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Cuckoo search optimization (CSO) algorithm, a recently proposed metaheuristic, has shown

promising results in various problem domains. Results from recent studies show that engi-
neering and tuning discrete cuckoo search optimization' parameters is a daunting task. In this

paper, an attempt to enhance the performance of the CSO algorithm in solving discrete com-

binatorial optimization problems is presented. Performance of the discrete modi¯ed CSO al-

gorithm is compared with genetic algorithm (GA), particle swarm optimization (PSO), hybrid
of GA/PSO, and simulated annealing. In addition, a memetic algorithm (MA) that combines

discrete modi¯ed CSO and tabu search is proposed. Results show that the proposed improve-

ments help in enhancing the performance of the original algorithm. As a test case, the NP-hard

problem of bu®er minimization in CMOL (CMOS+nanowire+MOLecules) circuits is
addressed. The performance of the proposed implementation of CSO algorithm is compared

with other heuristics.

Keywords: Discrete cuckoo search optimization; CMOL placement problem; combinatorial

optimization; nature-inspired algorithm; metaheuristic; memetic algorithm.

*This paper was recommended by Regional Editor Emre Salman.
‡Corresponding author.
§Abdalrahman M. Arafeh was with King Fahd University of Petroleum & Minerals when this work was
done.

Journal of Circuits, Systems, and Computers
Vol. 25, No. 4 (2016) 1650023 (18 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218126616500237

1650023-1

November 4, 2015 3:44:34pm WSPC/123-JCSC 1650023 ISSN: 0218-1266
2nd Reading

http://dx.doi.org/10.1142/S0218126616500237


1. Introduction

Cuckoo search optimization (CSO) algorithm is a recently proposed nature-inspired

metaheuristic. Originally, the CSO algorithm was designed and tested to solve

continuous optimization problems. For the continuous optimization case, the opti-

mal solutions obtained by the CSO are far better than the best solutions obtained by

e±cient particle swarm optimization (PSO) and genetic algorithm (GA).1 The

cuckoo search optimization has shown promising results in various problem domains

which include engineering optimization,2 software implementation,3 structural op-

timization,4 scheduling,5 and learning algorithm improvement.6 Results from recent

studies for the discrete combinatorial optimization problems show that more work is

need to be done to understand and enhance the standard CSO algorithm for it to

compete with other classic non-deterministic iterative heuristics7 such as simulated

annealing (SA), tabu search (TS), GA, PSO, ant-colony optimization (ACO), and

the like. Literature also claims that discrete cuckoo search algorithm is ine±cient in

comparison with other optimization algorithms.8,9

The placement problem occurring in the optimization of digital logic circuits in

CMOL technology is used to compare the performance of CSO algorithm against

other heuristics. CMOL placement optimization is chosen as it has been exhaustively

tested with many algorithms such as SA, PSO,10 GA,11 simulated evolution

(SimE),12 and TS,13 which makes it a very good case study. In this paper, an attempt

is made to enhance the e±ciency of the cuckoo search algorithm in solving discrete

optimization problems.

The rest of the paper is organized as follows. Section 2 introduces cuckoo-inspired

algorithms and highlights the attempts to use them to solve combinatorial optimi-

zation problems. In Sec. 3, CMOL placement problem is discussed. In Sec. 4, the

implementation of discrete modi¯ed cuckoo search (DMCS) algorithm is presented

and its performance is evaluated. Furthermore, some improvements are proposed

and their e®ects are discussed. Section 5 presents the proposed memetic algorithm

(MA). Section 6 reports the experimental results. Finally, Sec. 7 concludes this work.

2. Cuckoo-Inspired Algorithms

2.1. Cuckoo search

Cuckoo search optimigation is a metaheuristic search algorithm which has been

proposed recently by Yang and Deb.1 It is a novel algorithm inspired by the breeding

behavior of some cuckoo species. Cuckoos lay their eggs in the nests of other host

birds, and may remove others' eggs to increase the hatching probability of their own

eggs. They are often very specialized in mimicking the color and pattern of chosen

host species.2 This reduces the probability of their eggs being abandoned and thus

increases their reproductivity. They often choose a nest where the host bird has just

laid its own eggs. In general, the cuckoos' eggs hatch slightly earlier than their hosts'
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eggs. Once the ¯rst cuckoo chick is hatched, it will blindly propel the other eggs out

of the nest thereby increasing its share of food provided by the host bird. Yang and

Deb suggested three idealized rules to apply their algorithm.

. Each cuckoo lays one egg, which represents a solution, at a time and dumps it in a

randomly chosen nest.

. A fraction of the nests containing high quality eggs will carry over to the next

generation.

. The number of available host nests is ¯xed, and there is a probability that a host

can discover an egg laid by a cuckoo. In this case, the host bird can either throw

the egg away or abandon the nest. This can be approximated by the fraction Pa of

the n nests being replaced by new nests in new locations.

New solutions are generated by performing L�evy °ight from the current ones. L�evy

°ight is essentially a random walk where the random step length is drawn from a

L�evy distribution. This random walk via L�evy °ight is very e±cient in exploring the

search space. To generate new solutions xðtþ1Þ for a cuckoo i, L�evy °ight is performed

as in Eq. (1), where in general x
ðtÞ
i is the current solution, � > 0 is the step size, and

product � means entry-wise multiplications.

x
ðtþ1Þ
i ¼ x

ðtÞ
i þ �� L’evyð�Þ : ð1Þ

To map the behavior of cuckoo search to optimization problems, the quality of a

nest can be considered proportional to the value of the objective function. The aim is

to use the new and potentially better solutions (cuckoo's egg) to replace a relatively

bad solution in the nests.

According to Yang and Deb, there are some signi¯cant di®erences between CSO

and other algorithms. CSO is a population-based algorithm, but it uses some sort of

elitism or selection; the randomization in CSO is more e±cient as the step length is

heavy-tailed, and any large step is possible; the number of parameters to be tuned is

low, and thus it has more potential to adapt to a wider class of optimization problems.

2.2. Modi¯ed cuckoo search

As stated by Yang and Deb,2 given enough computation, the CSO will always ¯nd

the optimum solution but, as the search relies entirely on random walks, a fast

convergence cannot be guaranteed. Walton et al. presented two modi¯cations to the

original CSO method with the aim of increasing the convergence rate.14 This should

improve the performance of CSO and make it more practical for a wider range of

applications, but without losing the attractive features of the original method.

The ¯rst modi¯cation is made to the size of the L�evy °ight step size �; the value of

� will decrease as the number of generations increase. This is done to encourage more

localized search as the eggs get closer to the optimal solution.
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In its essence, CSO has no information exchange between individuals, and the

searches are performed independently; the second modi¯cation is done to add in-

formation exchange between the eggs in an attempt to speed up convergence to a

minimum.

2.3. Cuckoo search and discrete combinatorial optimization

Cuckoo search algorithm has previously shown promising results in solving contin-

uous optimization problems. This work evaluates the performance of CSO in solving

discrete optimization problems. Jati et al. constructed a cuckoo search algorithm to

solve the traveling salesman problem (TSP) to explore the potential of CSO in

solving discrete problems.8 Experimental results showed that the proposed algorithm

performs very well to solve some simple TSP instances, but it can be trapped into

local optimum solutions for other complex instances.

Syberfeldt and Lidberg9 did a case study of real-world optimization of an engine

manufacturing line using CSO. They used an extension of the original CSO algo-

rithm to handle multiple objectives. Results showed that the extended CSO algo-

rithm is ine±cient in comparison with the multi-objective benchmark algorithm

NSGA-II. It has been suggested that CSO algorithm might not suit combinatorial

optimization problems as the L�evy °ight pattern is not suited to be used as a basis for

swap mutation. The authors also recommended to study other possible ways to

adapt CSO to combinatorial optimization problems.

3. CMOL Placement Problem

Recently, a new trend is emerging for combining the advantages of CMOS tech-

nology, mainly its °exibility and high fabrication yield, with nanometer-scale mo-

lecular devices. In this regard, Likharev and Strukov15 introduced a hybrid

semiconductor/nanowire/molecular integrated circuit called CMOL, which uses two

levels of perpendicular nanowires as crossbar interconnection on top of inverter-

based CMOS stack, and showed possible applications of CMOL in ¯eld program-

mable gate arrays (FPGA),16 neuromorphic Cross-Nets,17 and in memories.18

Complementary metal-oxide semiconductor (CMOS) stack is connected to

nanofabric by metal pins that span to top and bottom of the nanowire levels as

shown in Fig. 1. Two CMOS inverters are connected by pin–nanowire–nanodevice–

nanowire–pin connection.

Like other nanofabric crossbars, CMOLs nanowires break at repeated intervals

con¯ning CMOL cells connectivity to only M ¼ 2rðr� 1Þ � 1 other cells located

within its proximity \Connectivity Domain", where r is an integer value that indi-

cates connectivity diameter and represents the constraint of CMOL placement.

The abundance of available nanodevices and nanowires provides a variety of

di®erent possible con¯gurations for the implementation of one circuitry. Among
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those, their could be only certain con¯gurations that satisfy connectivity domain

constraint and do not require additional routing resources.

3.1. Problem formulation

Given a pool of NOR/INV gates, and a pool of nets (the set of inputs/outputs to be

connected together), the CMOL placement problem can be formulated as a mapping

of a given NOR/INV gate-based circuit G to a CMOL generic inverter-based cell

array�. Each CMOL cell can implement one inverter or one NOR gate with multiple

fan-in. Each gate inG has a number of fan-in and fan-out gates, those comprise �i the

netlist of gate i, as described in Eq. (2).

P : G ! � ; ð2aÞ
�i ¼ ffan-inðiÞjfan-outðiÞg : ð2bÞ

Unlike conventional CMOS-based cell assignment, CMOL cell placement is

constrained to a \Connectivity Domain" of radius r as shown in Fig. 2. Each CMOL

cell can be connected to one of its proximity cell members, any violation to this

constraint would impose introducing a bu®er to satisfy connectivity. However, such a

process could result in substantial increase in timing delay. The \Connectivity

Domain" can be de¯ned as follows. Given a gate and its netlist ðgi; �iÞ placed in

location Li, for any gate gk � G and gk in the netlist �i, the following constraint

should be satis¯ed:

8i; k 2 G : dist ðLi;LkÞ � r ; ð3Þ
where Lk is the location of gk, dist is Manhattan distance, and r is CMOL connec-

tivity diameter. The objective of CMOL cell mapping problem is to satisfy the

constraint in Eq. (3) for all gates of circuit G.

3.2. Literature review

Previous attempts to use sub-optimal search heuristics are reported in Refs. 10–13,

19 and 20. Genetic algorithm11 was used with two-dimensional block PMX crossover

Fig. 1. Schematic side view of two CMOL cells with two levels of nanowires. Only one nanodevice is

activated to connect the output of Inverter A to the input of Inverter C (color online).
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operator and mutation, where the ¯tness function evaluated the Manhattan distance

between connected cells. The heuristic was driven to minimize the total Manhattan

distance of the population. Nonetheless, memory requirements, choices of data

structure for chromosomes representation, and computation time are signi¯cant

disadvantages of GA. A more elaborate work was reported in Ref. 19 where a

memetic computing approach was used by implementing a hybrid of the GA and the

SA (SA) local-based search heuristic. SA was used in each generation to enhance

o®springs which resulted from PMX crossovers and pairwise interchange mutations

in GA. Hung et al.20 extended their work on memetic approach by integrating self-

learning operators using Lagrangian multipliers (LRMA). The Lagrangian relaxa-

tion technique (LRT) was applied in population goodness function by assigning

LRMA to penalty values corresponding to problem constraints and repeatedly

updating them. Results reported using LRMA approach are promising, however,

more computation is needed for the penalty updating mechanism and SA local-based

search.

Particle swarm optimization10 was used for solving the cell assignment in

CMOL. In the proposed algorithm, the PSO operators such as velocity and position

update were de¯ned in the context of assignment problem. Due to the inherent greedy

nature of PSO algorithm, SA was used to aid in escaping local minima. The proposed

method takes advantage of the exploration and exploitation factors of PSO and the

intrinsic hill climbing feature of SA to reduce the number of bu®ers to be inserted.

Simulated evolution algorithm was also used to solve this problem.12 A novel

goodness and allocation functions were devized that exploit better understanding of

the limitations imposed by CMOL connectivity radius.

Fig. 2. CMOL FPGA topology for r ¼ 3, M ¼ 11 cells in the \Connectivity Domain" (highlighted by

dark line) for the input pin of cells painted in dark grey. The overlap between connectivity domains of two

cells is shown in light grey (color online).
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Tabu search algorithm was engineered to provide sub-optimal solution by e±cient

exploration of search space.13 A probabilistic method was proposed to make tailored

swaps and reduce candidate list size. TS exhibited more intelligent search of the

solutions subspace, and was able to ¯nd better solutions in less time compared to

previous attempts.

4. Discrete Modi¯ed Cuckoo Search

In this section, solution representation, DMCS implementation, and the suggested

improvements are presented. A nest in DMCS population is represented as a 2D grid

with dimensions X � Y . The outer cells of the grid are reserved for I/O pins, where

I/O pins moves are restricted to those reserved locations. In the initialization phase,

gates are randomly assigned to locations in the 2D layout as shown in Fig. 3.

The main objective of the placement is to ¯nd a feasible assignment of cells in

which all connections are satis¯ed. However, in CMOL placement, the problem is to

place connected cells within each other's connectivity domain to avoid insertions of

additional bu®ers. A conventional approach is to calculate the number of nets that

violate the connectivity domain constraint. The overall cost of a solution is the total

number of violations of the connectivity domain constraint. In other words, the

overall cost is the number of additional bu®ers that are needed to satisfy all con-

nections. The details of the MCS algorithm are shown in Algorithm 1.

In the MCS, a fraction of the eggs with the best ¯tness are put into a group of top

eggs. For each of the top eggs, a second egg in that group is randomly picked and a

new egg is generated on the line connecting those two top eggs. The distance along

that line at which the new egg is located is calculated using the inverse of the golden

ratio  ¼ ð1þ ffiffiffi

5
p Þ=2. In case the same egg is picked twice, a local L�evy °ight search

is performed from the randomly picked nest with step size � ¼ A=ð2 � ffiffiffiffi

G
p Þ, where G

is the generation number. There is one parameter that controls the fraction of nests

to be abandoned and the fraction of nests to make up the top nests, which needs to be

Fig. 3. Nest representation of CMOL initial placement of s27:blif. 19 cells, 8 gates, 7 inputs and 4
outputs.
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Algorithm 1 Modified Cuckoo Search Algorithm
1: Set MAX {MAX is the maximum number of iterations}
2: Set Pa {Pa is the fraction of the entire population to abandon}
3: GoldenRatio ψ ← 1.62
4: Initialize a population of n nests xi(i = 1, 2, . . . , n)
5: for all xi do
6: Calculate fitness Fi = f(xi)
7: end for
8: Generation number G ← 1
9: while NumberObjectiveEvaluations < MAX do

10: G ← G + 1
11: Sort nests by order of fitness
12: for all nests to be abandoned do
13: Current position xi

14: Calculate Lévy flight step size α ← A/
√

G

15: Perform Lévy flight from xi to get new egg xk

16: xi ← xk, Fi ← f(xi)
17: end for
18: for all of the top nests do
19: Current position xi

20: Pick another nest from the top nests at random xj

21: if xi = xj then
22: Calculate Lévy flight step size α ← A/(2 ∗ √

G)
23: Perform Lévy flight from xi to get new egg xk

24: Fk = f(xk)
25: Choose a random nest l from all nests
26: if Fk > Fl then
27: xl ← xk, Fl ← Fk

28: end if
29: else
30: dx = |xi − xj |/ψ

31: Move distance dx from nest i to j to find xk

32: Fk = f(xk)
33: Choose a random nest l from all nests
34: if Fk > Fl then
35: xl ← xk, Fl ← Fk

36: end if
37: end if
38: end for
39: end while
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adjusted in the MCS. Through testing on the benchmarks, it was found that setting

the fraction of nests to be abandoned to 0.5 yielded the best results.

4.1. DMCS implementation

Modi¯ed cuckoo search algorithm described in Algorithm 1 has been implemented to

solve the CMOL placement problem. As this problem is a discrete one, three major

parts in the algorithm have to be rede¯ned to cope with the nature of the problem.

These are, step size of the L�evy °ight, performing L�evy °ight from one nest to

another, and moving a distance from one nest toward another one.

In the suggested implementation, a L�evy °ight from one nest to another is per-

formed by randomly, pairwise, swapping the locations of cells. The number of pairs of

cells to swap their locations is controlled by the step size of the L�evy °ight which is an

integer number in this case. For example, if the step size equals to 3, then three pairs

of cells will swap their respective locations in the grid. The lower bound of the step

size is set to 1, while the upper bound is set to ðX � Y Þ=2. Figure 4 depicts the step

size versus iterations. It is clearly visible that the step size is higher at the beginning.

The likelihood of making large steps is also higher at the beginning.

Moving from one nest toward the other is implemented by assigning portion of the

cells in one nest to the same locations in the other one. This way, the similarity

between di®erent nests is increased assuming that cells are better located in nests with

high ¯tness. Initially, the di®erence between the two nests, i.e., the number of cells that

are not in the same location is computed. Then, the number of cells in the ¯rst nest are

assigned, based on the golden ratio, to same locations of the second nest. Figure 5

shows an example. There are two nests: nest1 and nest2. These two nests have six cells

in common, whichmeans that the di®erence between them equals to 25� 6 ¼ 19 cells.
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Fig. 4. L�evy °ight step size (color online).

Engineering MA from Discrete CS and TS for Cell Assignment of CMOL Circuits

1650023-9

November 4, 2015 3:44:45pm WSPC/123-JCSC 1650023 ISSN: 0218-1266
2nd Reading



Using the inverse of the golden ratio, number of cells in nest2 ð19= ¼ 11Þ are assigned
to same locations of nest1. The result is presented as new nest.

Using this implementation, MCS performed well for small benchmarks, and it was

able to reach 0 bu®ers. However, its performance degraded notably for larger

benchmarks, and it was not able to reach 0 bu®ers. It is noted that there is a high

chance that the algorithm will be trapped in a local minimum.

4.2. Suggested improvements

It was noted that implementing the MCS algorithm, as introduced in Ref. 14, to solve

the problem at hand did not deliver the same performance as observed for other

continuous problems. Hence, in this section some improvements to the algorithm are

suggested and their outcome is evaluated.

Due to the nature of the problem, many nests or solutions can have the same cost.

Small perturbations, like swapping two neighbor cells, might not a®ect the quality of

the solution nor change its cost. It has been observed that this particular factor is

what is causing the algorithm to be trapped in a local minimum. Lines 26 and 34 in

Algorithm 1 suggest that only those nests with a better cost value can be accepted.

This will limit the exploration of the search space and the algorithm will be stuck

with those top nests which it already has. By introducing the equality factor to these

two lines as in IF Fk � Fl, the performance of the algorithm has been remarkably

improved. With this small change, the algorithm was able to reach the optimal

solution (zero bu®ers) for the \s400" benchmark circuit for 85% of the runs. How-

ever, the original algorithm failed to reach the optimal solution for the \s400"

benchmark circuit for all the runs. This statistics is based on 20 runs with the same

number of maximum iterations MAX .

Despite the fact that given enough computation time, CSO will always ¯nd the

optimum solution; considering the size of the search space and the nature of the

problem, it is not su±cient to rely merely on random moves as suggested by the

algorithm. Hence, it is suggested to use some sort of smart moves in order to improve

the convergence time of the algorithm.

Fig. 5. Generating a new nest from nest1 and nest2.
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One way of performing smart moves is by evaluating the ¯tness of each element in

the gird. Based on that smart moves can be performed by relocating those poorly

located elements. The same goodness measure introduced in Ref. 12 is adopted to

evaluate the ¯tness of each element. The ¯tness of each element can be expressed as

follows:

fitnessi ¼
insidei
j�ij

; ð4Þ

where insidei represents the number of gates in set �i that satisfy connectivity

constraint (i.e., inside the connectivity domain of element i) and j�ij is the cardi-

nality of the netlist of gate i. Figure 6 shows an example of how ¯tness value is

calculated, where two gates in �i are outside the connectivity domain of gate i and

three otherwise. This ¯tness function results in a precise selection of those elements

that violate the constraint expressed in Eq. (3), which directs the heuristic into

enhancing the overall cost of the solution.

Since the number of cells that violate the given constraint are far less than the

total number of cells, it is rational for swaps to always include cell(s) that violate the

connectivity radius constraint, or those with low ¯tness values. To avoid being

greedy, and not curtail exploration, the following approach was adopted from

Ref. 13. The list of all of the circuit's cells are sorted according to their ¯tness. When

selecting cells for swaps, one cell is selected randomly while the other is selected

probabilistically. Those cells on the top of the list which have more violations have a

higher chance of being selected, while those cells that do not violate the constraint

also have a small non-zero probability of being selected. To perform the probabilistic

selection, the positive values of a Gaussian random variable which has mean m0 ¼ 0

and standard deviation 3� ¼ circuit� size are used. Given the Gaussian distribu-

tion, cells in the top of the list will be more frequently selected than those in the

bottom of the list.

Fig. 6. Evaluation of gate i's goodness; for r ¼ 3 cells 1, 2 and 3 are inside i's connectivity domain (i.e.,
dist � r), while cells 4 and 5 are out of it (i.e., dist > r). goodnessi ¼ 3=5 ¼ 0:6.
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5. Memetic Algorithm

The term \Memetic Algorithms" (MAs) is used to denote a family of metaheuristics

that blend together several concepts from separated families such as evolutionary

algorithms (EAs) and SA for instance. The term \memetic" comes from \meme"

which was coined by Dawkins21 to denote an analogous to the gene in the context of

cultural evolution. MAs are population-based metaheuristics that maintain a pool of

solutions for the problem at hand. Each of these solutions is called an individual in

the EA domain. These solutions are subject to processes of competition and mutual

cooperation in a way that resembles the behavioral patterns of living beings from a

same species. The pool of solutions is called a \generation". Each generation consists

of updating a population of individuals that, hopefully, will lead to better solutions.

Essentially, a mutation operator must generate a new solution by partly modi-

fying an existing one. This modi¯cation can be random or can be endowed with

problem-dependent information so as to bias the search to probably-good regions of

the search space. It is due to this possibility that one of the most distinctive com-

ponents of MAs is introduced: local-improvers.22 The local-improver algorithm can

be used in di®erent parts of the generation process. For instance, it can be inserted

after the utilization of any other mutation operator; alternatively, it can be used at

the end of the reproduction stage.

Despite the improvements suggested in Sec. 4, DMCS (like other population-

based algorithms) still lacks the competency with algorithms like SimE. Syberfeldt

and Lidberg9 also stated that the L�evy °ight pattern might not be suitable as a basis

for swap mutation. We believe that hybridizing DMCS with other algorithms will

lead to a better performance and open the °oor for the algorithm to tackle similar

problems e®ectively.

Based on the above, the memetic algorithm described in Algorithm 2 is proposed.

This algorithm starts with a population of random solutions. Then, it uses the

proposed DMCS to produce a new generation. After that, TS is used to improve the

quality of the top nests obtained from DMCS. Finally, the MA updates the list of top

nests and repeat the process again. The same TS implementation introduced

Algorithm 2 DMCS-TS Hybrid Memetic Algorithm
1: initialize population P

2: repeat
3: P ← DMCS(P )
4: for each individual i ∈ top-nests do
5: i =Tabu-Local-Search(i)
6: end for
7: update top-nests list
8: until MA-Termination-Criterion()
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in Ref. 13 is used to perform the local search to improve the quality of the top nests.

The local improvement is performed on the top nests only, as the other nests are used

to diversify the search in the search space. The local improvement process is per-

formed in each iteration on the top nests after the generation of the new population.

TS runs for 50 iterations, which provides a high quality result in reasonable run time.

The size of the candidate list is 50, while the size of the tabu list is 5. The population

size of DMCS is reduced to 10 in order to reduce the run time.

6. Experimental Results

Evaluation of DMCS performance and behavior is conducted using ISCAS89

(Ref. 23) benchmarks. The benchmarks used in this work are mapped to NOR-based

gates with maximum of ¯ve inputs. DMCS has been implemented using Java pro-

gramming language. Initially, ¯ne tuning to the parameters of the algorithm is

performed. The ¯rst parameter to consider is the size of the population or the number

of nests n. Figure 7 shows the change in the obtained cost as a result of changing the

population size. It can be clearly seen that up to a certain point increasing the

number of nests does enhance the cost of the solution. However, after a certain point

the improvement in cost is negligible.

The second parameter to consider is the percentage of the top nests. Figure 8

depicts the change in cost as a result of changing the percentage of the top nests. It is

evident that increasing the percentage of the top nests does enhance the cost of the

solution. However, after a certain point, increasing the percentage of the top nests

has a negative impact on the quality of the obtained solution. A percentage between

50% and 60% does produce the best results. These experiments are done for a me-

dium size circuit (s510) and a large size circuit (s1196); both of them show the same

trend for the two experiments.

Fig. 7. Change in nest cost versus population size for \s510" and \1196" benchmarks.
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As a result, population size (number of nests) in DMCS is set to 20, Pa (the

fraction of the entire population to be abandoned) is set to 50%, and MAX (the

maximum number of iterations) equals to 30,000. The median value of 20 runs is

reported in Tables 2 and 3.

Table 1 shows the number of cells (i.e., gates and I/Os) of benchmark circuits

used; Area (Row � Column) is the area used in GA, MA, LRMA, PSO, SimE, TS

and DMCS.

Figure 9 shows a comparison of change in nest cost per iteration for \s820"

benchmark for DMCS and the hybrid algorithm. It is evident that the suggested

Fig. 8. Change in nest cost versus percentage of top nests for \s510" and \1196" benchmarks.

Table 1. ISCAS'89 Benchmarks: Area is the size of CMOL 2D grid. AU% is area utilization.

Circuits Cells Gates Inputs Outputs Area (Row � Column) AU%

s27 19 8 7 4 25ð5� 5Þ 32.00
s208 136 109 18 9 169ð13� 13Þ 64.50

s298 122 85 17 20 144ð12� 12Þ 59.03

s344 180 130 24 26 196ð14� 14Þ 66.33

s349 184 134 24 26 196ð14� 14Þ 68.37
s382 175 124 24 27 196ð14� 14Þ 63.27

s386 164 138 13 13 196ð14� 14Þ 70.41

s400 188 137 24 27 196ð14� 14Þ 69.90
s420 299 248 34 17 361ð19� 19Þ 68.70

s444 187 136 24 27 196ð14� 14Þ 69.39

s510 304 266 25 13 361ð19� 19Þ 73.68

s526 273 222 24 27 324ð18� 18Þ 68.52
s641 302 206 54 42 676ð26� 26Þ 30.47

s713 321 225 54 42 676ð26� 26Þ 33.28

s820 447 400 23 24 529ð23� 23Þ 75.61

s832 454 407 23 24 529ð23� 23Þ 76.94
s838 606 507 66 33 676ð26� 26Þ 75.00

s1196 675 613 31 31 729ð27� 27Þ 84.09

s1238 724 662 31 31 784ð28� 28Þ 84.44
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improvements do enhance the performance of the algorithm. However, the hybrid

algorithm converges much faster than the original one. This suggests, as mentioned

earlier, that the L�evy °ight pattern is not suitable as a basis for swap mutation.

Table 2 shows the ¯nal results obtained for the population-based algorithms GA,

PSO, and DMC; Time is the computation time in seconds, Buf reports the number of

inserted bu®ers to satisfy CMOL connectivity domain. Results shows that for all

circuits, DMCS outperforms PSO in terms of computation time and the total number

Fig. 9. Comparison of change in nest cost per iteration of s820.blif (r ¼ 12) (color online).

Table 2. ISCAS'89 comparison of population-based algorithms GA, PSO and DMCS.

GA PSO DMCS

Benchmarks Time (s) # BUF Time (s) # BUF Time (s) # BUF

s27 0.01 0 0.01 0 0.01 0

s208 1.12 0 4 0 0.28 0
s298 0.17 0 4 0 0.32 0

s344 0.57 0 8 0 0.55 0

s349 0.49 0 12 0 0.58 0

s382 1.6 0 13 1 3.17 0
s386 1.05 0 11 2 1.74 0

s400 2.12 1 20 1 4.25 0

s420 8.5 1 40 4 54 1

s444 1.86 2 65 1 3.72 0
s510 16.56 2 60 8 63 2

s526 9.75 5 185 6 57 2

s641 82.66 15 220 37 63 13
s713 52.84 34 250 39 70 18

s820 77.52 41 400 126 128 41

s832 69.27 54 350 115 134 47

s838 201.37 50 600 70 160 46
s1196 234.88 84 705 188 205 99

s1238 268.92 121 1500 240 231 140

Avg 54.28 22 234.05 44 62.14 22
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of inserted bu®ers. For almost all circuits (except the last two), the number of needed

bu®ers obtained from DCMS is similar or even better than those obtained from GA;

GA outperformed DMCS for the last two circuits, namely \s1196" and \s1238". On

an average, the performance of DMCS and GA is the same for the number of bu®ers,

however, GA requires less computation time.

With respect to the suggested improvements, the performance of DMCS is no-

tably enhanced; DMCS is matching or outperforming the e±ciency of other popu-

lation-based optimization algorithms like GA and PSO. On the other hand, it seems

that these population-based algorithms (i.e., GA, PSO and DMCS) are ine±cient,

for solving this type of problems, in comparison with other optimization algorithms

like SimE 12 which works on a single solution or other hybrid algorithms.

Fortunately, as it has been shown in Refs. 10, 19 and 20, hybridizing those

population-based algorithms with other algorithms has an encouraging potential.

Results of these algorithms along with the proposed MA, which combines DMCS

with TS, are reported in Table 3. The proposed algorithm outperforms all other

attempts in terms of computation time and quality of the solution. The proposed

algorithm was able to reach the optimal solution for all the benchmarks circuits. This

dramatic improvement has been achieved, thanks to the well-engineered TS which is

used to improve the quality of the individuals of the cuckoo search population. To be

more precise, it has been found that the quality of the solution is mostly driven by

TS. This observation is made due to the fact that tuning the parameters of DMCS

Table 3. ISCAS'89 comparison of hybrid algorithms MA, LRMA, PSO+SA and DMCS+TS.

MA (GA+SA) LRMA PSO+SA DMCS+TS

Benchmarks Time (s) # BUF Time (s) # BUF Time (s) # BUF Time (s) # BUF

s27 0.01 0 0.01 0 0.01 0 0.02 0

s208 0.12 0 0.1 0 0.01 0 0.04 0

s298 0.11 0 0.09 0 0.01 0 0.10 0

s344 0.29 0 0.16 0 2.12 0 0.17 0
s349 0.28 0 0.18 0 2.67 0 0.19 0

s382 0.38 0 0.32 0 3.52 0 0.25 0

s386 0.33 0 0.34 0 3.62 0 0.33 0

s400 0.4 0 0.34 0 2.08 0 0.30 0
s420 3.41 0 1.57 0 20.11 0 0.38 0

s444 0.4 0 0.34 0 4.39 0 0.17 0

s510 7.56 0 3.42 0 40.23 0 0.55 0
s526 4.36 0 1.59 0 30.25 0 0.54 0

s641 39.4 4 22.02 0 120.77 0 5.46 0

s713 30.11 3 41.77 2 120.73 2 4.34 0

s820 61.71 10 54.09 6 250.32 4 10.99 0
s832 60.17 11 63.77 4 180.37 6 22.46 0

s838 85.62 7 100.4 4 250.12 4 17.15 0

s1196 208.15 19 179.47 9 301.47 1 32.52 0

s1238 267.34 31 353 9 450.61 27 46.42 0

Avg 40.53 4 43.31 2 93.86 2 7.49 0
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did not help much in improving the quality of the obtained solutions. However,

adjusting the parameters of TS had a big in°uence on the quality of the solution.

As a result, this work shows that population-based algorithms are not suitable for

this type of discrete combinatorial problems. However, its performance can be fur-

ther improved by using problem-dependent information to bias the search toward

good regions in the search space, and by utilizing algorithms like SA and TS to

improve the quality of its individuals. The performance of DMCS was comparable

with the performance of other algorithms in its class (population-based algorithms).

7. Conclusion

In this work, discrete CSO algorithm to solve CMOL placement problem is imple-

mented and evaluated. It is found, as indicated by previous works, that classic

version of CSO is not suited for combinatorial optimization. Some improvements are

introduced to enhance the performance of the algorithm. These improvements sug-

gest some tweaks to cope with the nature of the problem. The proposed improve-

ments helped in enhancing the performance of the original algorithm. Results of

DMCS outperformed that of PSO and match those of GA.
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