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Oil and gas processing facilities utilize various process automation systems with proprietary 

controllers. As the systems age; older technologies become obsolete resulting in frequent premature 

capital investments to sustain their operation. 

This paper presents a new design of automation controller to provide inherent mechanisms for 

upgrades and/or partial replacement of any obsolete components without obligation for a complete 

system replacement throughout the expected life cycle of the processing facilities. 

The input/output racks are physically and logically decoupled from the controller by converting 

them into distributed autonomous process interface systems. The proprietary input/output 

communication between the conventional controller CPU and the associated input/output racks is 

replaced with standard real-time data distribution service middleware for providing seamless cross-

vendor interoperable communication between the controller and the distributed autonomous process 

interface systems. The objective this change is to allow flexibility of supply for all controller’s 

subcomponents from multiple vendors to safe guard against premature automation obsolescence 

challenges.  

Detailed performance analysis was conducted to evaluate the viability of using the standard real-time 

data distribution service middleware technology in the design of automation controller to replace the 

proprietary input/output communication. The key simulation measurements to demonstrate its 

performance sustainability while growing in controller’s size based on the number of input/output 

signals, are communication latency, variation in packets delays, and communication throughput. The 

overall performance results confirm the viability of the new proposal as the basis for designing cost 

effective evergreen process automation solutions that would result in optimum total cost of 

ownership capital investment throughout the systems’ life span. The only limiting factor is the 

selected network infrastructure. 
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COTS : Commercial Off-The-Shelf 

CPU : Central Processing Unit 

DCS : Distributed Control System 
DDS : Data Distribution Service 

HMI : Human Machine Interface 

I/O : Input/Output 

OMG : The Object Management Group 
PC : Personal Computer 

PIB : Process Interface Building 

PLC : Programmable Logic Controller 
QoS : Quality of Service 
RBD          : Reliability Block Diagram 

1.   Introduction 

For the past forty years, the development of process automation systems including 

programmable logic controllers (PLC) has been evolving to raise productivity and 

enhance plant operation [28]. Although each system has its own unique history and 

characteristics, they all share a basic workload objective of acquiring process data and 

controlling disparate machines in the plant to work in a cohesive fashion for improved 

safety, higher production rates, more efficient use of materials, and better consistency of 

product quality. Their fundamental architecture has advanced from large centralized 

system with all control hardware and input/output (I/O) racks mounted in large cabinets 

located in the central control room (CCR) to highly distributed systems [12].  

Such systems typically have limited useful lives measured by the competitive advantage 

they deliver and the users have always struggled with determining their expected life 

spans. On top of this, large oil companies are making their revenue from their production, 

so shutting down the plant to replace the automation system due to premature 

obsolescence imposes a major challenge and definitely not a preferred solution.  

In 2012, Automation Research Corporation (ARC) Advisory Group performed a survey 

to determine the current state of the automation industry and best practices for managing 

the lifecycle of process automation systems from cradle to grave. There were 282 

respondents from various parts of the process control industry including end users, 

suppliers, OEM manufacturers, and system integrators. The survey estimated the 

magnitude of the installed base assets of obsolete automation technology to be in the 

range of 65 billion US dollars. Extending the life cycle of these systems through 

incremental upgrades or migration paths would reduce the impact of obsolescence 

challenges to a limited extent. However, continuing to invest in proprietary solution is not 

economically attractive since similar obsolescence challenges will occur again at the end 

of the overall system lifecycle. Hence, this survey concluded that the best practice for 

safe guarding against premature automation obsolescence is to avoid proprietary solution 

as much as possible by capitalizing on interoperable commercial-off-the-shelf (COTS), 

open source, and/or multi-supplier technologies [2].  

Responding to users’ demand for a standard solution, automation vendors gradually 

started to incorporate COTS components in their automation solutions. For example, 

Yokogawa, Honeywell, ABB, Emerson Process Management, Rockwell Automation, 

Invensys, Siemens, and others have incorporated some COTS components in their latest 

automation solutions to ensure cost comparative advantages. However, the majority of 

https://www.researchgate.net/publication/253099920_The_Control_Handbook?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
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the total automation solution including the controllers is based on proprietary hardware 

and software resulting in the requirement of major premature capital investments to 

sustain its operation throughout the life span of the controlled processing equipment. For 

example, the replacement of an obsolete controller would mandate the complete 

replacement of associated I/O racks regardless of their good condition and availability of 

spare parts as well as technical support. The cost of these robust and supported I/O racks 

is more than three times the cost of the associated obsolete controller. As a result, such a 

premature capital investment is very significant and increases exponentially with the 

number of obsolete controllers in the automation solution [7].  

The objective of this paper is to present a proposal for a new vendor independent and 

evergreen automation controller based on multi-supplier COTS components. The main 

concept of this proposal is to physically and logically decouple the controller from the 

I/O racks and capitalize on emerging real-time data distribution service (DDS) 

middleware technology for exchanging data between them in order to realize 

components’ interoperability.  

The remainder of this paper is organized as follows. A brief discussion on the 

background of the problem is given in Section 2. An overview of related work is 

discussed in Section 3. Section 4 establishes the motivation and formulates the business 

case of the new proposal.  The design evolution and the architecture of the proposed 

solution are described in Section 5. The research methodology and performance analysis 

is detailed in Section 6.  Finally, we conclude in Section 7.  

2.   Background 

In today’s competitive production environment, there is a very high demand on process 

industries to economically mass produce many customized products rather than a single 

product. This challenging requirement mandates the utilization of latest agile and flexible 

PLC technologies to increase productivity, reliability, and quality while minimizing cost.  

A PLC consists of components illustrated in Figure 1: central processing unit (CPU), 

memory, input modules, output modules, and power supply.  

Four basic steps, in the operation of all PLCs, are executed continually in a repeating 

loop as shown in Figure 2; input scan, program scan, output scan, and housekeeping. 

During the input scan, the PLC input modules detect the state of all process input 

measurement devices. During the program scan, the PLC CPU executes the user created 

program logic based on the input data. During the output scan, the PLC output modules 

energize or de-energize output devices based on the result of the executed program logic. 

During the housekeeping step, the PLC CPU performs internal diagnostics and 

communications with programming terminals and/or HMI consoles. The minimum PLC 

scan time resolution is 100ms. This scan time includes 20ms dedicated for scanning the 
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input modules, 50ms dedicated for solving the control logic, 15ms dedicated for updating 

the output modules, and 15ms dedicated for diagnostics and housekeeping [26].  

 
 

Figure 1 - PLC Hardware Block Diagram 

 

Figure 2 - PLC Operation 

Figure 3 shows a typical layout of PLC-based system architectures. Included in this 

figure is an illustration of hardwired connections from the field instruments to the 

operation human machine interface (HMI) consoles located at the CCR spanning through 

field junction boxes, marshaling cabinets, I/O systems cabinets, controller system 

cabinets, process interface building (PIB), and CCR rack room.  
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Figure 3 - Typical PLC-Based System Architecture 

The junction boxes are enclosures used for cables interconnection between field devices 

and marshaling cabinets in PIBs. The function of the marshaling cabinet is to interface 

the incoming multicore cables with the I/O module system cables and to perform the 

cross wiring function. Cross wiring is always necessary due to three reasons; (1) the 

requirement for routing the input and output signals to the designated PLC, (2) the mix of 

input and output field signals within the same incoming multicore cables and the 

requirement to split them into consecutive and dedicated terminals for the associated I/O 

modules terminals, and (3) the number of incoming field signals within multicore cables 

is often different from the number of channels per I/O module. The purpose of the system 

cabinet is to provide terminals to interface with the marshaling cabinets and to house the 

PLC power supply, I/O racks, controller CPU, communication modules, engineering 

work station, and the auxiliary power supply for powering the field instruments. 

The PIB is an explosive proof building used to house and protect the system and 

marshaling cabinets from deteriorating effects of the weather. It is unmanned and 

environmentally controlled building suitable to house delicate active electronics. Its 

location is carefully selected to withstand any unexpected field process explosion and is 

as close as possible to large number of junction boxes in order to minimize cabling.  

The CCR is a room serving as a central space where a large physical facility or physically 

dispersed service can be monitored and controlled. The CCR for vital facilities are 

typically tightly secured and manned continuously to ensure unceasing vigilance. It has 
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two major sections: rack room and control room. The function of the rack room is 

identical to the function of the PIB. The control room includes HMI, engineering, and 

maintenance consoles, as well as an auxiliary control panel for hardwired pull/push 

buttons for emergency and plant shutdown [10].  

Oil and gas processing facilities are highly susceptible to intrusion and cyber-attacks. The 

PLC design includes four compulsory security protection mechanisms to ensure enough 

protection against potential malicious attacks: (1) communication between the controller 

and associated I/O racks are physically isolated from any other communication networks, 

(2) PLC equipment is located in a physically secured PIB with key lock, (3) PLC 

equipment is physically enclosed in secured system cabinets in the PIB with key locks, 

and (4) PLC CPU module includes a physical key switch with three positions as shown in 

Figure 4 (Memory Protect ON, Data Change, and Memory protect OFF). 

3.   Related Work 

The lifecycle management of process automation systems has improved significantly 

utilizing distributed architectures; however, it is still an ever-increasing issue for 

sustaining the automation capital investment of hydrocarbon processors and other process 

manufacturers [20]. Recently, through vendors’ user steering committees, major 

automation consumers started to leverage their voting privileges to influence vendors’ 

research and development selection process to incorporate COTS components in the 

Figure 4 - Typical PLC CPU Security Protection Key Switch 
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automation solution everyplace feasible. The following section describes latest systems 

development for major automation vendors. 

3.1.   Utilization of COTS Components in Automation Systems 

Yokogawa has adopted state-of-the-art technologies to develop the latest distributed 

control system (DCS) system called CENTUM VP offering customers the convenience of 

using COTS hardware for the HMI workstations based on personal computers (PC) and 

Microsoft Windows operating system [17]. Honeywell, on the other hand, has patented 

distributed system architecture technology offering users with seamless operation data 

integration of multiple Honeywell Experion PKS distributed control systems utilizing 

virtual fault tolerant communication networks based on COTS Ethernet components [3]. 

ABB’s latest DCS solution has evolved using “Aspect Object” technology and client-

server architecture to streamline controller communications and leverage visualization 

technology at the HMI layer based on COTS server and workstation computer hardware 

[1]. Emerson Process Management has evolved the latest DCS system capitalizing on 

COTS technologies at the HMI layer and associated communication networks, and then 

added application functionality to allow the equipment to function like other parts of the 

automation system including plug-and-play capability, full lifecycle support without 

upgrades, and built in security [4]. Rockwell Automation is applying control and 

visualization solutions and COTS technologies to build multifaceted systems that ensure 

effective interaction of all processes, without degrading mission critical functions [22]. 

Foxboro Evo DCS system from Invensys has evolved to power the enterprise control 

system. It features a component object-based platform with common industrial service-

oriented architecture. So users get the opportunity to expand from process control to 

enterprise control with a single system based on COTS technologies [11].  

The use of COTS technologies was driven by DCS users and was then considered to be 

the best solution that provides tremendous increase in functionality and cost advantages 

to manufacturers of today’s automation systems. However, the programmable controllers 

are still proprietary. A primary enabler for designing programmable controllers based on 

COTS components is the emerging real-time reliable and fault tolerant data-centric 

middleware technology. This technology, detailed in the next section, provides seamless 

cross-vendor interoperability. 

3.2.   Real-Time DDS Data-Centric Middleware 

Middleware is a collection of technologies and services to enable the integration of 

subsystems and applications across an overall system. Several standardization efforts in 

many aspects of middleware technologies resulted in different classifications of the 

middleware solutions. A broad approach middleware classification based on the types of 

heterogeneity including platform, programming language and communication 

connectivity is described in [23]. Another paper classified the middleware based on its 

https://www.researchgate.net/publication/269034099_On_the_role_of_middleware_in_architecture-based_software_development?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
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capabilities in meeting non-functional requirements including capabilities to provide 

communication among heterogeneous components, to extend its functionalities using 

open interface, to sustain system performance with higher loads in future, to recover from 

hardware or software failures, to provide security policies and mechanisms, to guarantee 

quality of service (QoS) for real-time applications, and to cope with changes in the 

applications and/or users requirements [5].  

Many architectural models used in the development of middleware systems are found in 

literature. Most of the architectures have evolved from point-to-point, client-server, and 

publish-subscribe models.  

Point-to-point is the simplest tightly coupled form of communication. TCP is a point-to-

point network protocol designed in the 1970s. While it provides reliable, high bandwidth 

communication, TCP is cumbersome for systems with many communicating nodes [8].  

To address the scalability issues of the Point-to-Point model, developers turned to the 

client-server model for centralized information and distributed applications, and many 

other paradigms are built upon it. However, if information is being generated at multiple 

nodes, client-server model is inefficient and precludes deterministic communications, 

since the client does not know when new information is available [27].  

A solution to the above limitation on client-server models for real-time systems where 

information is being generated at multiple nodes is to adopt publish-subscribe 

communication model.  In this model, computer applications subscribe to data they need 

and publish data they want to share. Messages pass directly between the publisher and the 

subscribers, rather than moving into and out of a centralized server. Most time-sensitive 

information intended to reach many people is sent by publish-subscribe systems. 

Examples of publish-subscribe systems in everyday life include television, magazines, 

and newspapers. This direct and simultaneous communication among a variety of nodes 

makes publish-subscribe network architecture the best choice for systems with complex 

time-critical data flows, even in the presence of unreliable delivery mechanisms [18].  

3.2.1.   Latest Development in Publish-Subscribe Middleware 

One of the most important efforts to standardize publish-subscribe middleware is the 

development of DDS specification by Object Management Group, Inc. (OMG). Data-

centric publish-subscribe standard is the portion of the OMG DDS specification that 

addresses the specific needs of real-time data-critical applications and describes the 

fundamental concept supported by the design of the application programming interface. It 

focuses on the distribution of data between communicating applications, and provides 

several mechanisms that allow application developers to control how communication 

works and how the middleware handles resource limitations and error conditions. The 

communication is based on passing data of known types in named streams from 

publishers to subscribers. In contrast, in object-centric communications the fundamental 

concept is the interface between the applications. [14,15,25].  

https://www.researchgate.net/publication/4139033_Coordinated_Media_Streaming_and_Transcoding_in_Peer-to-Peer_Systems?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
https://www.researchgate.net/publication/4070720_OMG_Data-Distribution_Service_architectural_overview?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
https://www.researchgate.net/publication/220346388_Research_on_Real-time_PublishSubscribe_System_supported_by_Data-Integration?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
https://www.researchgate.net/publication/293010982_Novel_Design_of_Collaborative_Automation_Platform_Using_Real-Time_Data_Distribution_Service_Middleware_for_An_Optimum_Process_Control_Environment?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
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An object-centric system consists of interface servers and interface clients, and 

communications are based on clients invoking methods on named interfaces that are 

serviced by the corresponding server. Data-centric and object-centric communications are 

complementary paradigms in a distributed system. Applications may require both. 

However, real-time communication often fits a data-centric model more naturally. For 

example, real-time automation control systems often requires specific features including 

efficiency, determinism, flexibility delivery bandwidth, and fault-tolerant operation 

[13,19].  

Efficiency: Real-time systems require efficient data collection and delivery. Only 

minimal delays should be introduced into the critical data-transfer path. Publish-

subscribe model is more efficient than client-server model in both latency and 

bandwidth for periodic data exchange. Publish-subscribe architecture greatly reduces 

the overhead required to send data over the network compared to client-server 

architecture. Occasional subscription requests, at low bandwidth, replace numerous 

high-bandwidth client requests. Latency is also reduced, since the outgoing request 

message time is eliminated. As soon as a new publication data sample becomes 

available, it is sent to the corresponding subscriptions [6].  

Determinism: Real-time automation applications also care about the determinism of 

delivering periodic data as well as the latency of delivering event data. Once buffers are 

introduced into a data stream to support reliable connections, new data may be held 

undelivered for an unpredictable amount of time while waiting for confirmation that old 

data was received. Since publish-subscribe does not inherently require reliable 

connections, implementations can provide configurable trade-offs between the 

deterministic delivery of new data and the reliable delivery of all data [9].  

Flexibility Delivery Bandwidth: Typical real-time control systems include both real-time 

and non-real-time nodes. The bandwidth requirements for these nodes are different. For 

example, an application may be sending data samples faster than a non-real-time 

application is capable of handling. However, a real-time application may want the same 

data as fast as it is produced. Data-centric publish-subscribe allows subscribers to the 

same data to set individual limits on how fast data should be delivered to each subscriber. 

This is similar to how some people get a newspaper every day while others can subscribe 

to only the Friday paper [16].  

Fault-Tolerant Operation: Real-time automation applications are required to run in the 

presence of component failures. Often, those systems are safety critical, or carry financial 

penalties for loss of service. The applications running in those systems are usually 

designed to be fault-tolerant using redundant hardware and software. Backup applications 

are often “hot” and interconnected to primary systems so that they can take over as soon 

as a failure is detected. Publish-subscribe model is capable of supporting many-to-many 

connectivity with redundant publishers and subscribers. This feature is ideal for 

https://www.researchgate.net/publication/234127763_Distributed_real-time_embedded_systems_Recent_advances_future_trends_and_their_impact_on_manufactu?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
https://www.researchgate.net/publication/243775841_Real-Time_Computing_Systems-Predictable_Scheduling_Algorithms_and_Applications?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
https://www.researchgate.net/publication/266214865_Data-Centric_Programming_Best_Practices_Using_DDS_to_Integrate_Real-World_Systems?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
https://www.researchgate.net/publication/220414147_Real-Time_Databases_and_Data_Services?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
https://www.researchgate.net/publication/275470416_Time-_and_Event-Driven_Communication_Process_for_Networked_Control_Systems_A_Survey?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
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constructing fault-tolerant or high availability applications with redundant nodes and 

robust fault detection and handling services [21].  

Real-Time DDS Interoperability: With the increasing adoption of DDS in large 

distributed systems, it was desirable to define a standard wire protocol that allows DDS 

implementations from multiple vendors to interoperate. Hence, OMG developed the real-

time DDS interoperability wire protocol specification to ensure that information 

published on a topic using one vendor's DDS implementation is consumable by one or 

more subscribers using different vendor's DDS implementations. The DDS wire protocol 

is capable of taking advantage of the quality of service settings configurable by DDS to 

optimize its use of the underlying transport capabilities. In particular, it is capable of 

exploiting the multicast, best-effort, and connectionless nature of many of the DDS 

quality of service settings [24].  

4.   Motivation 

The conventional controllers are based on a monolithic architecture in which functionally 

distinguishable aspects such as the I/O racks, the main control module, and the control 

application, are not architecturally separate standard components but are all proprietary 

and interwoven. This is similar to the mainframe computer architecture of the past. This 

architecture does not allow for changing the design of certain aspects of the controller 

easily without having to overhaul the entire control application or to buy another 

controller altogether. At the same time, there are no compatible alternatives from other 

vendors to replace obsolete proprietary components. For example, this happens when the 

controller becomes obsolete while the associated I/O racks are still current and can be 

supported for the next 20 years. A premature capital intensive investment, about 75% of 

the total cost of ownership, is required for the replacement of the I/O racks in order to 

replace the obsolete controller. Hence, retaining the current I/O racks, when replacing the 

associated obsolete controller due to either the shortage of third party critical and 

proprietary subcomponents or the adoption of a new marketing strategy by the vendor to 

surpass its competitors and/or to increase its market share, is economically very 

attractive. However, the user will not be able to capture this opportunity due to the 

monolithic proprietary controller architecture where a complete replacement becomes 

compulsory.  

To address the escalating capital investment challenges facing the oil and gas industries, 

and others, in relation to process automation obsolescence and life cycle management, 

two features must be accomplished; moving away from the monolithic controller 

architecture and utilizing multi-supplier COTS components.  

5.   Proposed Solution 

In this section, we discuss the evolution of the proposed changes in design of the 

conventional automation controller.  

https://www.researchgate.net/publication/285391852_Analysis_and_Synthesis_of_Fault-Tolerant_Control_Systems?el=1_x_8&enrichId=rgreq-4d90312eba5b7c83979e4920919446a1-XXX&enrichSource=Y292ZXJQYWdlOzMwMTczOTQ3NDtBUzozNTY4NjU2NDYwNTU0MjRAMTQ2MjA5NDgwODk3NA==
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A modular system can be characterized by functional partitioning into discrete scalable 

and reusable modules, rigorous use of well-defined modular interfaces, and making use 

of industry standards for interfaces. Besides reduction in cost due to lesser customization, 

and less learning time, and flexibility in design, modularity offers other benefits such as 

exclusion of obsolete modules and augmentation by merely plugging in different current 

modules. In the computer hardware industry, this idea allowed building computers with 

easily replaceable parts that use standardized interfaces and allowed upgrading or 

replacing obsolete aspects of the computer easily without having to buy another computer 

altogether.  

Similarly, we propose to solve the current monolithic controllers’ architecture problem by 

physically and logically decoupling the I/O racks from the main control module and 

converting them into distributed autonomous process interface systems. For this concept 

to work properly, real-time reliable and fault tolerant publish-subscribe data-centric 

middleware is required for providing seamless cross-vendor interoperable communication 

between the controller and the distributed autonomous process interface systems as 

shown in Figure 5.  

 

Figure 5 - Heterogeneous Controller Hardware Block Diagram 
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The OMG DDS is the first open international middleware standards suitable for 

addressing publish-subscribe communications for real-time data-critical applications and 

embedded systems. The above modularity concept results in the development of an 

evergreen automation solution based on a modular architecture and vendor independent 

components that can last for the expected life span of the controlled processing facilities. 

The life cycle of this automation solution can be managed and sustained using a 

replacement on failure strategy based on multi-supplier COTS components without the 

need to buy another automation controller altogether. 

The proposed heterogeneous automation controller includes six compulsory security 

protection mechanisms: (1) Communication between the controller and associated 

process interface systems are physically isolated from any other communication 

networks, (2) Controller equipment is located in a physically secured process interface 

building with key lock, (3) Controller equipment is physically enclosed in secured system 

cabinets in the secured process interface building with key locks, (4) Controller CPU 

module has a physical key switch with three positions as (Memory Protect ON, Data 

Change, and Memory Protect Off), (5) Each process interface system has a physical key 

switch with three positions as (Memory Protect ON, Data Change, and Memory Protect 

Off), (6) Communication between the controller and associated process interface systems 

are secured based on an exclusive publish/subscribe relationship for each data point. 

5.1.   Comparison between the Conventional and New Control Systems 

The following is a detailed example to illustrate the difference between the conventional 

and the proposed heterogeneous controller architectures. 

Figure 6 - An Example of One Controller with Two Input/Output Racks 
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The Left side of Figure 6 shows a typical conventional PLC system architecture based on 

a proprietary or Ethernet-based local area control network, located in the CCR to connect 

two HMI consoles and one controller through one control segment extended to the PIB, 

located close to the processing facilities.  The proprietary controller is connected to its 

associated I/O racks using a proprietary daisy-chained remote I/O communication links.  

The equivalent controller architecture based on the proposed concept is shown in the 

right side of Figure 6. The new controller architecture consists of three main components 

empowered by real-time reliable and fault- tolerant DDS middleware; controller, standard 

Ethernet communication equipment, and distributed autonomous process interface I/O 

systems. The process interface systems are autonomous because they are self-contained 

and could run without the need for a controller specifically for process monitoring. 

The difference between the Master/Slave communication and the DDS Publish/Subscribe 

communication is very significant. For the Master/Slave communication, the Master is 

the Controller and the Slaves are the I/O Racks. Every 80ms during the input scan, the 

controller pulls the latest input status from the I/O racks sequentially. Every 85ms during 

the output scan, the controller pushes the final output states to the I/O racks sequentially. 

For the DDS Publish/Subscribe communication, the controller as well as the process 

input systems are all Masters. The Master publishes the data when there is any changes in 

the states in real-time and the DDS Middleware immediately distributes the changes in 

data to the subscribers. As a result, the controller will have the latest up to date input data 

from the controller DDS communication module during the beginning of every operation 

scan. Also, the controller will update the controller DDS communication module with 

any changes in the output states immediately after the completion of the program scan. 

After that, the controller DDS communication module publishes all changes to the 

subscribers through the DDS middleware. Hence, there are two operation cycles running 

in parallel as shown in Figure 7, one for the controller and another one for each process 

interface system. Therefore, the typical 100ms controller operation scan is divided into 

1ms for updating the input image table, 83ms dedicated for solving the control logic, 1ms 

for updating the output image table, and 15ms dedicated for the diagnostics and 

housekeeping.  

Figure 7 - Heterogeneous Automation Controller Operation 
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As a result, the processing time for the logic is increased to provide enough processing 

time for 66% additional control logic for the application without affecting the overall 

100ms scan resolution. If the program size is kept the same, the diagnostic and 

housekeeping resolution for the controller is reduced from 85ms to 51ms, equivalent to 

40% reduction in waiting time for executing the diagnostics script. Also, the diagnostics 

for the process interface systems are done in parallel and identified in real-time similar to 

the process data within 1ms. Therefore, the improvement in diagnosing the I/O racks is 

reduced from 85ms to 1ms, equivalent to 98% reduction in waiting time for executing the 

diagnostics script. The overall conclusion that the proposed controller is far faster in 

identifying faults within the system than the current PLC. 

The PLC includes a simplex proprietary master/slave communication protocol for 

communicating with the daisy-chained I/O racks. This proprietary protocol does not 

support redundancy. Therefore, any faults in the RIO communication hardware will 

jeopardize the whole controller. However, the communication among the heterogeneous 

automation controller and associated process interface systems is a standard Ethernet 

based DDS communication infrastructure that can be either simplex, parallel, or fault-

tolerant communication as shown in Figure 8. The simplex architecture can be single 

Ethernet Switch or a multi-drop Ethernet Bus which is equivalent to the proprietary 

daisy-chained communication network structure within a PLC. However, the parallel 

structure is a single-fault tolerant architecture with two disjoint paths from the controller 

to any of the process interface systems.  

Figure 8 - Parallel and Fault-Tolerant DDS-Enabled Ethernet Networks 
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The communication among the controller and the associated process interface systems is 

either using the green leg including the Ethernet Switch and associated link segments or 

the red leg tolerating any single communication failures. One leg is considered the 

primary communication network and the other leg is the backup communication network. 

The fault-tolerant structure is a multi-fault tolerant architecture with two disjoint paths as 

well as two redundant paths from the controller to any of the associated process interface 

systems as shown in Figure 8. The fault-tolerant communication network allows the 

continuous operation of the Ethernet Switch while there is a failure in any associated link 

segments. 

5.2.   Network Reliability Analysis  

The terminal reliability of communication network is the probability of having at least 

one available path between any sources to any destinations. The terminal reliability is 

calculated using the combinatorial series and parallel models assuming that the failure 

probabilities of different components of the system are independent. For the parallel 

Ethernet network, it is assumed that no communication packets can be routed through a 

faulty Ethernet switch, and all links connected to a faulty switch are useless. This will 

result in disjoint communication paths from a source to a destination. For the fault-

tolerant Ethernet network, it is assumed that no communication frames can be routed 

through a faulty Ethernet link, and all other communication links associated with the 

same Ethernet switch are useful. Under the above conditions, the following formulas 

describing the terminal reliability of the systems are developed. Sometimes a “success” 

diagram is used to describe the operational models of a system network from a source to 

a destination.  

Figure 9(a) shows the success diagram for the fault-tolerant Ethernet I/O network. If the 

success diagram becomes too complex to evaluate exactly, upper-limit approximation on 

the network terminal reliability can be used. An upper bound on terminal reliability is 

R ≤ (1 - ∏ (1 − 𝑅𝑝𝑎𝑡ℎ−𝑖)
𝑖=𝑅𝑃
𝑖=1 ) where RP is the number of redundant paths available from 

a source to a destination and 𝑅𝑝𝑎𝑡ℎ−𝑖 is the serial reliability of path-i. The upper bound on 

terminal reliability calculated as if all paths were in parallel. This calculation is an upper 

bound because the paths are not independent. That is the failure of a single networking 

element affects more than one path. Therefore, this approximation gets closer to the 

actual terminal reliability when terminal reliability of a path is small. Placing the paths in 

parallel yields a reliability block diagram (RBD). 

Figure 9(b) shows the RBD for the success diagram of the fault-tolerant Ethernet I/O 

network shown in Figure 9(a). Using the combinatorial series and parallel models, the 

upper bound on terminal reliability of the fault-tolerant Ethernet I/O network is calculated 

as follows R ≤ (1 - ∏ (1 − 𝑅𝑝𝑎𝑡ℎ−𝑖)
𝑖=4
𝑖=1 )  where 𝑅𝑝𝑎𝑡ℎ−1,𝑝𝑎𝑡ℎ−4 =  𝑅𝑙𝑖𝑛𝑘

4 𝑅𝑆𝑤𝑖𝑡𝑐ℎ
3  and 

𝑅𝑝𝑎𝑡ℎ−2,𝑝𝑎𝑡ℎ−3 =  𝑅𝑙𝑖𝑛𝑘
5 𝑅𝑆𝑤𝑖𝑡𝑐ℎ

4  assuming that the reliability of all communication links 
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are equal and represented by 𝑅𝑙𝑖𝑛𝑘 and the reliability of all Ethernet switches are equal 

and represented by 𝑅𝑆𝑤𝑖𝑡𝑐ℎ. Therefore, the upper bound on terminal reliability of the 

fault-tolerant Ethernet I/O network = 𝑅𝑙𝑒𝑣𝑒𝑙−1  ≤ 1 −  (1 −  𝑅𝑙𝑖𝑛𝑘
4 𝑅𝑆𝑤𝑖𝑡𝑐ℎ

3 )2(1 −

 𝑅𝑙𝑖𝑛𝑘
5 𝑅𝑆𝑤𝑖𝑡𝑐ℎ

4 )2.  

 

Figure 9 - (a) Success Diagram, (b) Reliability Block Diagram 

Figure 10 shows the communication network terminal reliability comparison between the 

PLC and the heterogeneous automation controller with parallel and fault-tolerant 

networks. 

 

Figure 10 - Network Terminal Reliability of Parallel and Fault-Tolerant Networks 
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5.3.   Life Cycle Cost Analysis 

The life cycle cost of a control system includes the initial capital cost and the annual 

capital cost to sustain the system operation throughout the life span of the processing 

facility. The initial capital cost includes the design phase, detailed engineering phase, 

implementation phase, installation phase, and commissioning and startup phase. The 

annual capital cost includes the cost for spare parts, technical support, training, and the 

implementation of any required hardware and/or software revisions. 

The following are the economic model assumptions: 

 The life span of the processing facility is 45 years. 

 The life span of the proprietary PLC control system is 15 years. 

 For the proprietary PLC solution, a total control systems replacement is 

required every 15 years. Therefore, 2 complete control systems replacements 

are required within the life span of the processing facility, during the 15th 

year and during the 30th year. 

 The cost escalation factor is 1% every year. 

 The total initial capital cost of a control system with 25,000 input/output 

signals is 25 million US dollars, average of US$ 1000 per I/O signal. 

 The annual cost of the contract to manage and maintain the control system 

for sustaining the processing operation is 0.5% of the initial cost of the 

control systems, subject to the annual escalation cost factor. Therefore, the 

contract cost for the first year is US$ 125,000 and for the second year is US$ 

126,250 due to the incremental cost escalation. 

The total cost of the control systems over the life span of the processing facility based on 

the proprietary PLC is US$ 94,159,587 and based on the proposed heterogeneous 

automation controller is US$ 32,060,134. Using the new standard solution to avoid 

obsolescence challenges results in an approximately 66% cost saving throughout the life 

span of the processing facility. 

6.   Performance Analysis 

The proposed automation controller has been evaluated empirically using software based 

simulation model to demonstrate its performance sustainability while growing in size 

based on the number of I/O signals. 
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6.1.   Performance Test Setup 

The model set up, shown in Figure 11, includes one 2.1GHz Lenovo i7-4600U Thinkpad, 

three 2GHz Lenovo i7-3667 Thinkpads, and one 16-port 10/100 Mbps fast Ethernet 

switch. Real-time Connext DDS professional middleware version 5.1.0.14-

i86Win32VS2013 from Real-Time Innovations, Inc. is installed in all Lenovo Thinkpad 

laptops. The four laptops are connected to one 16-port 10/100 Mbps fast Ethernet switch.  

Figure 11 – COTS-Based Automation Controller 

6.2.   DDS Quality of Service Polices for Automation Control 

DDS QoS policies for real-time systems can be used to control and optimize network as 

well as computing resource to ensure that the right information is delivered to the right 

subscriber at the right time. The default values are used with the following exceptions to 

meet the requirement of the automation controller design. 

Reliability: The reliability QoS policy indicates the level of guarantee offered by the 

DDS in delivering data to subscribers. Possible variants are reliable and best effort. With 

the selection of reliable parameter in steady-state, the middleware guarantees that all 

samples in the publisher history will eventually be delivered to all the subscribers. 

However, the best effort parameter indicates that it is acceptable to not retry propagation 

of any samples. The reliable option is selected in this experiment. 

Durability: The durability QoS policy controls the data availability with respect to late 

joining publishers and subscribers; specifically the DDS provides the following variants: 

volatile, transient local, transient, and persistent. With volatile option, there is no need to 
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keep data instances for late joining subscriber. With transient local option, the data 

instance availability for late joining subscriber is tied to the publisher availability. With 

transient option, the data instance availability outlives the publisher. With the persistent 

option, the data instance availability outlives the system restarts. The durability service 

QoS policy is used to configure the history QoS policy and the resource limits QoS 

policy used by the fictitious subscriber and publisher used by the persistence service, 

responsible for implementing the durability QoS policy options of transient and 

persistence. The persistent option is selected in this experiment. 

History: The history QoS policy controls whether the DDS should deliver only the most 

recent value, attempt to deliver all intermediate values, or do something in between. The 

policy can be configured to provide the following semantics for how many data samples 

it should keep: keep last and keep all. With keep last option, the DDS will only attempt to 

keep the most recent depth samples of each instance of data identified by its key. 

However, with the keep all option, the DDS will attempt to keep all the samples of each 

instance of data identified by its key. The keep all option is selected in this experiment. 

Ownership: The ownership QoS policy specifies whether it is allowed for multiple 

publishers to write the same instance of the data and if so, how these modifications 

should be arbitrated. Possible options are: shared and exclusive. With shared option, 

multiple publishers are allowed to update the same instance and all the updates are made 

available to the subscriber. However, the exclusive option indicates that each instance can 

only be owned by one publisher, but the owner of an instance can change dynamically 

due to liveliness changes and the selection of the owner is controlled by setting of the 

ownership strength QoS policy. The ownership strength QoS policy specifies the value of 

the strength used to arbitrate among publishers that attempt to modify the same data 

instance. The policy applies only if the ownership QoS policy is set to exclusive. The 

exclusive option is selected in this experiment. 

6.3.   Performance Test Criteria 

The focus of this empirical test is to validate the viability of using real-time DDS 

middleware to exchange required interaction traffic between the controllers and the 

autonomous process interface systems for safe and reliable operation of the processing 

facilities. The measuring performance criteria are the average latency, transmission delay 

variation, and throughput. The communication test between a publisher and a subscriber 

is as follows. The I/O system is the publishing side and the controller is the subscribing 

side.  The publishing side writes data, a total of 30 million data samples, to the 

middleware as fast as it can. Every time, after writing 1000 data samples to the 

middleware, it sends a special sample requesting an echo from the subscribing side. On 

one hand, the publishing application publishes throughput data and at the same time it 

also subscribes to the latency echoes. On the other hand, the subscribing applications 

subscribe to the throughput data, in which the echo requests are embedded; they also 
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publish the latency echoes. The publisher uses the request for an echo exchange to 

measure the round-trip latency. The time stamp is logged by the publisher from the start 

of sending the data sample request until it receives the echo of the data sample back from 

the subscriber. The communication latency between a publisher and a subscriber is one 

half of the round-trip latency. The average communication latency between a publisher 

and a subscriber is the average of the 30 thousand times of latency measurement during 

one test. The reason for measuring the round-trip latency rather than one-way latency is 

to overcome the challenge of ensuring accurate clock time synchronization between the 

publisher and the subscriber. Each test scenario is repeated eight times with different data 

packet size of 100, 200 400, 800, 1600, 3200, 6400 and 12800 bytes. The change in data 

size represents the change in the number of I/O signals. The subscriber measures the 

throughput by counting the number of received data packets per second and the 

throughput rate of Megabits per second. Figure 11 depicts the complete automation 

controller architecture utilized in the performance testing. All four machines are 

configured with RTI real-time Connext DDS middleware. The normal minimum PLC 

scan time resolution is 100ms and a total of 35ms is dedicated for I/O communication 

services. Therefore, the average communication latency between the controller and the 

I/O system through the real-time publish/subscribe DDS middleware shall be within 

35ms. The baseline performance test is to measure the latency and throughput of one 

controller and one I/O system within each laptop. 

6.3.1.   Communication Latency Analysis 

The measured average latency for the three identical laptops as well as the fourth laptop 

is shown in Figure 12. The performance result of the average communication latency 

between the controller and the I/O system in all laptops is within 1ms, very well below 

the required scan time resolution while varying the controller size from 100 bytes 

equivalent to a PLC with 400 digital I/O and 50 analog I/O, to a controller size of 12,800 

bytes equivalent to a PLC with 80,000 digital I/O and 2,800 analog I/O. The data shows 

that communication latency remains consistently low as message size increases. This is 

an excellent result showing that the real-time publish/subscribe DDS middleware was 

able to cope with the huge increase in data loading without any significant impact on the 

controller performance. 

Figure 12 - Average Latency of Controller and I/O system within each PC 
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6.3.2.   Communication Latency with Jitter Analysis 

Figure 13 shows the latency with jitter analysis for the first laptop. Jitter is the variation 

in latency as measured in the variability over time of the packet latency across the 

communication medium. With constant latency, there is no variation or jitter. A system is 

more deterministic if it exhibits low jitter. The blue series show the minimum measured 

latency and green series show the 99th percentile latency. Latency at 99th percentile 

means that only 1% of the data samples exhibited latency larger than this value. Even at 

large packet sizes, the variation between the minimum and 99% latency remains 

consistently low. This shows that the real-time publish/subscribe DDS middleware 

between the controller and the I/O system exhibits very low jitter and very high 

determinism, making it suitable for real-time and mission-critical applications.  

 

Figure 13 – Average Latency of 1 Controller and 1 I/O system within PC1 

6.3.3.   Communication Throughput Analysis 

For the throughput analysis, the publisher sends data to one subscriber application. The 

performance test goes through the following phases: 

1. The publisher signals the subscriber application that it will commence, and then 

starts its own clock. The duration of the test is based on the number of data samples 

to be written to the middleware; in this case it is 30 million packets. 

2. The subscriber starts measuring the number of data samples received. 

3. After the desired duration is over, the publisher signals the subscriber that the 

experiment is over. The subscriber will then divide the number of samples received 

by the elapsed time to report the throughput observed at the receiver.  

Maximum throughput is achieved when the publisher sends as fast as the subscriber can 

handle messages without dropping a packet. That is, the maximum throughput is obtained 

somewhere between the publisher sending too slowly, not maximizing the available pipe, 

and the publisher swamping the subscriber, overflowing the pipe. For this reason, the test 

makes the publisher try a range of sending rates. For the absolute maximum throughput 
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to be observed, the optimal sending rate must be in the range. The measured average 

throughput bandwidth between one controller and one I/O system for the three identical 

laptops as well as the fourth laptop measured in packets per second and Megabits per 

second is shown in Figure 14.  

The graph shows sustainable publish/subscribe throughput bandwidth between one 

controller and one I/O system within each laptop in terms of packets per second and 

Megabits per second. Obviously, the slight decrease in the throughput in terms of number 

of packets per second is due to the increase in transmission time of each packet. 

However, the throughput bandwidth in terms of Megabits per second increases 

significantly with the increase in the size of the packet. This indicates that the real-time 

DDS middleware was able to cope with the huge increase in data loading and fully 

utilized available data bus communication bandwidth between the controller and the I/O 

system. In other words, it does not impose any inherent limit on the aggregate data 

messaging capacity, making it suitable for scalable automation platforms. 

 

 

Figure 14 – Average Throughput of Controller and I/O system within each Laptop 

6.3.4.   Impact Analysis of using Ethernet Switch between the Controller and I/O 

System Machines 

The set up for the next performance test configuration is to host the controller application 

in one laptop and to host the I/O system in another identical laptop. The communication 

between the controller and the I/O system is implemented through a 16-port 10/100 Mbps 
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3Com fast Ethernet switch using real-time publish/subscribe DDS middleware. The 

measured average latency and throughput in terms of packets per second and Megabits 

per second for the two identical laptops are shown in Figure 15.  

 

Figure 15 - Average Latency and Throughput Performance Cross 100Mbps Fast Ethernet Switch 

The communication latency is consistently about 2ms with packet size up to 800 bytes. 

The communication latency starts to increase significantly when the packet size increases 

beyond 800 bytes and would reach to 26ms with packet size of 12,800 bytes. The reason 

for this increase in communication latency is obvious from the throughput graph where 

the middleware starts consuming the maximum bandwidth of the Ethernet 

communication switch of 100 Mbps with packet size of 1,600 bytes. Since the quality of 

service is set to reliable communication, the middleware starts blocking the packets and 

throttle the communication with maximum bandwidth available close to 100Mbps. This 

clearly demonstrates that the throughput is limited by the network capability and not by 

the CPU or real-time DDS middleware.  Although the communication latency is very 
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high with packet size of 12,800 bytes compared to that with packet size of 800 bytes, it is 

still within the required scan time resolution of 35ms.  

6.3.5.   Impact Analysis of using Different Controller and I/O System Machines 

The next performance test is to demonstrate the impact of having two unequal laptops 

with different CPU speed. The same configuration is used in the previous test. In the first 

test, the controller application is hosted in the faster machine. However, in the second 

test, the controller application is hosted in the slower machine. For the first test, the 

measured average latency and throughput in terms of packets per second and Megabits 

per second for the first test are shown in Figure 16.   

 

 

 

Figure 16 – Average Latency and Throughput Performance with Fast Controller 
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For the second test, the measured average communication latency and throughput in 

terms of packets per second and Megabits per second for the first test are shown in Figure 

17. The performance is improved when the I/O system is hosted in a faster machine.  

 

 

 

Figure 17 – Average Latency and Throughput Performance with Slow Controller 

However, the performance has improved further when the fast machine is used to host the 

controller application rather than the I/O system. Because the real-time DDS middleware 

uses true peer-to-peer messaging with no centralized or message broker, server, or 

daemon processes, it does not impose any inherent limit on the aggregate messaging 

capacity. It is limited only by the network infrastructure. In all cases, for large systems 
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with packet size beyond 1,600 bytes, it is more efficient to use higher network bandwidth 

capacity such as the 1 Gbps Ethernet switch. 

7.   Conclusion 

In today’s competitive production environment, there is a very high demand on 

addressing the obsolescence challenges of process automation systems utilized in oil and 

gas process industries. Extending the life cycle of these systems through incremental 

upgrades, migration paths, or partial components replacement would lessen the impact of 

obsolescence challenges to a limited extent and cannot resolve them. The essential 

strategy enabler in today’s world for safe guarding against premature obsolescence 

challenges is the utilization of COTS, open source, and/or multi-supplier technologies in 

order to move from proprietary to standards-based automation solution. To achieve this 

strategy, this paper presents a new design of the automation controllers to allow upgrades 

or replacements of any obsolete components without the need to buy another automation 

controller altogether. The main concept of this approach is the physical and logical 

decoupling of the I/O systems from the current proprietary monolithic controllers. 

However, this change requires real-time reliable and fault tolerant data-centric 

middleware that provides seamless cross-vendor interoperability. Detailed performance 

analysis was conducted to evaluate the viability of utilizing the real-time 

publish/subscribe DDS middleware as a core communication link between the controller 

and the I/O systems.  

The performance result of the average communication latency between the controller and 

the I/O system in all tests is very well below the required scan time resolution while 

varying the controller size from 100 bytes equivalent to a PLC with 400 digital I/O and 

50 analog I/O, to a controller size of 12,800 bytes equivalent to a PLC with 80,000 digital 

I/O and 2,800 analog I/O. Because the real-time publish/subscribe DDS middleware uses 

true peer-to-peer messaging with no centralized or message broker, server or daemon 

processes, the performance tests showed that it does not impose any inherent limit on the 

aggregate messaging capacity. The main limiting factor is the selected network 

infrastructure.  

The following are the advantages of the multi-supplier COTS-based heterogeneous 

automation controller: 

 It is a cost effective evergreen solution because it is based on field proven 

interoperable and standard multi-supplier COTS software and hardware components 

resulting in optimum capital investment for the total cost of ownership throughout 

the life span of the processing facility form hurdle to grave. 

 It is a high-performance controller because of the decoupling of the I/O systems from 

the controller. The I/O scan update is processed during the control application scan 

cycle. 
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 It is based on a distributed architecture where I/O modules, CPU and control 

application are not interwoven. Changing process I/O signals does not have any 

impact on the control application. 
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