do not keep track of their previous moves or
move attributes, whereas memory-based heuristics remem-
ber their last moves and choose new moves using their
memory. Tabu search (TS) heuristic [5] belongs to the cate-
gory ofmemory-based, single-solution local search heuristic.

Several heuristics have been proposed to solve the FS-
FA problem [4,6–13]. These include population type, those
that work on single solution, and those that use memory
to store history. The population-based heuristics simulta-
neously search different locations in the search space and
depend on a local search heuristic to find the locally opti-
mal solutions at each location [4,13]. Single-solution-based
heuristics, on the other hand, search one location at a time;
however, they can shift to a new location using a proper
move operation. The survey of literature on the application
of single-solution-based heuristics to the FS-FA problem
revealed that memory-based heuristics (i.e., TS-algorithm)
[8,9] outperform memory-less heuristics such as simulated
annealing (SA) [11] and threshold accepting (TA) [14,15].

Bandwidth coloring problem (BCP) is closely related to
the FA problem. The BCP problem is also solved using
TS-based [16] and neighborhood search [17] heuristics.
Recently, Matic et al. [17] have proposed a heuristic that
applies local search is the neighborhoods which have good
solutions. It also uses a shaking operation to discover new
neighborhoods. The local search heuristics for the FA prob-
lems are also useful in solving the BCPs.

The proposed heuristic employs a lookup table (LUT)
that contains precomputed values of the possible increase/
decrease in the interference when any transmitter changes
its frequency to another one from the spectrum. However,
the contents of the LUT depend on the current solution that
needs to be updated after any change in the current solu-
tion. We usually need to make an incremental update to a
small portion of the LUT after a change in the frequency of a
transmitter. The proposed heuristic uses the LUT to choose

a positive move. However, when the LUT does not have any
positive moves, then it chooses a negative move. The succes-
sive application of positive and/or negative moves results in
an efficient local search. The proposed heuristic also employs
a compound move to shift the search to a new location in the
search space.

The main contribution of the proposed heuristic is that it
is a single-solution, memory-less type of heuristic that can
solve the FS-FA problem and produce results competitive
with the existing TS-based heuristics. The proposed heuristic
contributes toward improvement in the design of heuristics in
solving important industrial problems. The experiments used
the same benchmarks as used by many existing heuristics [4,
8,9,13].Although thebenchmarks are academic, theyprovide
excellent insight into the performance of the heuristics.

The organization of this paper is as follows. Section 2
describes some basic concepts and definitions related to FS-
FA problem. Section 3 presents the proposed heuristic in
detail. Section 4 shows the experimental results and a dis-
cussion on them. The last section contains the conclusion
and future work.

2 Problem Formulation

In this section, we present a model of the FS-FA problem
from the graph theory perspective [1]. The model consists of
a weighted and undirected quadruple graph G(V , E, D, P).
The set V contains the vertices of the graph, and each
vertex represents a transmitter. The set V contains a total
of m transmitters, and its representation is as follows:
V = {v0, v1, ..., vm−1}. The set (E) contains the edges
of the graph, and the edges represent the separation con-
straints between the frequencies of the transmitters. An edge
(vi , v j ) ∈ E indicates that a separation constraint exists
between vertices vi and v j . The sets D and P containweights
of the edges, and E has a one-to-one correspondence with
D and P . Any element di, j ∈ D corresponds to the edge
(vi , v j ) ∈ E . Similarly, any element pi, j ∈ P corresponds
to the edge (vi , v j ) ∈ E . The D contains the values of the
separation constraints and the P contains the penalties (i.e.,
an increase in interference of the solution) for the violation of
constraints. The model also contains a set F which contains
up to N distinct frequencies, i.e., F = { f0, f1, ..., fn−1}.
The frequencies for the transmitters should be selected from
F .

The solution of the FS-FA problem is an ordered set that
contains elements equal to the number of transmitters (i.e.,
m). The solution is represented by � = {δ0, δ1, ..., δm−1},
where δk is the frequency of the transmitter vk .

An interference could exists between transmitters vi and
v j , if ∃(vi , v j ) ∈ E and the frequencies of vi and v j vio-
lates the separation constraint di, j ∈ D. The mathematical
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Fig. 1 Overview of the proposed heuristic

expression to compute the interference is as follows.

I (vi , v j ) =
{
pi, j if |δi − δ j | < di, j
0 otherwise

∀(vi , v j ) ∈ E (1)

The cost of the solution (or total interference) is the sum
of the penalties of all violating constraints.We can determine
the cost of a solution (�) using (2).

cost(�) =
∑

(vi ,v j )∈E
I (vi , v j ) (2)

Minimize(cost(�)) (3)

3 Proposed Heuristic for the FS-FA Problem

In this section, we present details of our proposed heuristic
for solving the FS-FA problem. Figure 1 depicts an overview
of the heuristic. The input consists of the quadruple graph
(G(V , E, D, P)), spectrum (F) and four parameters (β, ρ1,
ρ2, and γ ). The value of β controls the termination of the
local search, while ρ1 and ρ2 are the probabilities used in
the compound move. The parameter γ sets the size of the
archive which has an important role in the compound move.
The remaining part of this section describes each step in
detail.

3.1 Initialization

In this step, we initialize the solution (�) by assigning ran-
dom frequencies to the transmitters. The proposed heuristic
also employs an archive (α) to store up to γ solutions. The
archive (α) initializes to an empty set. The proposed heuristic
also uses elitism and keeps a copy of the best seen solution
thus far in �best.

3.2 Local Search

This subsection contains the description of the proposed
single-solution, memory-less local search heuristic for the

FS-FAproblem. The proposed local search heuristic employs
a lookup table (LUT) to reduce computations. The move
operations in our local heuristic change the frequency of only
one transmitter. The total number of moves is equal to mN ,
where m is the number of transmitters, and N is the num-
ber of frequencies in the spectrum. The evaluation of allmN
moves in every iteration is time consuming. The change in
cost of only a few moves need to be evaluated in every iter-
ation. When we change the frequency of transmitter vi , then
only themoves that belong to the transmitters that have a con-
straint with vi need re-evaluation. In this way, maintaining an
LUT helps to reduce the computation and improves the run-
time of the heuristic. The LUT has the number of columns
equal to the number of frequencies to be assigned (that is,
the size of the spectrum) and number of rows equal to the
number of transmitters. An element (i, j) stores a positive
penalty value if the assignment of the frequency f j to the
transmitter vi violates any separation constraint. The con-
tents of the LUT depend on the value of the current solution
(�). Therefore, the LUT requires an update in case of any
change in the current solution. The value of each entry in the
LUT can be determined using (4) and (5).

J (i, j, k) =
{
p(i, k) if | f j − δk | < di,k
0, otherwise

(4)

LUT(i, j) =
n−1∑
k=0

J (i, j, k) (5)

In (4), J (i, j, k) returns a zero value if � (vi , vk ∈ E)

and returns a nonzero value if the assignment of frequency
f j to vi violates the separation constraint specified by the
edge (vi , vk), where the frequency of the vk is δk . In (5), we
compute the value to store at the location (i, j) in the LUT.
We can use a nested for loop in which i varies from 0 to m-1
and j varies from 0 to n-1 to determine the contents of the
complete LUT.

The proposed heuristic uses the LUT to choose a move.
A move here is changing the frequency assigned to a trans-
mitter in the current solution (�). A move is represented by
a 2-tuple (i, j), where i refers to the transmitter vi and j
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Fig. 2 Local search heuristic

refers to the frequency f j ∈ F . We can divide the moves in
the LUT into two types: (i) positive moves; and (ii) negative
moves. A positive move (i, j) ∈ LUT meets the condition
that LUT(i, j) < LUT(i, δi ), where δi is the current fre-
quency of vi . When we apply the move (i, j) to the current
solution, then the frequency of the transmitter vi (i.e., δi ∈ �)
changes to f j . The cost of the solution decreases after the
application of a positive move. The negative moves include
all the moves in the LUT that do not belong to the type of
positive moves. A negative move also changes the frequency
of a transmitter, but the cost of the solution can either remains
unchangedor increases.During the execution of the heuristic,
the positive moves might not always be available. However,
the negative moves are always available. For a transmitter vi ,
ξ+(i) represents a set of available positive moves and ξ−(i)
represents a set of available negative moves in the LUT. We
can determine the elements for the sets ξ+(i) and ξ−(i) using
(6) and (7).

ξ(i)+ = {(i, j), s.t. LUT(i, j) < LUT(i, δi )} (6)

ξ(i)− = {(i, j), s.t. LUT(i, j) ≥ LUT(i, δi )} (7)

A complete description of the proposed local search
heuristic is depicted in Fig. 2. The input to the heuristic con-
sists of the following items: (i) current solution (�); (ii) A
set of frequencies (F); (iii) graph that models the problem
(G); and (iv) three parameters (β, ρ1, and ρ2). The value of
β should be a positive integer, and the values of remaining
two parameters should be real numbers between 0 and 1.

In the pseudo-code of Fig. 2, the execution flow is as fol-
lows. In line 1, we initialize the LUT by using Eqs. (4) and

(5). In line 2, we introduce two variables �T and i that store
the best solution and the number of successive iterations with
no improvement in the cost of the solution, respectively. The
while loop implements the termination condition of the local
search heuristic. In line 4, we use (8) to determine the avail-
ability of any positive move in the LUT. In (8), the set ξ+
contains all positive moves present in the LUT. When ξ+ is
empty, then there does not exist any positive move. The set
ξ− in (9) contains all negative moves present in the LUT.

ξ+ = ∪n−1
i=0 |ξ+(i)| (8)

ξ− = ∪n−1
i=0 |ξ−(i)| (9)

In line 5, we randomly select a move from ξ+ and update
the frequency of a transmitter in the current solution (�). The
lines 6–10 consist of the following tasks: if the cost of the
current solution � is better than the cost of the best solution
�T , then �T should be updated, and the variable i should
also be re-initialized to zero. Otherwise, we increment the
variable i . If the condition on line 4 returns false, then we
execute the steps of lines 11–14. In line 12, the selection of
a negative move from ξ− consists of the following steps.

1. Compute αv =
∑

(i, j)∈ξ− |LUT(i, j)−LUT(i,δi )|
|ξ−|

2. Create a subset of ξ− as ξ−
s = {(i, j), s.t .|LUT(i, j) −

LUT(i, δi )| ≤ αv}
3. Randomly select a move from ξ−

s

The selection of a negative move comprises three steps. In
first step, the expression LUT(i, j) − LUT(i, δi ) computes
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the difference between the cost of the current solution (i.e.,
the solution in which the frequency of the i th transmitter is
δi ) and amodified version of the current solution inwhich the
frequency of the i th transmitter is f j . The av variable stores
the average value of the term |LUT(i, j)−LUT(i, δi )| of all
moves (i, j) ∈ ξ−. In the second step, we create a set ξ−

s
that contains all moves of ξ− except the ones that increase
the cost of the solution more than a certain value αv . In the
third step, we randomly select a move from ξ−

s and apply it
to the current solution.

After a positive or negative move is selected and applied,
the next step is to update the LUT. LUT should be updated
after any change in the current solution (as mentioned in line
15 of Fig. 2). When we change the frequency of a trans-
mitter, then only a small portion of the LUT needs to be
updated, not the entire table. Suppose we have changed the
frequency of a transmitter vi , then a partial update of the
LUT proceeds as follows: (i) We build a set Ri that contains
all transmitters that have a separation constraint with vi , i.e.,
Ri = {v j , s.t ., ∃(vi , v j ) ∈ E}; (ii)We select a subset of rows
of the LUT that corresponds to the transmitters present in Ri

(where the j th row of the LUT corresponds to the transmit-
ter v j ); (3) We update the selected rows of the LUT using
Eq. (5).

3.3 Update the Archive

The proposed heuristic employs an archive (α) of γ solutions.
Until the archive is completely full, we keep adding new
solutions in it. However, when the archive becomes full, then
we need to replace an existing solutionwith the new solution.
If the cost of the new solution is not better than any of the
solution already stored in the archive, then the new solution
is ignored. Otherwise, we first find a solution in the archive
whose cost in maximum in the archive and more than the
new solution, and then replace it with the new solution.

3.4 Shifting

The local search heuristic terminates upon encountering β

number of successive non-improving iterations.However,we
can again apply the local heuristic by making some changes
in the current solution (�). The changes aim to shift the
search to a new location in the search space. We can keep
repeating the steps of applying the local search heuristic and
shifting the search to a new locations until the runtime of the
heuristic reaches its maximum limit.

We apply a compound move to shift the search to a new
location. The compound move alters several elements of the
solution. The following text describes the compound move.

1. Divide the transmitters of V into two distinct sets, Vi and
Vn , such that Vi ∪ Vn = V and Vi ∩ Vn = ∩.

2. The setVi contains transmitters that violate any constraint
and Vn contains all the remaining transmitters. Mathe-
matically, it can be expressed as, Vi = {vx |I (vx , vy) >

0 or I (vy, vx ) > 0}, where vx , vy ∈ V and Vn = V −Vi .
3. Each transmitter in Vi could change its assignment with

a fixed probability ρ1. The new frequency for the trans-
mitter is determined randomly from the spectrum (F).

4. Each transmitter in Vn could change its assignment with
a fixed probability ρ2. The new frequency for the trans-
mitter is determined randomly from the spectrum (F).
The value ρ2 is usually much smaller than ρ1.

4 Experimental Results

In this section, we present the experimental results and their
analysis. We implemented the proposed heuristic using C++
and R (using Rcpp package). We used the C++ language
to implement the local search heuristic and used the R lan-
guage to implement the operations to maintain the archive
and shift the search to new locations. The program executed
on a computer having Intel Xeon 2.8 GHz processor and 64
GB of memory.

The benchmarks used in the evaluation are among the
most popular ones and used by many authors in recent past
[4,8,9,13]. Table 1 lists the main characteristics of the bench-

Table 1 Characteristics of the test problems [8,9]

Problem |V | |E | d̂ p̂

AC-45-17 45 482 0.29 1.00

AC-45-25 45 801 0.34 1.00

AC-95-9 95 781 0.00 1.00

AC-95-17 95 2298 0.15 1.00

GSM-93 93 1073 0.28 1.00

GSM-246 246 7611 0.32 1.00

Test95 95 1214 1.37 1.00

Test282 282 10,430 1.38 1.00

P06-5 88 3021 0.39 1.00

P06-3 153 9193 0.59 1.00

P06b-5 88 3021 0.39 1.00

P06b-3 153 9193 0.40 1.00

GSM2-184 184 6809 0.20 8.95 ×106

GSM2-227 227 10,088 0.18 9.10×106

GSM2-272 272 14,525 0.16 7.95×106

1-1-50-75-30-2-50 75 835 0.26 10.81

1-2-50-75-30-4-50 75 835 0.62 11.01

1-3-50-75-30-0-50 75 835 0.00 10.97

1-4-50-75-30-2-1 75 835 0.25 1.00

1-5-50-75-30-2-100 75 835 0.26 21.35

1-6-50-75-30-0-10000 75 835 0.00 2068.48
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marks. The first column mentions the name of the problem;
the second gives the number of transmitters; the third col-
umn mentions the number of constraints; the fourth column
mentions the average of the separation requirements in the
constraints, and the last column mentions the average of the
penalty values of the constraints.We executed a total of forty-
two test cases in which each problem is solved several times
with a different spectrum size.

A description on the selection of the parameter values is
mentioned below. In the three problems that have p > 1×106

(i.e., GSM2-184, GSM2-227, GSM2-272), we set the value
of β equal to 2000, and the value of γ equal to 100. In the
remaining problems, we set the value of β equal to 1×105

and the value of γ equal to 20. The values of the remain-
ing two parameters (ρ1 and ρ2) are same in all problems.
We set the value of ρ1 equal to 0.05 and the value of ρ2
equal to 0.02. The parameter beta controls the termination
of the local search heuristic. In the experiments, we found
that in large problems, if the local search heuristic could not
improve the solution in up to 50,000 iterations, then it is never
able to improve the solution. In smaller problems, the local
search traps into a local minimum within few thousand iter-
ations. The parameter gamma controls the archive size, and
an increase in its size increases the runtime of the heuristic.
Therefore, it should be set to the smallest value that can yield
good results. A detailed investigation of the parameters val-
ues is outside the scope of this work. The parameters ρ1 and
ρ2 are mutation probabilities; therefore, their values should
be kept small.

The three problems (GSM2-184, GSM2-227, GSM2-272)
have a relatively smaller value ofβ because in those problems
the penalties are small for some constraints and very large for
others. In the local search heuristic, we filter out the negative
moves that cause a large increase in the cost of the solution
and hence eliminate the moves that have large penalty val-
ues. This elimination of some possible moves may lead the
heuristic to quickly trap into a local minimum. Therefore, we
can detect the trapping of the search into a local minimum
using lesser number of successive non-improving iterations.
The empirical results verified our observation andwe noticed
an improvement in runtime by setting a smaller value to
the parameter β in problems GSM2-184, GSM2-227, and
GSM2-272. The compound move employed the parameters
ρ1 and ρ2 and treat them like mutation probabilities. There-
fore, their values should be small (0.05 and 0.02). The effect
of the non-deterministic behavior of the proposed heuristic
is determined by conducting twenty trials on each problem.
The stopping criterion of the proposed heuristic used in the
experiments is as follows: If the last 1000 iterations could not
produce any improvement in the cost of the solution, then the
heuristic should terminate. The FS-FA problem is an offline
problem. Therefore, the runtime is not critical as long as it
remains within practical limits. We set the maximum run-

time to solve any problem equal to 2h. However, most of
the problems converge to their best solutions within the first
30min.

We compared the proposed heuristic with two exist-
ing single-solution-based heuristics, which are dynamic list
tabu search (DTS) algorithm and heuristic manipulation
technique-based tabu search (HMT) algorithm. The DTS
and HMT belong to the class of single-solution memory-
based local search heuristics. Some authors have also applied
single-solution memory-less heuristics such as threshold
accepting (TA) to the FS-FA problem, but the results are
not as good as that of DTS and HMT heuristics [8,9]. The
authors of HMT and DTS heuristics conducted ten trials, and
they set the maximum runtime to 45min. However, they also
mentioned that any increase in the runtime is not likely to
improve the solution quality of their heuristics [8].

Table 2 shows the results of the proposed heuristic and
that of the DTS [8] and HMT [9]. The results of each heuris-
tic consist of two columns. The first column mentions the
average values of the trials, and the second column men-
tions the best and the worst results of the trials. The results
show that the proposed heuristic has obtained results better
than HMT and DTS in many problems. In Fig. 3, we sum-
marize the results of Table 2 to show the advantage of the
proposed heuristic. In Fig. 3, the y-axis shows the percent-
agewith which the solution of the proposed heuristic is better
than that of the HMT and DTS heuristics and the numbers
on the x-axis corresponds to different problems in the same
order as in Table 2. The results reveal the following about the
comparison of the solution quality of the proposed heuristic
with HMT and DTS on the 42 test problems. The solution
quality of the proposed heuristic is better than that of HMT
and DTS in 21 and 17 problems, respectively. The proposed
heuristic has a solution quality equal to that given by HMT
and DTS heuristics in 16 problems. The solution quality of
the proposed heuristic is also worse than that of HMT and
DTS in up to 5 and 9 problems, respectively. In the problems
in which the proposed heuristic performed better than the
existing heuristics, the solution quality is up to 41% better
than that of HMT and 38% better than that of DTS. In the
problems in which the proposed heuristic performed worse
than the existing heuristics, the solution quality is up to -9%
lesser than that of HMT and DTS.

In Table 3, we list the problems inwhich theworst result of
all trials of the proposed heuristic is better than the best result
of the other heuristics. Under this condition, the proposed
heuristic has a solution quality which is better than that of
HMT or DTS heuristic in all trials. Therefore, the proposed
heuristic has a clear advantage over the other heuristic (DTS
or HMT). As Table 3 shows, the results of all trials of the
proposed heuristic are better than the results of all trials of
HMT in up to eight problems and better than the results of
all trials of DTS in up to three problems.
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Table 2 Comparison with existing single-solution and memory-based optimization heuristics

Problem |F | Proposed HMT [9] DTS [8,9]

Mean (best, worst) Mean (best, worst) Mean (best, worst)

AC-45-17 7 32.00 (32, 32) 32.00 (32, 32) 32.00 (32, 32)

AC-45-17 9 15.00 (15, 15) 15.00 (15, 15) 15.00 (15, 15)

AC-45-25 11 33.00 (33, 33) 33.00 (33, 33) 33.00 (33, 33)

AC-95-9 6 31.00 (31, 31) 31.00 (31, 31) 31.00 (31, 31)

AC-95-17 15 33.26 (33, 34) 33.00* (33, 33) 33.00* (33, 33)

AC-95-17 21 10.00 (10, 10) 10.00 (10, 10) 10.00 (10, 10)

GSM-93 9 32.00* (32, 32) 33.00 (32, 34) 32.20 (32, 33)

GSM-93 13 7.00 (7, 7) 7.00 (7, 7) 7.00 (7, 7)

GSM-246 21 82.10 (80, 83) 80.20* (79, 81) 80.60 (79, 82)

GSM-246 31 26.58 (25, 27) 26.30 (25, 27) 26.10* (25, 27)

Test95 36 8.00 (8, 8) 8.00 (8, 8) 8.00 (8, 8)

Test282 61 58.05 (55, 59) 53.40 (51, 56) 53.20* (51, 55)

Test282 71 30.00 (29, 31) 29.40 (27, 30) 29.30* (27, 30)

Test282 81 12.06 (10, 14) 12.20 (11, 13) 11.90* (10, 13)

P06-5 11 133.00 (133, 133) 133.00 (133, 133) 133.00 (133, 133)

P06-3 31 115.00 (115, 115) 115.00 (115, 115) 115.00 (115, 115)

P06b-5 21 52.00 (52, 52) 52.00 (52, 52) 52.00 (52, 52)

P06b-5 31 25.00 (25, 25) 25.00 (25, 25) 25.00 (25, 25)

P06b-3 31 112.00 (112, 112) 112.00 (112, 112) 112.00 (112, 112)

P06b-3 71 26.00 (26, 26) 26.00 (26, 26) 26.00 (26, 26)

1-4-50-75-30-2-1 6 71.00 (71, 71) 71.00 (71, 71) 70.90* (70, 71)

1-4-50-75-30-2-1 10 19.00 (19, 19) 19.00 (19, 19) 19.00 (19, 19)

GSM2-184 39 5414.57* (5322, 5571) 5642.80 (5481, 5758) 5598.80 (5447, 5689)

GSM2-184 49 874.00* (874, 874) 1073.40 (999, 1143) 1043.60 (874, 1120)

GSM2-184 52 162.00* (162, 162) 277.90 (186, 311) 260.60 (162, 287)

GSM2-227 29 60,186.63* (58, 542, 62,734) 68,077.70 (61,586, 70,105) 66,510.00 (61,586, 70,105)

GSM2-227 39 9890.86* (9529, 10,493) 11,170.30 (10,979, 11,276) 10,897.70 (10,550, 11,164)

GSM2-227 49 2315.06* (2170, 2559) 2649.10 (2459, 2828) 2613.10 (2459, 2828)

GSM2-272 34 56,336.68* (53,962, 59,069) 60,473.20 (57,715, 67,025) 58,691.40 (56,128, 64,353)

GSM2-272 39 28,878.50 (28,046, 30,518) 28,484.30* (27,416, 29,323) 28,488.20 (27,416, 29,307)

GSM2-272 49 7967.95 (7909, 8796) 8043.80 (7785, 8411) 7946.70* (7785, 8459)

1-1-50-75-30-2-50 5 1242.00* (1242, 1242) 1254.10 (1242, 1260) 1253.90 (1242, 1260)

1-1-50-75-30-2-50 10 96.80* (96, 97) 105.30 (101, 109) 103.80 (97, 109)

1-1-50-75-30-2-50 11 55.00* (55, 55) 65.50 (59, 69) 66.10 (59, 70)

1-1-50-75-30-2-50 12 33.31* (32, 36) 39.60 (38, 42) 38.70 (36, 42)

1-2-50-75-30-4-50 9 669.00* (665, 680) 680.90 (671, 691) 680.60 (671, 691)

1-2-50-75-30-4-50 11 315.00* (313, 318) 315.00* (313, 318) 325.00 (317, 335)

1-3-50-75-30-0-50 7 197.00 (194, 198) 197.10 (196, 198) 196.50* (194, 199)

1-5-50-75-30-2-100 10 172.70* (168, 179) 191.60 (186, 197) 183.80 (176, 199)

1-5-50-75-30-2-100 12 59.90* (58, 63) 70.50 (65, 74) 69.30 (63, 74)

1-6-50-75-30-0-10000 10 6842.00* (6777, 7187) 7123.40 (6942, 7279) 7064.30 (6840, 7267)

1-6-50-75-30-0-10000 13 1128.15* (1190, 1309) 1389.60 (1207, 1490) 1365.20 (1318, 1440)
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Fig. 3 Illustration of the percentage improvement in solution quality in using the proposed heuristic as compared to the existing heuristics

Table 3 Test problems in which
the results of all trials of the
proposed heuristic are better
than the HMT and DTS
heuristics

Problem |F | Proposed (worst) HMT (best) [9] DTS (best) [8]

GSM2-184 49 874* 999 –

GSM2-184 52 162* 186 –

GSM2-227 39 10,493* 10,979 10,550

1-1-50-75-30-2-50 10 97* 101 –

1-1-50-75-30-2-50 11 55* 59 59

1-1-50-75-30-2-50 12 36* 38

1-5-50-75-30-2-100 10 179* 186

1-5-50-75-30-2-100 12 63* 65

1-6-50-75-30-0-10000 13 1309* – 1318

We also compared the proposed heuristic with a TS
heuristic which employs a dynamic length tabu list (DL-
TS heuristic) [13]. We downloaded the source code of the
DL-TS heuristic from its author’s website [13]. We executed
DL-TS heuristic with default parameters on the same plat-
form as the proposed heuristic. We conducted up to twenty
trials on each problem.We applied theWilcoxon signed tests
to compare the results of the proposed and DL-TS heuris-
tics. The DL-TS heuristic is a new TS heuristic for the FA
problem, and the comparison results show the superiority of
the proposed heuristic over an exclusive application of TS
heuristic. The Wilcoxon test is among the methods recom-
mended by experts to compare two heuristics [18]. Table 4
shows the results of the Wilcoxon signed tests. In Table 4,
the first two columns specify the problem. Third and fourth
columns specify the mean values of the objective function.
The fifth column specifies the p values of theWilcoxon tests.
The last column specifies conclusion about the comparison
using the p value. When the p value is greater than or equal

to α = 0.01, then we consider the two heuristics are equal
in performance. When the p value is smaller than α = 0.01,
then the heuristic that has a smaller mean dominates the other
heuristic. The results indicate that in eleven problems the
results of the proposed and DL-TS heuristics are equal and
in thirty problems the proposed heuristic performs better than
theDL-TSheuristic.Wecannot apply theWilcoxon testwhen
all trials produced the same result. In those problems, we can
compare the results without any statistical tests.

5 Conclusion and FutureWork

This article proposed a heuristic for theminimization of inter-
ference in the FS-FA problem. The heuristic has two main
components: a local search heuristic, and a compound-move
operation. The local search heuristic employs a LUT. Each
entry in the LUT is a possible move and store the value by
which it can increase or decrease the interference of the solu-
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Table 4 Results of Wilcoxon
signed-rank tests

Problem |F | Mean values p value Remarks

Proposed TS [13]

AC-45-17 7 32.00 32.00 – Equal

AC-45-17 9 15.00 15.15 0.22 Equal

AC-45-25 11 33.00 33.00 – Equal

AC-95-9 6 31.00 31.00 – Equal

AC-95-17 15 33.26 34.00 0.0472 Equal

AC-95-17 21 10.00 10.00 – Equal

GSM-93 9 32.00 34.15 0.0103 Equal

GSM-93 13 7.00 8.25 7.57e−06 Better

GSM-246 21 82.10 95.45 1.08e−05 Better

GSM-246 31 26.58 35.35 1.03e−05 Better

Test95 36 8.00 9.70 4.85e−06 Better

Test282 61 58.05 73.50 1.09e−05 Better

Test282 71 30.00 45.70 1.02e−05 Better

Test282 81 12.06 23.50 9.9e−06 Better

P06-5 11 133.00 150.75 7.98e−06 Better

P06-3 31 115.00 137.75 7.83e−06 Better

P06b-5 21 52.00 55.75 4.47e−05 Better

P06b-5 31 25.00 27.80 4.15e−05 Better

P06b-3 31 112.00 125.15 7.96e−06 Better

P06b-3 71 26.00 32.00 7.49e−06 Better

1-4-50-75-30-2-1 6 71.00 70.65 0.0324 Equal

1-4-50-75-30-2-1 10 19.00 19.10 0.334 Equal

GSM2-184 39 5414.57 6475.70 1.2e−05 Better

GSM2-184 49 874.00 1052.95 4.2e−05 Better

GSM2-184 52 162.00 262.25 0.000826 Better

GSM2-227 29 60,186.63 218,430.05 6.66e−08 Better

GSM2-227 39 9890.86 15,990.05 6.66e−08 Better

GSM2-227 49 2315.06 3537.75 6.66e−08 Better

GSM2-272 34 56,336.68 111,740.95 6.66e−08 Better

GSM2-272 39 28,878.50 43,536.45 6.66e−08 Better

GSM2-272 49 7967.95 13, 177.10 6.66e−08 Better

1-1-50-75-30-2-50 5 1242.00 1243.20 0.0255 Equal

1-1-50-75-30-2-50 10 96.80 104.80 4.67e−05 Better

1-1-50-75-30-2-50 11 55.00 67.05 7.79e−06 Better

1-1-50-75-30-2-50 12 33.31 40.75 1.07e−05 Better

1-2-50-75-30-4-50 9 669.00 685.95 0.000224 Better

1-2-50-75-30-4-50 11 315.00 336.45 1.03e−05 Better

1-3-50-75-30-0-50 7 197.00 198.05 0.0274 Equal

1-5-50-75-30-2-100 10 172.70 189.55 5.59e−05 Better

1-5-50-75-30-2-100 12 59.90 71.00 1.09e−05 Better

1-6-50-75-30-0-10000 10 6842.00 7159.65 1.12e−05 Better

1-6-50-75-30-0-10000 13 1128.15 1454.05 1.4e−05 Better
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tion. For example, the value at location (i, j) in the LUT
stores the increase/decrease in the interference, if the trans-
mitter vi ∈ V chooses the frequency f j ∈ F .We can classify
the moves in the LUT as positive and negative. In the heuris-
tic, we first try to find a positive move. However, if we could
not find a positive move, then we choose a negative move
that can increase the interference by an amount which is less
than the average increase in all negative moves. The local
search is considered to be trapped in a local minimum if
many successive iterations show no improvement in the cost.
The compound-move shifts the search to a new location in
the search space and prevents the search from getting trapped
into any localminimum.Wedemonstrated using experiments
that the proposed heuristic is competitive to existing single-
solution-based heuristics such as HMT and DTS heuristics.
The experiments used the same benchmarks as used by other
recent heuristics. The solution quality of the proposed heuris-
tic is better than or equal to that ofHMT in88% test problems,
and better than or equal to that of DTS in 79% test problems.
In some problems, theworst result of any trial of the proposed
heuristic is better than the best reported result of the HMT
and DTS heuristics. In the future, it can be further enhanced
to solve the dynamic frequency assignment problem.

Acknowledgements Acknowledgments are due to King Fahd Univer-
sity of Petroleum & Minerals, Dhahran, Saudi Arabia for all support.
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