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Abstract The use of the evolutionary heuristic simulated evolution for the optimiza-
tion of the multi-dimensional vector bin packing problem, which is encountered in
several industrial applications, is described. These applications range from production
planning and steel fabrication to assignment of virtual machines (VMs) onto physical
hosts at cloud-based data centers. The dimensions of VMs can include demands of
CPU, memory, bandwidth, disk space etc. The generalized goodness functions that
aid traversing the search space in an intelligent manner are designed to cater to the
multidimensional nature of items (VMs). The efficiency of heuristics is tested by con-
sidering phase transition in the generation of difficult test cases. The quality of the
heuristics is judged by determining how close the solution is to the estimated lower
bound. A new implementation of a tighter lower bound is proposed. Experiments show
that superior quality results are obtained by employing the proposed strategy.
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1 Introduction

In recent years, cloud-based data centers have emerged as a popular choice for hosting
and delivering IT services. In this approach, a user can request as much or as little
computing resources as one desires. Users’ requests are mapped to virtual machines
(VMs) with a specific amount of CPU, memory, bandwidth, and disk space demands.
Each physical machine (PM) of a data center has a fixed capacity of these resources.
Moreover, when multiple VMs are placed on a single PM, the host operating system
or hypervisor also consumes some extra resources, e.g., for resource scheduling, or
context switching [1]. This is mainly to avoid performance degradation of the PMs.
An upper-bound on the maximum utilization of any resource of a PM is generally set
with some threshold value. Optimizing the total number of PMs required is important
for the cost-effective and energy-efficient operation of data centers [2–4].

The optimization of the VM assignment problem is a classic case of a multi-
dimensional vector bin packing problem (MDVBPP), where several items are defined
by an R-dimensional resource requirement vector. These items have to be packed into
aminimumnumber of binswith fixed resource capacity in each of these R-dimensions.
Figure 1 illustrates the packing of five 4-dimensional items into two bins. MDVBPP
is an NP-hard problem. Even its one-dimensional version which reduces to 1D-BPP
is NP-Hard [5].

A large amount of work on MDVBPP has been published. This is due to the large
number of real-world applications where this problem is encountered. Examples of
MDVBPP applications include but are not limited to the following fields: computer
network design [6], computer sciences (assignment problems, e.g., virtual machine
placement (VMP) in a data center [7], assignment of jobs to processors, file placement
for a multi-device storage system [8]), layout design [9], robot selection and worksta-
tion assignment [10], production planning and logistics (packing problems) [11], steel
industry [12], etc. The widespread use of MDVBPP is due to the fact that it efficiently

Item 1 Item 2

Item 4
Item 3

Item 5

Bin 1 Bin 2
(a) (b)

Fig. 1 Example of MDVBPP for R = 4. a Five items with 4-D resource requirement to be assigned. b
Assignment of five items in two bins
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models the scheduling or assignment requirements that are encountered in several
disciplines. Lately, MDVBPP has gained popularity among the research community
working on the virtual machine (VM) assignment problems of data centers.

Over the past few decades, several exact methods, lower bounds, approximation
methods, and their worst-case analysis for the 2-D version of MDVBPP have been
described in the literature [8,13–16]. Even for two dimensions, i.e., when R = 2,
MDVBPP is APX-hard, which means that an asymptotic polynomial time approxima-
tion scheme does not exist unlessP =NP [17]. For R-dimensionalMDVBBP, Yao [18]
showed that any algorithm that runs in O(n log n)-time cannot give a solution with
the number of bins less than R times the optimum value. Fernandez de la Vega and
Lueker [19] proved that for MDVBPP, a linear time algorithm can find a solution with
R + ε times the number of bins in the optimal solution, where ε is a positive constant.
Chekuri and Khanna [20] described a polynomial time approximation algorithm that
further improves this worst-case performance ratio to (1 + ε.R + O(ln ε−1)), which
reduces to O(ln R)-approximation when R is fixed.

Variants of First Fit Decreasing (FFD) are the most common deterministic methods
applied to finding an approximate solution for MDVBPP [21]. FFD first sorts the
items in decreasing order of their sizes and then places them into bins according to
First Fit (FF) strategy. Here “size” could be any measure that effectively combines
the size of the multi-dimensional item into a single scalar value, e.g., the size can
be defined as a sum or multiple of all dimensions. The efficiency of an FFD-variant
highly depends on the definition of the size. In the context of the VMP problem,
Lei Shi et al. [21] presented and evaluated the performance of six different FFD-based
algorithms for a 2-D version ofMDVBPP. Stillwell et al. [22] presented a performance
comparison of several FFD-variants for MDVBPP. They sampled demands across
different dimensions generated for the VMP problem instances, independently and
an identically distributed manner. However, the VMP problem instances encountered
in the real-world scenarios may have complementary resource requirements across
different dimensions. For example, a VM request with scientific computations may
have high CPU requirements but low I/O requirements while VMs that are acting as
web servers would behave in the opposite manner. FFD-variants that are not designed
to take advantage of such complementary requests can give solutions that are far
from the optimal solution [17]. Panigrahy et al. systematically studied the family of
FFD heuristics and their limitations and suggested a new geometric based heuristic
approach for MDVBPP [17].

Recently, the use of a genetic algorithm [2], particle swarm optimization [23],
ant colony system algorithm [3,24], and cuckoo search optimization [7] have been
attempted for optimizing the VM placement problem in the category of non-
deterministic metaheuristics. However, these were implemented for the one or
two-dimensional problems. There are only a very few applications of metaheuris-
tics reported for R ≥ 2. For R ≥ 2, Stillwell et al. [22] showed that FFD-based
heuristics perform better than a genetic algorithm.

In this paper, the application of a heuristic optimization based on simulated evo-
lution (SimE) is described and its performance for MDVBPP is evaluated against
another well-known iterative heuristic, simulated annealing (SA). The performance of
the proposed optimization method was also compared with two popular FFD-based
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heuristics that out-performed others, referred to here as Norm Based-FFD (FFDNB)
and Dot Product-Based FFD (FFDDP), both of which are implemented in Microsoft’s
Virtual Machine Manager [25,26]. A method to generate a data set for MDVBPP cov-
ering a variety of parameters that can potentially affect the difficulty of the problem
is also proposed. In addition to this, a new method for the estimation of lower bound
(LB) on the required number of bins is also proposed for the problem instances where
the optimal solution contains a few items per bin. Simulation results demonstrating
the effectiveness of the proposed approach are also presented.

The remainder of this paper is organized as follows: In Sect. 2 the problem is
formally defined. Section 3 explains the proposed approach and other deterministic
heuristics. In Sects. 4 and 5 the data set generation and lower bound methods, respec-
tively, are briefly explained. Section 6 provides a comparison of the results with other
heuristics. Finally, the conclusions of the study are provided in Sect. 7.

2 Problem formulation

In this section, the definition, notations, and themathematical formulation ofMDVBPP
are presented.

2.1 Definition and notations

Suppose that there are n items to be assigned. Each item Ii , i ∈ {1, 2, 3, . . . , n} is
defined as an R-dimensional requirement vector, Ii = [I 1i , I 2i , I ri , . . . , I Ri ] where I ri ,
represents the size of r th resource requirement. These items are to be assigned to a
minimum number of possible, saym bins. LetCr be themaximum capacity (or thresh-
old value) in the r th dimension, associated with each bin Bj , j ∈ {1, 2, 3, . . . ,m}.
The assignment solution is represented by an m × n matrix A, where

A ji =
{
1 if Ii is assigned to Bj

0 otherwise

Let f (Bj ) be a function such that f (Bj ) = 1, if bin Bj is loaded with at least one item,
and f (Bj ) = 0 otherwise.

2.2 Optimization formulation

The problem of assigning all items to the least number of bins, and subject to the
constraints, can be formulated as follows:

minimize
m∑
j=1

f (Bj ) (1)

subject to
n∑

i=1

A ji .I
r
i ≤ Cr , ∀r ∈ {1, 2, 3, . . . , R}, and ∀ j ∈ {1, 2, 3, . . . ,m}

(2)
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Fig. 2 Bin-centric First Fit Decreasing (FFD) procedure [17]

m∑
j=1

A ji = 1 ∀i ∈ {1, 2, 3, . . . , n} (3)

Constraint (2) imposes a capacity limit on each bin in each dimension, while con-
straint (3) ensures that each item will be assigned to only one bin.

3 Algorithms for MDVBPP

In this section, two FFD-based heuristics proposed by Panigrahy et al. [26] and the
approach proposed in this study for MDVBPP are briefly explained.

3.1 Dot product-based FFD (FFDDP)

This heuristic follows the bin-centric FFD approach, procedure of which is given in
Fig. 2. Here the size of each item is determined by the weighted dot product between
the vector of remaining capacities of the current open bin and the vector of demands
for the item. The weighted dot product is calculated using expression 4 below:

∑
r

ar .I
r
i .RemCap(Bj )r (4)

where RemCap(Bj )r is the remaining capacity of bin Bj in r th dimension, and ar is
the weight of r th dimension that is calculated in the following manner:

ar = e

(
0.01∗ 1

n .
n∑

i=1
I ri

)
(5)

The item Ii that maximizes the dot product without violating the capacity constraint
is considered to be placed first. For more details of this algorithm, readers are referred
to the paper presented by Panigrahy et al. [17].

3.2 Norm-based FFD (FFDNB)

This is another bin-centric heuristic that looks at the difference between the vectors Ii
and the residual capacity RemCap(Bj ) under a certain norm, instead of the dot prod-
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uct. For example, for the l2 norm, from all unassigned items, it places the item Ii that
minimizes the quantity

∑
r ar .(I

r
i − RemCap(Bj )r )

2 provided the assignment does
not violate the capacity constraints. The weights ar are again chosen as in Equation
(5).

3.3 Proposed approach

In this subsection, the SimE-basedMDVBPPheuristic is described.A brief description
of the basic SimE heuristic is provided first.

3.3.1 Simulated evolution

Simulated evolution is a general iterative heuristic proposed by Kling and Baner-
jee [27]. This scheme combines iterative improvement and constructive perturbation
and saves itself from getting trapped in local minima by following a stochastic
approach. In SimE, the search space is traversed by making intelligent moves, unlike
in other nondeterministic algorithms such as SA, where random moves are made. The
core of the algorithm is the goodness estimator. SimE assigns each moveable element
a goodness value. The goodness value indicates how well a certain movable element
is currently assigned. The higher the goodness value, the lower is the probability of
the element being selected for reallocation.

The structure of the SimE algorithm is shown in Fig. 3. SimE assumes that there
exists a solution � of a set I containing n movable elements (items). The algorithm
starts from an initial assignment �i , and then, following an evolution-based approach
seeks to reach better assignments from one generation to the next by perturbing some
ill-assigned elements (items) while retaining the near-optimal ones. The algorithm has
one main loop consisting of three basic steps, evaluation, selection, and allocation.
The three steps are executed in sequence until the average goodness of the solution
reaches a maximum value, or no noticeable improvement in the solution quality is
observed after a given number of iterations [28].

Goodness evaluation

The Evaluation step consists of evaluating the goodness (fitness) gi of each item
Ii assigned to bin Bj in current solution �′. The effective goodness measures can
be thought of based on the domain knowledge of the optimization problem [29].
The goodness measure must be a single number expressible in the range [0,1]. For
MDVBPP, the goodness measure is defined as follows:

gi =
∑R

r=1 I
r
i∑R

r=1 B
r
j

, ∀r ∈ {1, 2, 3, . . . , R} (6)
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Fig. 3 Simulated evolution algorithm for MDVBPP

Another appropriate goodness measure can also be defined as:

gi = 1

R
.

R∑
r=1

I ri
Br
j
, ∀r ∈ {1, 2, 3, . . . , R} (7)

where I ri is size of item Ii in dimension r , and Br
j is the available space of partially

used bin Bj in dimension r after removing item Ii from bin Bj in the current solu-
tion �′. Equations (6 and 7) assume a minimization of resource wastage in bin Bj

(maximization of goodness). The goodness of an item Ii will be 1 if it is assigned to
such a partially used bin Bj that I ri = Br

j , ∀ r ∈ {1, 2, 3, . . . , R}. This means that the
current assignment of item Ii exactly packs the bin Bj and hence optimally utilizes the
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Capacity

Fig. 4 Placement of 6 items in 3 bins

bin Bj . For example, the goodness values of items I1, I2 and I3 (Fig. 4) are 1 as their
combined placements optimally utilize bin Bj in each dimension. On the other hand,
the goodness gi will be near 0, when an item Ii , with a very small size, is placed in an
empty bin Bj i.e., I ri << Br

j , ∀ r ∈ {1, 2, 3, . . . , D}. Such an assignment will result
in a maximum resource wastage. Item I6, in Fig. 4, has approximately zero goodness
value. Note that this goodness estimation is strongly related to the target objective of
the given problem. The quality of a solution can also be estimated by summing up the
goodness of all of its constituent elements (items).

Selection

In this step, the algorithm probabilistically selects elements for reallocation. Elements
with low goodness values have higher probabilities of getting selected. Selection step
partitions �′ into two disjoint sets; a selection set Is and a partial solution �p con-
taining the remaining elements of the solution �′. Each element in the solution is
considered separately from all other elements. The decision whether to assign an ele-
ment Ii to the set Is is based solely on its goodness gi . The selection operator has a
nondeterministic nature, i.e., an individual with a high goodness (close to one) still
has a non-zero probability of being assigned to the selection set Is . This element of
nondeterminism gives SimE the capability of escaping local minima. Each time an
item Ii is considered for selection, a random number is generated. The inequality
Random() ≤ (1 − gi ) is used for this purpose (referred to Fig. 3). Large selec-
tion sets may lead to a better solution, but will require a higher run time. On the
other hand, small selection sets will speed up the algorithm, but with the risk of
an early convergence to a sub-optimal solution (local minima) [28]. A parameter
maxSelection provides control over the selection process and restricts the maximum
size of the selection set. In this work, a value of 40% of the total number of items
was adopted. This keeps the time requirements of the SimE algorithm under control,
especially during the allocation step, which is the most time-consuming step of the
algorithm.
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Allocation

Allocation is the SimE operator that has the most impact on the quality of the solu-
tion. Allocation takes as input the set Is and the partial solution �p and generates
a completely new solution �′ with the elements of set Is mutated according to the
allocation strategy. The goal of Allocation is to favor improvements over the previ-
ous generation, without being too greedy [28]. As the goodness of each individual
element is also tightly coupled with the target objective, superior alterations are sup-
posed to gradually improve the individual goodness as well. Hence, Allocation allows
the search to progressively converge towards a configuration where each individual is
optimally located.

The choice of a suitable allocation function is problem specific. Similar to the
design of the goodness function, the choice of the allocation strategy also requires
ingenuity on the part of the designer. In this work, a variant of the FFD heuristic as
the allocation strategy was adopted. The items selected during the selection step are
sorted in decreasing order of their sizes (RIi ) computed using Eq. (8).

RIi =
R∑

r=1

(I ri )2 (8)

The bins in partial solution �p are also sorted in the decreasing order of the linear
sum of their occupied space in each dimension, (OBj ) computed using Eq. (9):

OBj =
R∑

r=1

(1 − Bj
r ) (9)

Subsequently, First Fit algorithm is applied to generate the new solution �′. Initial
placement �i is also obtained by this same allocation strategy but with the difference
that all the items are treated as selected.

3.4 Complexity analysis

The proposed SimE-based algorithm consists of four steps in a loop as illustrated in
Fig. 3. The evaluation step computes goodness value of all n items using Eq. (6). This
takesO(n) time. The selection step probabilistically selects ill-assigned items and this
also takes O(n) time. In the sorting step prior to allocation, both the lists of selected
items and open bins are sorted and this takes O(n log n) time. In the allocation step,
First Fit (FF) algorithm sequentially checks if all selected items can be packed into one
of them currently open bins. FF then packs each selected item into a bin first found to
be able to accommodate it. If an item cannot be packed into any current active bin, the
(m + 1)th bin is opened to accommodate it. The complexity of this step is O(n2). The
overall complexity of our algorithm is O(k · n2), where k is the number of iterations.
Experiments indicate that k remains fairly constant as n increases, e.g., k varies in the
range of 65–75 when n is increased from 200 to 1000.
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4 Data generation for MDVBPP

In practice, engineers invariably are more interested in typical instances of optimiza-
tion rather than looking for the hardest possible instances. For this reason, suitably
parameterized random ensembles of instances of problems are introduced. In some
regions of the ensemble space, instances are typically easy to solve, while in other
regions instances are found to be typically hard. This change in behavior resembles
the phase transitions observed in physical systems [30]. The properties that determine
the phase transition in our case are: (a) the correlation between different dimensions
of item vectors; and (b) size of the item vectors. If there is a positive correlation in
different dimensions of all the items then the problem reduces to the one-dimensional
case that is relatively easier to solve than the multi-dimensional one [31]. However,
for negatively correlated instances, FFD-based heuristics do not perform particularly
well [17]. Instances with very small or very big item sizes are also easier to be solved to
a near optimum value. The case where most of the items are of small sizes, the optimal
solution contains a few number of bins and many different combinations result in the
same number of bins. This case resembles the scenario where one is filling the bins
with sand. On the other hand, items with big sizes will lead to solutions where one
item is assigned to a bin. This leads to finding of optimal solution trivial.

In this section, the details of the proposed data set generation method for MDVBPP
are discussed. The method introduces a variety of different parameters to cover the
wide range of possible workloads.

4.1 Parameters

Each instance of MDVBPP can be characterized by a tuple (C, n, R, Corr, v1, v2),
where C represents the bin capacity in each dimension, n the number of items to be
packed, R the number of dimensions of each item, Corr is the correlation among the
r th and (r − 1)th dimensions, and, v1 and v2 define the interval [v1.C, v2.C] for the
range of the item size in each dimension.

4.2 Data set generation

Each tuple (C, n, R, Corr, v1, v2) describes a specific class of instances of the
MDVBPP. For fixed problem parameters C, n, R, Corr, v1, and v2, any test prob-
lemcan be interpreted as the realization of an R-dimensional n randomvariable vectors
Ii , i.e.,

Ii = [I 1i , I 2i , I 3i , . . . , I Ri ], ∀i ∈ {1, 2, 3, . . . , n} (10)

These values are generated using the procedure shown in Fig. 5. In Fig. 5, hal f Di f f
is half of the range of interval [v1 · C, v2 · C], and rand(1) is a function that returns
a uniformly distributed random real number in the range [0, 1). The size of each item
in the first dimension, i.e., I 1i is set to a random number uniformly distributed in the
interval [v1 ·C, v2 ·C] (refer to lines 9–11). Similarly, sizes in other dimensions, i.e.,
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Fig. 5 Procedure to generate data set for MDVBPP

I ri , ∀r ∈ {2, 3, . . . , R} are first generated through another uniform random variable
in the range half of the given interval, i.e., [v1.C, v1+v2

2 ·C] and then a probability Pc
is used to decide whether I ri is to be increased by a value hal f Di f f or not (refer to
lines 15–8). This step is to introduce the required correlation between r th and (r−1)th
dimensions. The probability Pc is selected according to the required correlation value
(refer to lines 1–7).

4.3 Example

Let a class of problem instances characterized by (C, n, R, Corr, v1, v2) =
(1000, 20, 4, Corr, 0.001, 0.9), where Corr can be negative, zero or positive.
For negative correlation, a sample data set is given in Table 1.
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Table 1 Sample data set with
negative correlation between
adjacent dimensions of items

Item no. Item size

1 [676, 128, 722, 279]

2 [178, 538, 307, 539]

3 [868, 189, 861, 81]

4 [550, 204, 493, 121]

5 [89, 797, 389, 747]

6 [208, 836, 68, 500]

7 [719, 242, 703, 466]

8 [682, 137, 846, 183]

9 [436, 477, 246, 519]

10 [198, 572, 98, 551]

11 [157, 730, 444, 821]

12 [858, 173, 608, 246]

13 [754, 328, 578, 243]

14 [347, 878, 329, 645]

15 [548, 73, 520, 461]

16 [899, 188, 707, 99]

17 [302, 845, 111, 857]

18 [367, 636, 276, 516]

19 [884, 366, 818, 239]

20 [293, 893, 199, 689]

Correlation Dimension 1 and 2 −0.8041

Dimension 2 and 3 −0.7887

Dimension 3 and 4 −0.7343

5 Improved lower bound

To assess the performance of the proposed heuristic, the consolidation ratio(q/LB),
which is defined as the ratio of the obtained cost, i.e., the number of bins q to the
estimated LB, is compared across heuristics. Thus, to obtain a better estimate of the
performance of the proposed heuristic, a new procedure for a tighter LB is proposed.

5.1 Procedure for the calculation of LB

In the case of 1D-BPP, a continuous LB is calculated with an assumption that items can
be allocated in fractional quantities of their sizes. For MDVBPP, one natural way of
estimating the LB is to calculate the maximum of the continuous LB values obtained
by considering each of its R dimensions individually at a time. This can be done using
Eq. 11. A similar LB was proposed by Spieksma [13] for R = 2.

LBc = max

(⌈
n∑

i=1

I 1i
C1

⌉
,

⌈
n∑

i=1

I 2i
C2

⌉
, . . . ,

⌈
n∑

i=1

I Ri
C R

⌉)
(11)
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Fig. 6 Procedure for determining the lower bound LB2

This lower boundLBc is trivially computed inO(n) timeand seems tobe appropriate
when items are relatively small in size w.r.t. the capacity of bins [13] (e.g., in our case
for classes where v1 ∈ [0.001, 0.25] and v2 ∈ [0.1, 0.4]). This is due to optimal
solutions of such instances tend to have only a few bins and little empty spaces in
them that lead to less amount of error in the LB estimation. On the other hand, this
lower bound (LBc) inherently performs poorly for the instanceswhere optimal solution
contains many empty spaces. For such instances, another lower bound procedure is
proposed, called LB2. The idea is to find the maximum number of items for which it
is known that no two of these items can be assigned to the same bin. Evidently, this
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Table 2 Sample data set

Ii Item size Si |Si |
I1 [321, 666, 878, 220] S1 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 11

I2 [324, 212, 525, 667] S2 = {1, 3, 4, 5, 6, 7, 8, 9, 11, 12} 10

I3 [315, 232, 566, 358] S3 = {1, 2, 4, 5, 7, 9, 10, 11, 12} 9

I4 [87, 67, 680, 258] S4 = {1, 2, 3, 5, 7, 9, 10, 11, 12} 9

I5 [636, 233, 619, 759] S5 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12} 11

I6 [560, 482, 319, 568] S6 = {1, 2, 5, 7, 8, 9, 11, 12} 8

I7 [7, 428, 847, 774] S7 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12} 11

I8 [562, 636, 43, 398] S8 = {1, 2, 5, 6, 7, 9, 11, 12} 8

I9 [204, 781, 710, 739] S9 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12} 11

I10 [409, 294, 469, 197] S10 = {1, 3, 4, 5, 7, 9, 12} 7

I11 [350, 311, 221, 775] S11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 12} 10

I12 [464, 210, 598, 794] S12 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 11

number serves as a lower bound for the optimal solution. The procedure to calculate
this number is shown in Fig. 6. The core of the procedure is to divide a given set of
items I into three subsets Salone, St , and Sr . For illustration of the procedure, consider
the data set given in Table 2.

Step1 generates sets Si corresponding to each item Ii , where each set Si contains all
those items that cannot be combined with item Ii (Note that in this example, maximum
capacity for each bin in each dimension is C = 1000). These sets are shown in the
third column of Table 2. The complexity of this step is O(n2) as the feasibility of
packing of each item with every other item is to be tested one by one. In step2, set
Salone is constructed by adding all those items that cannot be packed with any other
item in set I . Such items are identified by the cardinality of their corresponding set
Si . This step is executed in O(n) time. In our example Salone is as follows:

Salone = {1, 5, 7, 9, 12 }

As these five items will not share a bin with any other item in set I , these items are
subtracted from set I to focus on the remaining items only. This is done in step 3 of
the procedure (Fig. 6). This subtraction step significantly reduces the execution time
of the rest of the steps. The reduced problem set for further calculation is shown in
Table 3.

Then in step 4, all possible sets ti corresponding to each item Ii in reduced problem
set are calculated in such a way that items in each set ti cannot share the same bin
with other items in the same set. This step constructs each set ti in multiple iterations.
Iterative steps to calculate set t2 are shown in Table 4. Clearly no two items in set
t2 = {2, 3, 4, 11} can be combined with each other in one bin. Similarly remaining
sets t3 = {3, 2, 4, 11}, t4 = {4, 2, 3, 11}, t6 = {6, 2, 8, 11}, t8 = {8, 2, 6, 11}, t10 =
{10, 3, 4}, t11 = {11, 2, 3, 4} can also be calculated. In the last step, largest of these
sets ti is declared as set St . In this example, St = {2, 3, 4, 11}. Rest of the items are
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Table 3 Reduced problem set
at an intermediate stage of lower
bound procedure

Ii Item size Si

I2 [324, 212, 525, 667] S2 = {3, 4, 6, 8, 11}

I3 [315, 232, 566, 358] S3 = {2, 4, 10, 11}

I4 [87, 67, 680, 258] S4 = {2, 3, 10, 11}

I6 [560, 482, 319, 568] S6 = {2, 8, 11}

I8 [562, 636, 43, 398] S8 = {2, 6, 11}

I10 [409, 294, 469, 197] S10 = {3, 4}

I11 [350, 311, 221, 775] S11 = {2, 3, 4, 6, 8}

Table 4 Iterative steps to calculate set t2

Iter. While t2 Stemp

– – t2 = {2} Stemp = S2 = {3, 4, 6, 8, 11}

1 True t2 = {2, 3} Stemp = Stemp ∩ S3 = {3, 4, 6, 8, 11} ∩ {2, 4, 10, 11} = {4,11}

2 True t2 = {2, 3, 4} Stemp = Stemp ∩ S4 = {4,11} ∩ {2, 3, 10, 11} = {11}

3 True t2 = {2, 3, 4, 11} Stemp = Stemp ∩ S11 = {11} ∩ {2, 3, 4, 6, 8} = {}

4 False – –

placed in set Sr , these items may or may not share a bin with the items in set St . In
this example, Sr = I\{Salone ∪ St } = {6, 8, 10}. At the end, the procedure returns
the sum of the cardinality of sets Salone and St . LB2 = |Salone| + |St | = 9. Note that
in this example LB2 > LBc, where

LBc = max (
4239/1000�, 
4552/1000�, 
6475/1000�, 
6507/1000�) = 7

The complexity of the lower bound LB2 procedure is O(n2). This LB is suited for
problem instances where several items have high values for one or more number of
dimensions. Evidently, the overall LB is equal to the maximum of the two.

LB = max{LBc,LB2} (12)

6 Performance evaluation

In this section, a performance evaluation of the proposed approachwith respect to solu-
tion quality and runtime is provided. First, the proposed approach is compared with
the Norm Based-FFD (FFDNB) and Dot Product-Based FFD (FFDDP) that are imple-
mented in Microsoft’s Virtual Machine Manager [25,26], and a well-known iterative
heuristic, SA [28]. Then the solution quality and performance of SimE heuristic are
discussed.
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6.1 Simulation setup

The programs for the proposed SimE algorithm, SA, FFDNB and FFDDP heuristics
were coded in MATLAB and run on an Intel Xeon E5405 with 2.00 GHz CPU (2
processors) and 4 GB RAM. The quality of the solution obtained by SimE improves
when the number of iterations is increased. The improvement is quite steep in the early
iterations. It becomes less steep in later iterations until it becomes almost insignificant.
The number of required iterations can be easily tuned after a few initial experimental
runs [28]. In this work, SimE algorithm was set to stop exploring the search space
if no improvement was observed in the last 75 iterations. And the maximum size
(maxSelection) of the selection set was restricted to 40% of the total items (reasons
are discussed in Sect. 3.3.1). Two goodnessmeasureswere proposed in Sect. 3.3.1. The
one in Eq. 6 exhibited better performance and hence was used in all experimentations.

6.1.1 Work load

Problem instances were generated with following different parameter values, using
the procedure discussed in Sect. 4, Fig. 5.

Bin capacity in each dimension: C = 1000
Problem size: n = 250, 500
Resource dimensions: R = 4
Correlation: Corr = Negative, Zero, Positive
Lower limit of item size: v1 = 0.001, 0.05, 0.15, 0.25, 0.35
Upper limit of item size: v2 = 0.1, 0.2, 0.3, . . . , 1.0

Due to the nondeterministic behavior, the average of results obtained from 20 inde-
pendent runs are reported.

6.2 Results and discussion

To evaluate the efficiency of the proposed SimE algorithm, its performance was com-
pared to that of FFDNB, FFDDP, and SA. The comparison metrics are the time to find
the solution and consolidation ratio (q/LB). A value q/LB closer to 1.0 represents a
higher efficiency. Table 5 lists the time (in seconds) to find the solution and average
value q/LB obtained by these algorithms for different correlation and lower and upper
limits of item size values.

From Table 5 the following can be noted:

• For all algorithms applied, consolidation ratio increases with a change of correla-
tion from positive to negative. However, a deviation from this trend is observed in
the test cases where the average value of the item size is high. The reason is, for
the negatively correlated instances of these test cases, most packing solutions have
only one or two items per bin, and hence obtaining the optimum solution becomes
trivial.

• Timing performance of both deterministic heuristics is better than SimE and SA
as expected. SimE takes far less time than the other non-deterministic heuristic,
SA.
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Fig. 7 Change in number of open bins with iterations in a SimE and b SA

• For all cases considered, the engineered SimE heuristic gives better consolidation
efficiencywhen compared toFFDDP,FFDNB, and SA.With regards to the reduction
in the number of bins, for example, from Table reftable:comp, corresponding to
test case (v1 = 0.05; v2 = 0.9; n = 500; Corr = Neg.), SimE gave a consolidation
ratio of 1.06, while the other algorithms gave a consolidation ratio higher than
1.23. These ratios translate into 285 and 331 bins respectively. In the context of
VM placement problem at cloud-based data centers, this difference of 46 bins
means 46 lesser physical machines and hence large savings in energy.

SimE performs better than the two deterministic algorithms FFDDP and FFDNB
because these heuristics are single pass and pack the items with the best effort in one
go. While the proposed SimE is a multi-pass heuristic that probabilistically picks a
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small number of items with a low goodness value after each pass and reallocates them
after sorting them in a certain order. The precise selection of a small number of items
and proper sorting plays a key role in improving the solution quality. Although SimE
and SA both are iterative nondeterministic heuristics, SimE is more intelligent, and
thus requires fewer iterations to converge towards a desirable solution [28]. Change
in the cost of SimE and SA with iteration is illustrated in Fig. 7. SimE quickly finds a
good solution through a few initial iterations. The plot of the average goodness of the
solution with iterations is shown in Fig. 8. This graph reflects the behavior of SimE.
The average goodness increases with iterations. As the algorithm progresses, more and
more items are approaching their respective near optimal assignments in the solution
is validated. It also shows that the algorithm possesses the hill-climbing phenomena.

7 Conclusion

MVBPP has several applications in different fields. The engineering of SimE search
heuristic to find better solutions for this combinatorial NP-hard optimization problem
is presented. The solutions in the SimE heuristic evolve based on the current goodness
value of the items packed in bins. Goodness measures that enable the SimE heuristic
to quickly find the near optimal solution was developed in this study. Its performance
was evaluated for a wide range of different problem instances that vary in item sizes,
and in the correlation between different dimensions. In terms of the consolidation
efficiency, optimization results obtained by SimE are better than those published in
the literature. We believe that the newly proposed heuristic should be the algorithm of
choice for many applications.
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