
224 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

A Fault Tolerance Technique for Combinational
Circuits Based on Selective-Transistor Redundancy

Ahmad T. Sheikh, Aiman H. El-Maleh, Muhammad E. S. Elrabaa, and Sadiq M. Sait

Abstract— With fabrication technology reaching nanolevels,
systems are becoming more prone to manufacturing defects
with higher susceptibility to soft errors. This paper is focused
on designing combinational circuits for soft error tolerance
with minimal area overhead. The idea is based on analyzing
random pattern testability of faults in a circuit and protecting
sensitive transistors, whose soft error detection probability is
relatively high, until desired circuit reliability is achieved or
a given area overhead constraint is met. Transistors are pro-
tected based on duplicating and sizing a subset of transistors
necessary for providing the protection. In addition to that,
a novel gate-level reliability evaluation technique is proposed
that provides similar results to reliability evaluation at the
transistor level (using SPICE) with the orders of magnitude
reduction in CPU time. LGSynth’91 benchmark circuits are
used to evaluate the proposed algorithm. Simulation results
show that the proposed algorithm achieves better reliability than
other transistor sizing-based techniques and the triple modular
redundancy technique with significantly lower area overhead for
130-nm process technology at a ground level.

Index Terms— Fault tolerance, logic synthesis, radiation hard-
ening, single event multiple upsets, single event transient (SET),
single event upset (SEU), soft error tolerance.

I. INTRODUCTION

DUE to advancements in CMOS technology and shrinking
of feature size to the nanometer scale, studies have

indicated that high-density chips will not only be increasingly
accompanied by manufacturing defects but also susceptible
to dynamic faults during chip operation [1], [2]. Nanoscale
devices are limited by several characteristics; most dominant
are the device’s higher defect rates and the increased suscep-
tibility to soft errors. Both of these types of errors affect the
operations of a circuit if they are not addressed. Reliability
of a circuit can be defined as its ability to function properly
despite the existence of such errors.

Transient (soft) errors can arise due to multiple sources.
These include high-energy particles, coupling, power supply

Manuscript received November 29, 2015; revised April 1, 2016; accepted
May 10, 2016. Date of publication May 30, 2016; date of current version
December 26, 2016. This work was supported by the Deanship of Scientific
Research at the King Fahd University of Petroleum and Minerals under
Grant IN131014. (Corresponding author: Aiman H. El-Maleh.)

A. T. Sheikh is with the College of Computer Science and Engineering,
King Fahd University of Petroleum and Minerals, Dhahran 31261,
Saudi Arabia (e-mail: atsheikh@kfupm.edu.sa).

A. H. El-Maleh, M. E. S. Elrabaa, and S. M. Sait are with the Computer
Engineering Department, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia (e-mail: aimane@kfupm.edu.sa; elrabaa@
kfupm.edu.sa; sadiq@kfupm.edu.sa).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2016.2569532

noise, leakage, and temporal circuit variations. A soft error
leads to transient error(s), which can last for one or several
clock cycles. A single event transient (SET) occurs when a
charged particle hits the combinational logic resulting in a
transient current pulse. If this transient has enough width and
magnitude, it can result in an erroneous value at the gate
output. If the erroneous value is latched at a memory element,
an SET becomes a single event upset (SEU). A single SET
can produce multiple transient current pulses at the output [3].
This is due to the logic fan-out in the circuit.

Ziegler et al. [4] presented intensive experimental study
over the period of 15 years to evaluate the radiation-induced
soft fails in large scale integrated electronics at different
terrestrial altitudes. Baumann [5] highlighted the dominant
sources responsible for the creation of soft errors in terrestrial
applications. Shivakumar et al. [6] modeled the effects of soft
errors in memory devices and logic devices and demonstrated
that with each technology generation, soft errors will increase
by orders of magnitude in logic devices and projected that soft
errors in logic devices will be comparable to that of memory
devices. The minimum charge required to create a soft error
in a transistor is referred to as Qcrit . It has been shown that
Qcrit is going to be reduced with technology improvement and
with the advent of low-power devices [6], [7].

In this paper, we propose a selective-transistor scaling
method that protects individual sensitive transistors of a circuit.
A sensitive transistor is a transistor whose soft error detection
probability is relatively high. This is in contrast to previous
approaches where all transistors, series transistors, or those
transistors connected to the output of a sensitive gate, whose
soft error detection probability is relatively high, are protected.
Transistor duplication and asymmetric transistor sizing are
applied to protect the most sensitive transistors of the circuit.
In asymmetric sizing, nMOS and pMOS transistors are sized
independently. Reliability is evaluated for different protection
thresholds and area overhead constraints. Finally, a novel gate-
level soft error reliability evaluation technique for combina-
tional circuits is proposed that produces similar results as
produced by transistor-level simulations (using SPICE), but
with orders of magnitude reduction in CPU time.

The rest of this paper is organized as follows. Section II
reviews some of the contemporary fault tolerance techniques.
Section III highlights the motivation and rationale behind
the proposed approach. Section IV presents the proposed
selective-transistor-redundancy (STR) algorithm. Reliability
evaluation technique is discussed in Section V. Simulation
results are elaborated in Section VI. Finally, this paper is
concluded in Section VII.

1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SHEIKH et al.: FAULT TOLERANCE TECHNIQUE FOR COMBINATIONAL CIRCUITS BASED ON STR 225

II. RELATED LITERATURE

Reliability in systems can be achieved by redundancy.
Redundancy can be added at the module level, gate level,
transistor level [8], or even at the software level [9]. Design
of reliable systems by using redundant unreliable components
was proposed in [10]. Since then, plethora of research has
been done to rectify soft errors in combinational and sequen-
tial circuits by applying hardware redundancy [11], [12].
Triple modular redundancy (TMR), a popular and widely used
technique, creates three identical copies of the system and
combines their outputs using a majority voter [13], [14]. The
generalized modular redundancy [15] scheme considers the
probability of occurrence of each combination at the output
of a circuit. The redundancy is then added to only protect
those combinations that have high probability of occurrence,
while the remaining combinations are left unprotected to save
area. El-Maleh and Al-Qahtani [16] proposed a fault tolerance
technique for sequential circuits that enhances the reliability of
sequential circuits by introducing redundant equivalent states
for states with high probability of occurrence.

Mohanram and Touba [17] proposed a partial error mask-
ing scheme based on TMR, which targets the nodes with
the highest soft error susceptibility. Two reduction heuristics
are used to reduce soft error failure rate, namely, cluster
sharing reduction and dominant value reduction. Instead of
triplicating the whole logic as in TMR, only those nodes with
high soft error susceptibility are triplicated; the rest of the
nodes are clustered and shared among the triplicated logic.
In [18] and [19], sensitive gates are duplicated and their out-
puts are connected together. Physically placing the two gates
with a sufficient distance reduces the probability of having the
two gates hit by a particle strike simultaneously and, therefore,
reduces the soft error rate (SER). Another technique based
on TMR maintains a history index of correct computation
module to select the correct result [20]. Teifel [21] proposed a
double/dual modular redundancy (DMR) scheme that utilizes
voting and self-voting circuits to mitigate the effects of SETs
in digital integrated circuits. The Bayesian detection technique
from communication theory has been applied to the voter in
DMR, called soft NMR [22]. In most cases, it is able to
identify the correct output even if all redundant modules are
in error, but at the expense of very high area overhead cost of
the voters.

Another class of techniques enhances fault tolerance by
increasing soft error masking based on modifying the structure
of the circuit by addition and/or removal of redundant wires
or by resynthesizing parts of the circuit. In [23], SER is
reduced based on redundancy addition and removal of wires.
In [24], redundant wires are added based on the existing
implications between a pair of nodes in the circuit. In [25],
two-level circuits are synthesized by assigning do not care
conditions to improve input error resilience, which minimizes
the propagation of fault effects. In [26], an algorithm is
proposed to synthesize two-level circuits to maximize logical
masking utilizing input pattern probabilities.

Soft error protection of combinational logic can also
be achieved by adding redundancy at the transistor level.

Nicolaidis [27] proposed a scheme where a circuit is
duplicated containing all but the last stage gate where the last
stage gate is implemented as a state preserving gate. This last
stage gate is the NOT, NAND, or NOR gate with each transistor
duplicated and connected in series to preserve the fault-free
state that the output had before the transient fault occurred.
More recently, El-Maleh et al. [28] proposed a technique
to mask defects in combinational circuits by quadrupling
every transistor in a circuit, making the area overhead four
times the original circuit. A quadded transistor guarantees
the tolerance of all single-transistor (1T) defects and many
multiple defects. In the quadded-transistor structure, each
transistor A is replaced by a structure that implements the
logic function (A + A)(A + A). Techniques that combine the
gate-level redundancy and quadded-transistor redundancy are
proposed in [29] and [30].

Selective hardening techniques, as the name suggests,
protect only the most sensitive gates of the circuit [31].
Zhou and Mohanram [32] proposed a gate sizing method
that protects the sensitive gates by symmetrically sizing their
nMOS and pMOS transistors. Lazzari et al. [33] proposed
an asymmetric transistor sizing technique, i.e., nMOS and
pMOS transistors are sized independently of each other for
the most sensitive gates of the circuit, but they considered
that incident particles strike only the transistors connected to
the output of a gate. Sizing parallel transistors according to
the sensitivity of their corresponding series transistors can
significantly improve the fault tolerance of combinational
circuits [34], [35]. Variable sizing among all transistors in a
gate is a viable option if particle strikes of varying charge are
considered. To further improve the fault tolerance, more up
sizing quota is given to the most sensitive gates [36].

III. EFFECT OF ENERGETIC PARTICLE STRIKE

When an energetic particle strikes a semiconductor,
it ionizes the region around it, resulting in the generation
of electron–hole pairs. The charge due to the particle strike
is then transported by drift and diffusion, resulting in the
establishment of transient electric field, i.e., SET. The change
in voltage observed at the output due to SET depends on the
energy and angle of incidence of energetic particle. Source and
drain regions are the most sensitive nodes to such events due
to the large field around the junction regions, which sweeps
in the generated electron–holes and result in large currents.
If the energy of a striking particle is high enough, it will flip
the output of a gate resulting in an SET [3], [5].

To explain the STR principle, we first consider the effect
of an energetic particle striking a CMOS inverter. When the
inverter input is LOW and the energetic particle strikes the
drain of an nMOS transistor, the output voltage is temporarily
lowered. Whereas, when the inverter input is HIGH and the
energetic particle strikes the drain of a pMOS transistor,
the output voltage is temporarily raised. In both the cases,
the output logic value of the inverter can be changed to a
wrong value if enough charge is collected. This is shown
in Fig. 1, using 130-nm predictive technology model [37].
Fig. 1(a) shows the fault injection mechanism employed in this
paper. The output load is assumed to be equal to an inverter

226 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

Fig. 1. Effect of energetic particle strike on CMOS inverter at t = 5 ns. (a) Particle strike model. (b) Effect of particle strike at nMOS drain. (c) Effect of
particle strike at pMOS drain.

Fig. 2. Proposed protection schemes and their effect. (a) Particle hit at nMOS drain, OUT = HIGH. (b) Reduced effect of particle strike at nMOS drain.
(c) Particle hit at pMOS drain, OUT = LOW. (d) Reduced effect of particle strike at pMOS drain.

load. The soft error is modeled by injecting a current I of
charge Q at the drain of a transistor. The direction of injected
current is from drain-to-body (bulk) in the nMOS transistor
and from body (bulk)-to-drain in the pMOS transistor. The
double exponential current pulse I is used to model the charge
deposited due to a particle strike at the drain of nMOS or
pMOS transistor [38], [39] and is depicted as

I (t) = Q

(τ f − τr)

(
e
− t

τ f − e− t
τr

)
(1)

where Q is the charge deposited by a particle strike, τ f denotes
the falling time of the pulse, and τr denotes the rising time of
injected current pulse and varies for each process technology.
The value of τ f is greater than τr . The supply rail Vdd is
connected to 1.3 V. We will be taking 130-nm technology as
our case study in this paper; however, the technique is general
and applicable to any process technology.

Fig. 1(b) shows the effect of a particle strike on the drain
of an nMOS transistor when the true output of an inverter
is HIGH. The particle strike at N1 will cause a sudden drop
in the output voltage (approximately −0.7 V) of an inverter.
This type of soft error will be modeled as a stuck-at-0 (sa0)
fault at the output of the gate. To protect from this fault, the
pMOS transistors of an inverter must be scaled enough, so
that the output voltage becomes >Vdd/2. Fig. 1(c) shows the
effect of a particle strike on the drain of a pMOS transistor
when the true output of an inverter is LOW. The particle strike
at P1 will cause a sudden rise in the output voltage (≈1.9 V)
of an inverter. This type of soft error will be modeled as a

stuck-at-1 (sa1) fault at the output of the gate. To protect from
this fault, the nMOS transistor of an inverter must be scaled
enough, so that the output voltage becomes <Vdd/2.

Now, consider the transistor arrangement shown in Fig. 2(a)
where duplicate pMOS transistors are connected in parallel.
The width of the redundant transistors must also be increased
to allow dissipation (sinking) of the deposited charge as
quickly as it is deposited, so that the transient does not achieve
sufficient magnitude and duration to propagate to the output.
If the output is currently high and an energetic particle hits
the drain N1 of the nMOS transistor (with the same current
source used in the simulations shown in Fig. 1), this should
result in a lowered voltage observed at the output. But, due to
the employed transistor configuration, the net negative voltage
effect will be compensated, as evident from Fig. 2(b), resulting
in a spike that has lesser magnitude as compared with the one
shown in Fig. 1(b). The spike magnitude is reduced due to
increased output capacitance and reduced resistance between
the Vdd and the output.

Consider another arrangement of transistors in Fig. 2(c)
where redundant nMOS transistors are connected in parallel.
If the output is low and the incident energetic particle strikes
the drain P1 of pMOS transistor, then the raised voltage effect
at the output shown in Fig. 1(c) will be reduced, as shown
in Fig. 2(d). This reduction in the spike magnitude is due to
the same reasons mentioned for the nMOS transistor.

Similarly, to protect from both sa0 and sa1 faults, the
transistor structures in Fig. 2(a) and (b) can be combined to
fully protect the NOT gate. A fully protected NOT gate offers

SHEIKH et al.: FAULT TOLERANCE TECHNIQUE FOR COMBINATIONAL CIRCUITS BASED ON STR 227

the best hardening by design, but at the cost of higher area
overhead and power. It must be noted that the optimal size of
the transistor for SEU immunity depends on the charge Q of
the incident energetic particle.

Due to aggressive nodes and voltage scaling, the effect of
transient fault is no more constrained to a node where the
incident particle strikes. This could result in the possibility of
deposited charge being simultaneously shared by multiple cir-
cuit nodes in the circuit [40]–[42], leading to the single event
multiple upsets, also referred to as multiple-bit upsets [3].
Considering the inverter example in Fig. 1, if two particles
strike at the drain of nMOS and pMOS transistors simulta-
neously, then the charge collection at the nMOS and pMOS
transistors will offset each other, resulting in an insignificant
change in voltage at the output. Therefore, by the duplication
of transistors, it is intended to increase the probability of
multiple fault hits at the same gate, so that the victim tran-
sistors could cancel the effect of each other. For that matter,
LEAP [43] placement technique can be utilized. This scheme
places the drain contact nodes of nMOS and pMOS transistors
in an interleaved fashion, so that multiple drain contact nodes
can act together to fully or partially suppress the SETs.
Another advantage of using parallel duplicate transistors is the
defect tolerance of transistor stuck-open faults for protected
transistors.

IV. PROPOSED ALGORITHM

In this section, the proposed STR algorithm is presented.
The algorithm protects sensitive transistors whose probability
of failure (POF) is relatively high. The proposed algorithm can
be utilized in two capacities: 1) apply protection until the POF
of circuit reaches a certain threshold and 2) apply protection
until certain area overhead constraint is met. We will first
discuss different relations that realize the circuit POF. These
relations are then used in the proposed algorithm.

A. Circuit Probability of Failure

Let us first define the POF of a transistor. In all discussions,
subscripts i and j refer to gate i and transistor j , respectively.
The POFi j of the j th transistor of gate i is defined as the
probability of circuit failure due to a fault hitting the transistor.
It is computed using the following relation:

POFi j = PDETi j × PHITi j (2)

where PDETi j is the probability of detecting a fault hitting
transistor j of gate i at a primary output, and PHITi j is
the probability that transistor j of gate i is hit by a fault.
The greater the transistor width/area is, the greater its hit
probability is.

PHITi j is computed separately for nMOS and pMOS transis-
tors as they have different drain widths. Let NWi j and PWi j

be the width of nMOS and pMOS transistors, respectively,
and Area be the total circuit area; then, the probability of a
transistor j of gate i to be hit by a fault, PHITi j , is computed
using the following relation:

PHITi j = Wij

Area
Wij ∈ {NWi j , PWi j }. (3)

PDETi j , as defined before, depends on two factors:
1) probability of input patterns for which a fault that
hits the transistor is propagated to the output of a gate,
i.e., controllability conditions to excite the fault and 2) stuck-at
fault observability probability of the gate at one of the primary
outputs of a circuit, i.e., observability probability. PDETi j is
computed using the following relation:

PDETi j = PExcitationi j × PPropagationi j
(4)

where PExcitationi j denotes the probability that the fault is
excited at gate i output due to a fault hit at transistor j .
PPropagationi j

denotes the probability that an error that is excited
at the gate’s output is observable at one of the primary
outputs. Let S be a set of patterns for which an error that
strikes transistor j is propagated to the output of gate i ; then,
PExcitationi j is computed as

PExcitationi j =
|S|∑

k=1

Prob. Sk (5)

where Prob. Sk denotes the probability of occurrence of the
kth input pattern. SPICE tool is used to find the input patterns
for which a transistor fault is excited and observed at the gate
output.

Similarly, PPropagationi j
can be computed using the following

relation:
PPropagationi j

= stuck − at − detection − probi

PCi
(6)

where stuck-at-detection-probi defines stuck-at fault detection
probability of gate i and PCi is the controllability probability
to produce logic value opposite to the fault effect at the gate
output. The fault simulator tool Hope [44] is used to compute
the stuck-at fault detection probability and PCi of a gate i .

Finally, the circuit POF POFC for a single fault is simply
the summation of POFs of all transistors n over all gates m
of a circuit

POFC =
m∑

i=1

n∑
j=1

POFi j . (7)

B. Selective-Transistor-Redundancy-Based Design
The selective redundancy technique is applied to protect the

transistors of a circuit that have relatively high POFi j . Sen-
sitive transistors that have relatively high POF are identified
based on fault simulation of random input patterns. Different
arrangements of nMOS and pMOS transistors are proposed
for each gate for various transistor protection scenarios.

Algorithm 1 highlights the steps of the proposed method.
Initially, the POF of circuit under test is computed using (7)
by first computing the POF of each transistor using (2).
The proposed algorithm applies transistor protection until
the circuit POF reaches a predefined protection threshold,
or a certain area overhead constraint is met. Each time,
the algorithm selects a transistor with the highest POF. The
effect of a transient fault on the selected nMOS (pMOS)
transistor is suppressed or reduced by duplicating and scaling
the widths of a subset of transistors necessary for providing
the protection. For example, in a two-input NAND gate,

228 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

TABLE I

PROPOSED CMOS IMPLEMENTATIONS OF TWO-INPUT NAND GATE

Algorithm 1 STR Algorithm

protecting an nMOS transistor requires duplicating and scaling
its corresponding pMOS transistor connected to the same
input. However, protecting a pMOS transistor requires dupli-
cating and scaling both of the nMOS transistors in the gate.
Once a transistor is protected, the POF of all transistors in the
circuit is updated. Protecting a transistor in a gate gi affects
the selection/hit probability of all transistors in the circuit.
Therefore, after protecting a transistor in a gate, the POF of
the selected transistor is reduced significantly, while the POF
of the remaining transistors may increase or reduce slightly.
The circuit area, POF of all transistors, and POFC are updated
after each transistor protection is applied. The transistor with
maximum POFi j is selected for protection in the next iteration.
The process is repeated until the desired protection threshold
is reached or the maximum area overhead constraint is met.

The protection threshold Th takes the value between
[0%, 100%] and represents the reliability of the circuit
required to be achieved. For example, a protection threshold
of 99% implies applying the protection until the POF of circuit
is less than or equal to (1 − 99%) = 0.01. Increasing Th will
result in more transistors being protected and vice versa.

C. Redundancy Models

In light of Algorithm 1, let us now explain the pro-
posed CMOS implementations of a two-input NAND gate

in Table I. In this paper, a library consisting of two-, three-,
and four-input NAND/NOR gates and an inverter is considered.
For brevity, the case of a two-input NAND gate will be
discussed.

The proposed CMOS implementations of a two-input
NAND gate are shown in Table I. The first row shows the names
of different implementations of a two-input NAND gate, while
the second row shows their corresponding implementations at
the transistor level. The first numeric value 2 in the gate name
(e.g., NAND21) denotes the number of inputs of a gate and the
second numeric value, which ranges from 1 to 5, is used to
select the proper transistor-level implementation of a two-input
NAND gate.

In CMOS implementation of NAND21, pMOS transistor P1
is duplicated, scaled, and connected in parallel to protect a
fault that hits the drain of nMOS transistor N1. Similarly,
to protect nMOS transistors N1 and N2, pMOS transis-
tors P1 and P2 are duplicated and scaled to protect from a
fault that can occur at the drain of any of the nMOS transistors.
Hence, the protection type for that gate will be NAND22.

To protect from faults hitting the drain of pMOS tran-
sistors, all the nMOS transistors are required to be scaled
and duplicated. This is due to the fact that pMOS transis-
tors P1 and P2 are in parallel, which makes them equally
sensitive to a fault. This implementation is called NAND23.
NAND24 provides protection from faults that can occur at any
of the pMOS transistors or at the nMOS transistor N1. Finally,
to fully protect the two-input NAND gate, all the transistors
are duplicated along with their widths increased. This type of
protection is called NAND25. So, for a two-input NAND gate,
there are five distinct redundancy models.

For a two-input NOR gate, similar arrangements can
be used to create its redundancy model. For three- and
four-input NAND/NOR gates, we created seven and nine redun-
dancy models, respectively. The necessity to create a variety
of redundancy models for every possible scenario is to achieve
as much area savings as possible. The number of redundancy
models is technology-independent and allows the proposed
algorithm to improve the reliability of circuit by applying fine
grained protection (protecting one transistor at a time) instead
of protecting the whole gate at once as has been proposed
by other techniques [32], [33]. It will be shown that due to
this fine granularity of protection, the area overhead can be
significantly reduced.

SHEIKH et al.: FAULT TOLERANCE TECHNIQUE FOR COMBINATIONAL CIRCUITS BASED ON STR 229

Fig. 3. Reliability evaluation framework.

V. RELIABILITY EVALUATION

A novel method to compute the reliability of a circuit at the
gate level is proposed in this section. The proposed technique
bridges the gap between circuit-level simulations performed
at the transistor level using SPICE and gate-level simulations,
which could be done using any gate-level simulator. In this
realm, we propose the probability of fault injection, which
quantifies the probability with which a fault must be injected
at the gate level, so that SPICE-level and gate-level simulation
results are highly matched.

The reliability evaluation framework, shown in Fig. 3,
consists of two major blocks: 1) technology-independent
block and 2) technology-dependent block. The purpose of the
technology-independent block is to analyze a given bench-
mark circuit to compute three important parameters for all
gates: 1) input pattern probability (.ipp); 2) stuck-at detec-
tion probability (.prob); and 3) fault injection probability
(.inj). The input patterns observable at the input of each
gate along with their probability of occurrence and stuck-
at fault detection probabilities are computed by performing
the simulation of random test vectors using the parallel fault
simulator Hope [44]. The fault injection probability denotes
the probability with which a fault must be injected at the gate
level as a stuck-at fault. All of these parameters are saved in
a database for later usage.

The technology-dependent part mainly consists of the
library gates comprising NAND/NOR gates with varying input
configurations and an inverter. The purpose of this block
is to observe the behavior of different process technologies,
e.g., 130, 45, 32 nm, and so on, against a specific charge
value. This block computes the effect of an induced current
of charge (Q) for every transistor of the gate in the library. The
input patterns that result in a gate value flip when a transistor is
hit are then saved in the propagation (.prop) file. In fact, we
can compute and save the behavior of different technologies
against different charge (Q) values, and this has to be done
only once.

Now, the fault injection probability of a gate in a circuit
can be computed for any process technology. It must be noted

that the initial analysis of a circuit has to be done only
once. Sections V-A–V-C contain the detailed elaboration of
the reliability evaluation framework.

A. Probability of Fault Injection

The fault injection probabilities of a gate depend on the con-
ditional fault excitation probability (CFEPi j) and probability
of hit/selection. A general relation to compute CFEPi j of the
j th transistor of a gate i can be derived as follows. Let S be
a set of patterns for which an error is excited to the output
of a gate and PCi be the controllability probability to produce
a logic value opposite to the fault effect at the gate output.
Then, CFEPi j can be defined as

CFEPi j =
∑|S|

k=1 Prob. Sk

PCi
= PExcitationi j

PCi
. (8)

CFEPi j of any MOS transistor depends on the process technol-
ogy and the charge of the incident particle. Therefore, in order
to get the exact CFEPi j probability for each MOS transistor,
transistor-level simulations are performed using SPICE.

Now, the sa0 fault injection probability of gate Gi is
computed using the following equation:

Gi sa0 inj. Prob =
n∑

j=1

(
CFEPNij × NWi j∑n

k=1 NWik

)
(9)

where n is the total number of nMOS transistors in gate Gi ,
NWi j is the width of the drain of the j th nMOS transistor,
and CFEPNij is the CFEP due to a fault hit at the j th nMOS
transistor of gate i .

Similarly, the sa1 fault injection probability of gate Gi is
computed as follows:

Gi sa1 in j. Prob =
p∑

j=1

(
CFEPPi j × PWi j∑p

k=1 PWik

)
(10)

where p is the total number of pMOS transistors in gate Gi ,
PWi j is the width of the drain of the j th pMOS transistor,
and CFEPPi j is the CFEP due to a fault hit at the j th pMOS
transistor of gate i .

B. Fault Injection Mechanisms

Two fault injection mechanisms are applied in this paper.
The first method performs fault injection at the transistor level
and measures the magnitude of voltage Vout at the output. The
second method deals with injecting the fault at the gate level
by injecting the sa0 or sa1 fault at the gate output.

1) Transistor Level: The current I of charge Q is injected at
the drain of a transistor. The magnitude and the pulsewidth of
injected current are modeled using (1). Algorithm 2 highlights
the steps of failure rate/reliability computation at the transistor
level. In this algorithm, a set of m transistors are selected for
fault injection using roulette wheel (RW) algorithm [45]. The
RW algorithm selects the transistors that have higher area with
high probability. For each random input vector, the outputs
are saved before and after the fault injection and are then
compared to check for correctness. The failure rate and the
reliability of circuit are then computed after SIM simulations
are performed.

230 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

Fig. 4. SPICE and gate-level simulation accuracy comparisons and speedup. (a) apex2. (b) apex3. (c) apex4. (d) Speedup.

Algorithm 2 Transistor-Level Failure Rate Computation

2) Gate Level: Faults injected at the gate level assume
a stuck-at fault model. When a fault is injected at a gate
output, it can be either the sa1 fault (i.e., connected to Vdd)
or the sa0 fault (i.e., connected to ground). Algorithm 3 is
used to compute the circuit failure rate/reliability at the gate
level. To inject m faults in a circuit, m gates are selected
randomly using an RW algorithm. For each gate selected for
fault injection, the following is performed. First, if both the
sa0 and sa1 fault inject probabilities are 0, then no fault will
be injected as the gate will be fully protected. Otherwise, a
selection is made between injecting the sa0 fault or the sa1
fault according to the ratio of their fault injection probabilities.
The selected fault will be injected based on its fault injection
probability.

C. Transistor-Level Versus Gate-Level Simulations

To illustrate the accuracy of gate-level simulations, a com-
parison between transistor-level and gate-level simulations
is shown in this section for few benchmark circuits. The
transistor-level simulations are performed using SPICE. Fig. 4
shows the close match between the reliability obtained by
SPICE and the gate-level simulations for the three compared

Algorithm 3 Gate-Level Failure Rate Computation

benchmark circuits: apex2, apex3, and apex4. The circuits
reliabilities are evaluated after performing 1000 iterations for
each fault injection case. In Fig. 4(c), 0.10% on the x-axis
corresponds to 0.1%×12190 ≈ 12 faults injected in the apex4
circuit with a reliability of ≈45% achieved after performing
1000 iterations for both SPICE and gate-level simulations.

Time is another factor that must be considered while
evaluating a circuit for reliability. The time taken by SPICE

SHEIKH et al.: FAULT TOLERANCE TECHNIQUE FOR COMBINATIONAL CIRCUITS BASED ON STR 231

TABLE II

RELIABILITY OF ORIGINAL BENCHMARK CIRCUITS

simulations becomes exorbitantly high as the number of tran-
sistors is increased. The apex4 benchmark took around four
days for SPICE simulations, while it took 30 min of gate-level
simulations, hence achieving a speedup of ≈167×. It can be
observed from Fig. 4(d) that as the number of transistors is
increased, the speedup achieved by gate-level simulations also
increases significantly.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the impact of the proposed
algorithm on the area and reliability of LGSynth’91 bench-
marks [46], which consist of circuits with varying complexity
in terms of area, number of inputs, and outputs. Sensitive
nodes (transistors/gates) in a circuit are identified based on
the fault simulation of random input vectors using the parallel
fault simulator Hope [44]. The input patterns are applied until
stuck-at fault coverage of 95% is achieved. It was found that
1 million random input patterns achieved more than 95%
stuck-at fault coverage for all benchmarks in this paper.

Whenever cell hardening against soft errors is considered,
the first step is to select a range of particles energy against
which the tolerance is sought. In this paper, it is assumed
that energy of the incident particle will always result in the
maximum deposition of charge. For that matter and to compare
with other sizing techniques, the values of Q = 0.3 pC,
τ f = 0.2 ns, and τr = 0.05 ns are used for all the simulations
in this paper. The value of charge Q = 0.3 pC is the max-
imum charge that could be collected by the 130-nm process
technology [32]. The simulations are performed for varying
protection thresholds to find the best tradeoff between area
and reliability for each circuit. The number of faults injected
in a protected circuit is prorated according to its area overhead.
Algorithm 3 is used to compute the reliability of each circuit.
The number of simulations count SIM is 5000 iterations for
each fault injection scenario.

The LGSynth’91 benchmark circuits used in this paper are
represented in two-level pla formats; therefore, they are syn-
thesized with single output optimization using Espresso [47]
tool and then mapped to 130-nm technology using SIS [48]
to get the proper gate-level representation of the circuit. The
library used for mapping consists of an inverter and two-,
three-, and four-input NAND and NOR gates. The parame-
ter phase in the logic synthesis process defines whether
the output function should be synthesized as an ON-set
(phase = 1) or an OFF-set (phase = 0). By default,
each output is synthesized as an ON-set by the Espresso tool.
We synthesize each output by synthesizing the phase with
higher probability, i.e., if the output probability of 1 is higher
than the probability of 0, then the value of (phase = 1) is
set; otherwise, (phase = 0) is set. This produces circuits with
higher reliability, as shown in Table II.

In Table II, the first column denotes the circuit names
along with the number of inputs and outputs in each circuit.
The second and the third major columns report the reliability
of circuits using default synthesis settings and the proposed
majority phase synthesis mechanism. The reliability of circuits
is evaluated against one, two, and five faults. The Area of a
benchmark is computed by summing the drain area of all the
nMOS and pMOS transistors.

Table II highlights the increase in reliability when the
circuits are synthesized with respect to the majority phase.
This is due to the increase in fault masking that may occur
as if the final gate is an OR gate and has a value of 1,
any fault propagating through any of the other inputs will be
masked. If the OR gate has at least two inputs with a value
of logic 1, all the faults propagating through any of the inputs
will be masked. Thus, synthesizing the circuit to maximize the
probability of getting a logic 1 at the final gate by synthesizing
the majority phase will maximize the probability of fault
masking and, hence, improve reliability. Therefore, circuits

232 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

TABLE III

RELIABILITY OF CIRCUITS BASED ON THE PROPOSED STR TECHNIQUE
WITH VARYING PROTECTION THRESHOLDS AGAINST A SINGLE FAULT

synthesized with the majority phase are the baseline circuits
used in all our simulations in this paper. It can be observed
that for a few benchmarks, reliability is above 90% for all fault
injection scenarios. These benchmarks promise great reliability
improvement with slight area overhead.

Table III shows the results of applying Algorithm 1 on the
benchmark circuits and highlights the reliability of circuits for
varying protection thresholds. A protection threshold of 98%
implies that the circuit POF must be less than or equal to
(1 − 98%) = 0.02. Therefore, the applied protection threshold
highly correlates with the reliability achieved by the circuit
for a single fault. In Table III, under the 99% column, the
minimum area overhead required for the ex5 circuit to achieve
a reliability greater than or equal to 99% against a single
fault is ≈ 140%. For alu4, apex1, apex2, apex3, apex4,
cordic, misex3, seq , table3, and table5 benchmarks under
the 95% column in Table III, zero area overhead implies that
these benchmarks achieve 95% reliability against single fault
without any area overhead. Similarly, apex2, seq , table3,
and table5 benchmarks also achieve 98% reliability against
single fault without any protection/area overhead. Only the
seq circuit achieves 99% reliability without any overhead. The
average area overhead required by the proposed algorithm to
achieve 95%, 98%, and 99% reliability is 22.81%, 55.96%,
and 92.77%, respectively.

Next, we compare the proposed technique with the asym-
metric transistor sizing technique of sensitive gates proposed
in [33]. The technique asymmetrically sizes the transistors
connected to the output of a gate, i.e., nMOS and pMOS
networks are sized independently. We have implemented the
technique proposed in [33] as follows. The sensitivity of a
gate is measured by considering sa0 and sa1 fault detection
probabilities independently. Gates are then sorted according
to their detection probabilities. Algorithm 1 is then applied,
but now the possible protections that can be applied to a gate
are restricted to transistors connected to the output of a gate.

For example, for a two-input NAND gate, possible protections
are NAND21, NAND23, and NAND24 only. After each pro-
tection is applied to a gate, the POFC of circuit is updated
using (7). The process is repeated until the reliability/area
overhead requirement is met or all possible protections are
applied to all the gates.

The results of this technique are shown in Table IV.
It can be observed that by selectively protecting the transistors
connected to the output of a gate, benchmarks, such as
b12, cli p, ex5, misex1, misex2, rd84, squar5, and z5x p1
are unable to achieve 99% reliability against a single fault.
Benchmarks b12, misex1, squar5, and z5x p1 are also unable
to achieve 98% reliability. In addition to that, the area overhead
becomes significantly higher in comparison to the proposed
STR technique even if the required reliability measure of 99%
is achieved against a single fault.

The technique in [32] protects all sensitive gates symmetri-
cally, i.e., all transistors in a sensitive gate are protected and are
equally scaled. We also compared with the technique similar
to [32] based on fully protecting sensitive gates but with
protecting transistors asymmetrically. Protecting transistors
asymmetrically have an advantage over symmetric protection
due to the difference in the characteristics of nMOS and pMOS
transistors. The sensitivity of a gate is measured as the sum
of sa0 and sa1 fault detection probabilities. Gates are then
sorted according to their detection probabilities. Algorithm 1
is then applied by fully protecting the gate with the highest
detection probability. For example, a two-input NAND gate will
be implemented as NAND25 in Table I. After each protection
is applied to a gate, the POFC of circuit is updated using
(7). The process is repeated until the reliability/area overhead
requirement is met or all gates are fully protected.

Table IV also highlights the area overhead incurred by fully
protecting sensitive gates asymmetrically against a single fault.
It can be observed from Tables III and IV that the proposed
technique offers less area overhead as compared with the
asymmetric technique for all protection threshold scenarios.
Also, under the 99% column header in Table III and under
Asymmetric column header in Table IV, it is evident that the
proposed technique achieves significant area savings for 13 out
of 18 benchmark circuits with similar reliability measures.

The simulations are further extended to analyze circuit
reliability against multiple faults. The number of faults injected
is correlated with the area of a circuit. Table V shows the
reliability achieved by prorating the one, two, and five faults
for each circuit according to its area. For example, if the area
overhead is 131%, then the actual area is increased by a factor
of 2.31. So, one, two, and five faults in the original circuit will
prorate to 2.31, 4.62, and 11.55 faults in the protected circuit.
For each prorated fault, the circuit is simulated twice. For
example, if the prorated faults to be injected are 4.62, then
the circuit is simulated twice, once by injecting four faults
and another by injecting five faults. The failure rate achieved
by both fault injection scenarios is then computed based on a
weighted average to compute the final failure rate/reliability.
It is interesting to observe that with the prorated faults, the
average reliability achieved by the proposed method with 99%
protection is above 96% for one and two prorated faults.

SHEIKH et al.: FAULT TOLERANCE TECHNIQUE FOR COMBINATIONAL CIRCUITS BASED ON STR 233

TABLE IV

RELIABILITY OF CIRCUITS BASED ON LAZZARI et al. [33] AND ASYMMETRIC GATE SIZING TECHNIQUE AGAINST A SINGLE FAULT

TABLE V

RELIABILITY OF CIRCUITS BASED ON THE PROPOSED STR TECHNIQUE AGAINST PRORATED FAULTS. (a) ONE PRORATED FAULT.
(b) TWO PRORATED FAULTS. (c) FIVE PRORATED FAULTS

The reliability measures achieved by the asymmetric sizing
technique against the prorated faults are shown in Table VI.
It can be observed that the average reliability achieved by the
proposed scheme under all fault injection scenarios and for
all protection thresholds is better/close to the asymmetric gate
sizing technique.

To further illustrate the advantage of our proposed STR
technique against techniques that fully protect sensitive gates,
Table VII shows the percentage distribution of gates that
have been protected with 1T protection, e.g., NAND21 from
Table I, full protection (FP), e.g., NAND25 from Table I,
and no protection (NP) for each circuit when Algorithm 1 is
applied for target reliability of 98% and 99%. It is clear from
Table VII that for some circuits, the percentage of protected

gates without FP is significant. This percentage is even higher
than the percentage of fully protected gates, such as apex2,
apex3, cordic, misex2, table3, and table5.

Table VIII shows the reliability achieved by TMR algorithm.
The TMR algorithm is evaluated under the same conditions
as for Algorithm 1. The average area incurred by TMR is
always more than three times the original area. Compared with
TMR, it can be observed that the average reliability achieved
by the proposed scheme under all fault injection scenarios
and for all protection thresholds is far better. With 95%
protection threshold and an area overhead of just 22.81%,
better reliability is achieved by the proposed algorithm
than TMR. This is due to the fact that voters in the
TMR technique are not protected.

234 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

TABLE VI

RELIABILITY OF CIRCUITS BASED ON ASYMMETRIC GATE SIZING TECHNIQUE AGAINST PRORATED FAULTS.
(a) ONE PRORATED FAULT. (b) TWO PRORATED FAULTS. (c) FIVE PRORATED FAULTS

TABLE VII

DISTRIBUTION OF PROTECTION SCHEMES

To improve the reliability of the TMR technique, the major-
ity voters are protected by fully protecting the voters using our
proposed scheme. The results for TMR with voter protection
are shown in Table VIII(b). It can be observed that the average
reliability results have significantly improved for different
fault injection scenarios as compared with TMR without voter
protection at the expense of additional average area overhead
of ≈28.5%. In comparison to TMR with voter protection, our
proposed technique with 99% protection threshold achieves
comparable reliability with a significantly lower area overhead.

For further evaluation, the proposed scheme is then com-
pared with the simulation-based synthesis technique [26]. The
technique is based on maximizing the probability of logical
masking when a soft error occurs. This is done by extracting

subcircuits from an original multilevel circuit, and then resyn-
thesizing each extracted subcircuit to increase fault masking
against a single fault, taking advantage of input probabilities
and don’t care conditions. Table IX shows the reliabilities
obtained based on the original circuit, the circuits synthesized
by [26], and by the application of our proposed STR technique
for the same area overhead obtained by [26]. From Table IX,
it is clear that the final synthesized circuits from [26] are
unable to achieve 95% reliability against single fault except
for ex1010 and apex4. This is a limitation of the technique
in [26] as it improves reliability but cannot achieve the
given target reliability. The proposed STR technique achieves
slightly better results for all fault injection scenarios in com-
parison to the circuit synthesized by the technique in [26].

SHEIKH et al.: FAULT TOLERANCE TECHNIQUE FOR COMBINATIONAL CIRCUITS BASED ON STR 235

TABLE VIII

RELIABILITY OF CIRCUITS BASED ON TMR TECHNIQUE WITH PRORATED FAULTS.
(a) TMR WITHOUT VOTER PROTECTION. (b) TMR WITH VOTER PROTECTION

TABLE IX

COMPARISON OF CIRCUIT RELIABILITY FOR THE PROPOSED STR TECHNIQUE WITH THE TECHNIQUE IN [26]

However, our proposed STR technique has the advantage that
it can be applied to achieve any given target reliability or under
any given area overhead constraint.

It may be noted that the technique proposed in [26] and our
proposed technique are complementary to each other. This is
because the technique in [26] is based on enhancing logical
masking and is applied at the gate level while our proposed
technique is based on protecting sensitive transistors at the
transistor level through transistor sizing. Hence, applying both
the techniques could produce better results than applying any
of the techniques separately. To illustrate this, Algorithm 1
is applied on both the original circuits and the synthesized
circuits obtained by [26] with a target reliability of 99%.
From Table X, it is clear that the proposed technique applied
on top of the synthesized circuits obtained by [26] results in
significant area savings as compared with applying STR alone
on the original circuits. This clearly indicates that the proposed
method is scalable and can be used to further improve other
techniques.

TABLE X

RELIABILITIES OF CIRCUITS BASED ON APPLYING THE PROPOSED STR
TECHNIQUE TO CIRCUITS OBTAINED BY THE TECHNIQUE IN [26]

VII. CONCLUSION

In this paper, we have proposed an STR-based fault toler-
ance technique for combinational circuits. The technique can

236 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 1, JANUARY 2017

be applied to achieve a given circuit reliability or enhance
the reliability of a circuit under a given area constraint. The
technique is based on estimating the POF of each transistor
and iteratively protecting transistors with the highest POF
until the desired objective is achieved. Transistors are pro-
tected based on duplicating and scaling a subset of transistors
necessary for providing the protection. Experimental results
on LGSynth91 benchmarks demonstrate the effectiveness of
the proposed technique. Compared with the existing transistor
sizing techniques, the proposed algorithm incurs significantly
less area overhead with similar reliability measures. Better
reliability results are also achieved in comparison to TMR
with lower area overhead. Unlike TMR, which has an area
overhead of at least three times the area overhead of the
original circuit, the area overhead of the proposed technique
varies depending on the reliability of the original circuit. For
some circuits, high reliability (>99%) is achieved with small
area overhead (<10%). In addition, the reliability of the TMR
technique has been enhanced significantly by protecting the
voters based on applying the proposed technique. In addition,
comparison with the simulation-based synthesis technique
further highlights the merit of the proposed method.

A novel gate-level reliability evaluation technique has also
been proposed that achieves reliability values similar to those
obtained by simulation at the transistor level with the orders
of magnitude less CPU time.

REFERENCES

[1] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A defect-
tolerant computer architecture: Opportunities for nanotechnology,”
Science, vol. 280, no. 5370, pp. 1716–1721, 1998.

[2] N. Cohen, T. S. Sriram, N. Leland, D. Moyer, S. Butler, and R. Flatley,
“Soft error considerations for deep-submicron CMOS circuit applica-
tions,” in Proc. Int. Electron Devices Meeting (IEDM), Dec. 1999,
pp. 315–318.

[3] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of
single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci.,
vol. 50, no. 3, pp. 583–602, Jun. 2003.

[4] J. F. Ziegler et al., “IBM experiments in soft fails in computer elec-
tronics (1978–1994),” IBM J. Res. Develop., vol. 40, no. 1, pp. 3–18,
Jan. 1996.

[5] R. C. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,
pp. 305–316, Sep. 2005.

[6] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. Int. Conf. Dependable Syst. Netw. (DSN),
2002, pp. 389–398.

[7] T. Karnik and P. Hazucha, “Characterization of soft errors caused by
single event upsets in CMOS processes,” IEEE Trans. Dependable
Secure Comput., vol. 1, no. 2, pp. 128–143, Apr./Jun. 2004.

[8] J. Henkel et al., “Reliable on-chip systems in the nano-era: Lessons
learnt and future trends,” in Proc. 50th ACM/EDAC/IEEE Annu. Design
Autom. Conf. (DAC), May/Jun. 2013, pp. 1–10.

[9] S. Rehman, F. Kriebel, M. Shafique, and J. Henkel, “Reliability-
driven software transformations for unreliable hardware,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 11,
pp. 1597–1610, Nov. 2014.

[10] J. von Neumann, “Probabilistic logics and the synthesis of reliable organ-
isms from unreliable components,” Autom. Stud., vol. 34, pp. 43–98,
1956.

[11] J. Han, “Fault-tolerant architectures for nanoelectronic and quantum
devices,” Ph.D. dissertation, Dept. Appl. Sci., Delft Univ. Technol.,
Delft, The Netherlands, 2004.

[12] D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems: Design
and Evaluation, 3rd ed. Natick, MA, USA: A. K. Peters, Ltd.,
1998.

[13] A. Namazi and M. Nourani, “Reliability analysis and distributed
voting for NMR nanoscale systems,” in Proc. 2nd Int. Design Test
Workshop (IDT), Dec. 2007, pp. 130–135.

[14] M. Hamamatsu, T. Tsuchiya, and T. Kikuno, “On the reliability of
cascaded TMR systems,” in Proc. IEEE 16th Pacific Rim Int. Symp.
Dependable Comput. (PRDC), Dec. 2010, pp. 184–190.

[15] A. H. El-Maleh and F. C. Oughali, “A generalized modular redun-
dancy scheme for enhancing fault tolerance of combinational circuits,”
Microelectron. Rel., vol. 54, no. 1, pp. 316–326, 2014.

[16] A. H. El-Maleh and A. S. Al-Qahtani, “A finite state machine based fault
tolerance technique for sequential circuits,” Microelectron. Rel., vol. 54,
no. 3, pp. 654–661, 2014.

[17] K. Mohanram and N. A. Touba, “Partial error masking to reduce soft
error failure rate in logic circuits,” in Proc. 18th IEEE Int. Symp. Defect
Fault Tolerance VLSI Syst., Nov. 2003, pp. 433–440.

[18] A. K. Nieuwland, S. Jasarevic, and G. Jerin, “Combinational logic soft
error analysis and protection,” in Proc. 12th IEEE Int. On-Line Test.
Symp. (IOLTS), Jul. 2006, p. 6.

[19] C. Zoellin, H. Wunderlich, I. Polian, and B. Becker, “Selective hardening
in early design steps,” in Proc. 13th Eur. Test Symp., May 2008,
pp. 185–190.

[20] Y. Dotan, N. Levison, and D. Lilja, “Fault tolerance for nanotechnology
devices at the bit and module levels with history index of correct
computation,” IET Comput. Digit. Techn., vol. 5, no. 4, pp. 221–230,
Jul. 2011.

[21] J. Teifel, “Self-voting dual-modular-redundancy circuits for single-
event-transient mitigation,” IEEE Trans. Nucl. Sci., vol. 55, no. 6,
pp. 3435–3439, Dec. 2008.

[22] E. P. Kim and N. R. Shanbhag, “Soft N-modular redundancy,” IEEE
Trans. Comput., vol. 61, no. 3, pp. 323–336, Mar. 2012.

[23] K.-C. Wu and D. Marculescu, “Soft error rate reduction using redun-
dancy addition and removal,” in Proc. Asia South Pacific Design Autom.
Conf. (ASPDAC), Mar. 2008, pp. 559–564.

[24] S. Almukhaizim and Y. Makris, “Soft error mitigation through selective
addition of functionally redundant wires,” IEEE Trans. Rel., vol. 57,
no. 1, pp. 23–31, Mar. 2008.

[25] A. Zukoski, M. R. Choudhury, and K. Mohanram, “Reliability-driven
don’t care assignment for logic synthesis,” in Proc. Design, Autom. Test
Eur. Conf. Exhibit. (DATE), Mar. 2011, pp. 1–6.

[26] A. H. El-Maleh and K. A. K. Daud, “Simulation-based method for
synthesizing soft error tolerant combinational circuits,” IEEE Trans. Rel.,
vol. 64, no. 3, pp. 935–948, Sep. 2015.

[27] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in Proc. 17th IEEE VLSI Test Symp. (VTS),
Apr. 1999, pp. 86–94.

[28] A. H. El-Maleh, B. M. Al-Hashimi, A. Melouki, and F. Khan, “Defect-
tolerant n2-transistor structure for reliable nanoelectronic designs,” IET
Comput. Digit. Techn., vol. 3, no. 6, pp. 570–580, Nov. 2009.

[29] J. Han, E. Leung, L. Liu, and F. Lombardi, “A fault-tolerant technique
using quadded logic and quadded transistors,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 23, no. 8, pp. 1562–1566, Aug. 2015.

[30] A. Mukherjee and A. S. Dhar, “Fault tolerant architecture design
using quad-gate-transistor redundancy,” IET Circuits, Devices Syst.,
vol. 9, pp. 152–160, May 2015. [Online]. Available: http://digital-
library.theiet.org/content/journals/10.1049/iet-cds.2014%.0106

[31] S. N. Pagliarini, L. A. de B. Naviner, and J.-F. Naviner, “Selective
hardening methodology for combinational logic,” in Proc. 13th Latin
Amer. Test Workshop (LATW), Apr. 2012, pp. 1–6.

[32] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden combina-
tional logic,” IEEE Trans. Comput.-Aided Design Integr., vol. 25, no. 1,
pp. 155–166, Jan. 2006.

[33] C. Lazzari, G. Wirth, F. L. Kastensmidt, L. Anghel, and
R. A. da Luz Reis, “Asymmetric transistor sizing targeting radiation-
hardened circuits,” Elect. Eng., vol. 94, no. 1, pp. 11–18, 2012.

[34] W. Sootkaneung and K. K. Saluja, “Sizing techniques for improving soft
error immunity in digital circuits,” in Proc. ISCAS, vol. 232. 2010.

[35] W. Sootkaneung and K. K. Saluja, “On techniques for handling soft
errors in digital circuits,” in Proc. IEEE Int. Test Conf. (ITC), Nov. 2010,
pp. 1–9.

[36] W. Sootkaneung and K. K. Saluja, “Soft error reduction through gate
input dependent weighted sizing in combinational circuits,” in Proc. 12th
Int. Symp. Quality Electron. Design (ISQED), Mar. 2011, pp. 1–8.

[37] Predictive Technology Model for Spice, accessed on May 31, 2016.
[Online]. Available: http://ptm.asu.edu/

[38] A. Dharchoudhury, S. M. Kang, H. Cha, and J. H. Patel, “Fast timing
simulation of transient faults in digital circuits,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Nov. 1994, pp. 719–726.

SHEIKH et al.: FAULT TOLERANCE TECHNIQUE FOR COMBINATIONAL CIRCUITS BASED ON STR 237

[39] G. C. Messenger, “Collection of charge on junction nodes from ion
tracks,” IEEE Trans. Nucl. Sci., vol. 29, no. 6, pp. 2024–2031, Dec. 1982.

[40] B. D. Olson et al., “Simultaneous single event charge sharing and
parasitic bipolar conduction in a highly-scaled SRAM design,” IEEE
Trans. Nucl. Sci., vol. 52, no. 6, pp. 2132–2136, Dec. 2005.

[41] N. Seifert, B. Gill, V. Zia, M. Zhang, and V. Ambrose, “On the scalability
of redundancy based SER mitigation schemes,” in Proc. IEEE Int. Conf.
Integr. Circuit Design Technol. (ICICDT), May 2007, pp. 1–9.

[42] O. A. Amusan et al., “Mitigation techniques for single-event-induced
charge sharing in a 90-nm bulk CMOS process,” IEEE Trans. Device
Mater. Rel., vol. 9, no. 2, pp. 311–317, Jun. 2009.

[43] H.-H. K. Lee et al., “LEAP: Layout design through error-aware transistor
positioning for soft-error resilient sequential cell design,” in Proc. IEEE
Int. Rel. Phys. Symp. (IRPS), May 2010, pp. 203–212.

[44] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault simulator
for synchronous sequential circuits,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 15, no. 9, pp. 1048–1058, Sep. 1996.

[45] S. M. Sait and H. Youssef, Iterative Computer Algorithms With Appli-
cations in Engineering: Solving Combinatorial Optimization Problems,
1st ed. Los Alamitos, CA, USA: IEEE Computer Society Press, 1999.

[46] Lgsynth’91 Benchmark Circuits, accessed on Jun. 24, 2014. [Online].
Available: http://ddd.fit.cvut.cz/prj/benchmarks/

[47] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. L. Sangiovanni-Vincentelli , Logic Minimization Algorithms for
VLSI Synthesis. Norwell, MA, USA: Kluwer, 1984.

[48] E. M. Sentovich et al., “SIS: A system for sequential circuit syn-
thesis,” Dept. EECS, Univ. California, Berkeley, Berkeley, CA, USA:
Tech. Rep. UCB/ERL M92/41, 1992.

Ahmad T. Sheikh received the B.S. degree in com-
puter science and engineering from the University
of Engineering and Technology, Lahore, Pakistan,
in 2005, the M.S. degree in electrical engineer-
ing from the College of Electrical and Mechanical
Engineering, National University of Sciences and
Technology, Rawalpindi, Pakistan, in 2008, and the
Ph.D. degree in computer science and engineering
from the King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia, in 2016.

His current research interests include fault-tolerant
design, CAD, synthesis and design of digital systems, and nondeterministic
heuristic algorithms.

Aiman H. El-Maleh is currently an Associate
Professor with the Computer Engineering Depart-
ment, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia. He holds three
U.S. patents. His current research interests include
synthesis, testing, and verification of digital systems,
defect-tolerant design, VLSI design, and design
automation.

Dr. El-Maleh is the winner of the best paper award
for the most outstanding contribution in the field of
test at the European Design and Test Conference

in 1995.

Muhammad E. S. Elrabaa received the M.A.Sc.
and Ph.D. degrees in electrical and computer engi-
neering from the University of Waterloo, Waterloo,
ON, Canada, in 1991 and 1995, respectively.

He is currently an Associate Professor with
the Computer Engineering Department, King Fahd
University of Petroleum and Minerals, Dhahran,
Saudi Arabia. He has authored or co-authored
numerous papers and a book, and holds two U.S.
patents. His current research interests include
networks-on-chip, defect tolerant circuit techniques,

and reconfigurable computing.

Sadiq M. Sait received the bachelor’s degree in
electronics from Bangalore University, Bengaluru,
India, in 1981, and the master’s and Ph.D. degrees in
electrical engineering from the King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia,
in 1983 and 1987, respectively.

He has been with the Department of Computer
Engineering, King Fahd University of Petroleum
and Minerals, since 1987, where he is currently a
Professor. He has authored over 200 research papers,
contributed chapters to technical books, and lectured

in over 25 countries. He is the Principle Author of the books entitled VLSI
Physical Design Automation: Theory and Practice (Europe: McGraw-Hill
Book Company, 1995) (and also co-published by IEEE Press), and Iterative
Computer Algorithms with Applications in Engineering (Solving Combinator-
ial Optimization Problems), (CA, USA: IEEE Computer Society Press, 1999).
His current research interests include digital design automation, VLSI system
design, high level synthesis, and iterative algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

